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Abstract. Many successful segmentation algorithms are based on Bayes-
ian models in which prior anatomical knowledge is combined with the
available image information. However, these methods typically have many
free parameters that are estimated to obtain point estimates only, whereas
a faithful Bayesian analysis would also consider all possible alternate
values these parameters may take. In this paper, we propose to incor-
porate the uncertainty of the free parameters in Bayesian segmentation
models more accurately by using Monte Carlo sampling. We demon-
strate our technique by sampling atlas warps in a recent method for
hippocampal subfield segmentation, and show a significant improvement
in an Alzheimer’s disease classification task. As an additional benefit, the
method also yields informative “error bars” on the segmentation results
for each of the individual sub-structures.

1 Introduction

Many segmentation algorithms in medical image analysis are based on Bayesian
modeling, in which generative image models are constructed and subsequently
“inverted” to obtain automated segmentations. Such methods have a prior that
makes predictions about where anatomical structures typically occur through-
out the image, such as Markov random field models or probabilistic atlases [1,
2]. They also include a likelihood term that models the relationship between
segmentation labels and image intensities, often incorporating explicit models of
imaging artifacts [3]. Once the prior and likelihood have been specified, segmen-
tation of a particular image proceeds by inferring the posterior distribution over
all possible segmentations using Bayes’ rule, and searching for the segmentation
that maximizes this posterior, or estimating the volumes of specific structures.

Although these methods are clearly “Bayesian”, an issue that is usually over-
looked is that they only apply Bayesian analysis in an approximate sense. In
particular, these models typically have many free parameters for which suitable
values are unknown a priori. In a true Bayesian approach, such parameters need
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to be integrated over when inferring the segmentation posterior. But, in practice,
their optimal values are first estimated and only the resulting point estimates
are used to compute the segmentation posterior instead. In recent years genera-
tive models have started to include deformable registration methods that warp
probabilistic atlases into the domain of the image being analyzed, often adding
thousands of free parameters to the model [4–7]. Since many plausible atlas
warps beside the truly optimal one may exist, computing segmentations based
on a single warp may lead to biased results. Furthermore, the numerical opti-
mizers computing such high-dimensional atlas warps may not necessarily find
the global optimum, further contributing to segmentation errors.

In this paper, we investigate the effect of using a more accurate approximation
of the segmentation posterior in Bayesian segmentation models than the point
estimates of the free model parameters. In particular, we will approximate the
integral over atlas deformations in a recently proposed method for hippocampal
subfield segmentation [7] using Markov chain Monte Carlo (MCMC) sampling,
and compare the results to those obtained using the most probable warp only.
We show that MCMC sampling yields hippocampal subfield volume estimates
that better discriminate controls from subjects with Alzheimer’s disease, while
providing informative “error bars” on those estimates as well.

To the best of our knowledge, the issue of integrating over free parameters in
Bayesian segmentation models has not been addressed before in the literature.
The closest work related to the techniques used in this paper infers the posterior
distribution of deformation fields in the context of computing location-specific
smoothing kernels [8], quantifying registration uncertainties [9], or constructing
Bayesian deformable models [10].

2 Methods

2.1 Baseline segmentation method

We start from the Bayesian method for hippocampal subfield segmentation [7]
that is publicly available as part of the FreeSurfer software package4. In this
method, a segmentation prior is defined in the form of a tetrahedral mesh-based
probabilistic atlas in which each mesh vertex has an associated vector of proba-
bilities for the different hippocampal subfields and surrounding tissues (fimbria,
presubiculum, subiculum, CA1, CA2/3, CA4/DG, hippocampal fissure, white
matter, gray matter, and CSF). The resolution and topology of the mesh are
locally adaptive to the level of shape complexity of each anatomical region, e.g.,
it is coarse in uniform regions and fine around convoluted boundaries. The mesh
can be deformed according to a probabilistic model on the location of the mesh
nodes p(x) ∝ exp(−φ(x)), where x is a vector containing the coordinates of
the mesh nodes, and φ(x) is an energy function that penalizes mesh positions
in which the tetrahedra are deformed [11]. This function goes to infinity if the
Jacobian determinant of any tetrahedron’s deformation approaches zero, and
4 http://surfer.nmr.mgh.harvard.edu/
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therefore ensures that the mesh topology is preserved. For a given x, the prior
probability pi(k|x) of tissue k occurring in voxel i is obtained by interpolating
the probability vectors in the vertices of the deformed mesh. Assuming condi-
tional independence of the labels between voxels given x, the prior probability
of a segmentation is then given by p(l|x) =

∏
i pi(li|x), where l = (l1, . . . , lI)T,

li ∈ {1, . . . ,K} is a segmentation of an image with I voxels into K tissue types.
For the likelihood, we model the intensity of voxels in tissue k as a Gaussian

distribution with parameters µk, σ2
k: p(y|l,θ) =

∏
iN (yi;µli , σ

2
li
), where the vec-

tor y = (y1, . . . , yI)T contains the image intensities, and θ = (µ1, σ
2
1 , . . . , µK , σ2

K)T

represents the Gaussian distribution parameters. A non-informative prior for θ
(i.e., p(θ) ∝ 1) completes the model.

Given an image to segment, the posterior over possible segmentations is given
by p(l|y) =

∫
θ

∫
x

p(l|y,x,θ)p(x,θ|y)dxdθ, which takes into account the contri-
bution of all possible values for the model parameters {x,θ}, each weighted by
their posterior probability p(x,θ|y). In [7], this integral is approximated by es-
timating the parameters with maximal weight{x̂, θ̂} = arg max{x,θ} p(x,θ|y),
and using the contribution of those parameters only, yielding

p(l|y) ' p(l|y, x̂, θ̂) =
∏

i

pi(li|yi, x̂, θ̂) (1)

with pi(k|yi, x̂, θ̂) ∝ N (yi; µ̂k, σ̂2
k)pi(k|x̂). (2)

The segmentation maximizing this approximate posterior is obtained by simply
assigning each voxel to the tissue class that maximizes Eq. (2). Furthermore, the
volume of class k also has an (approximate) posterior distribution, with mean

vk =
∑

i

pi(k|yi, x̂, θ̂) (3)

and variance
γ2

k =
∑

i

pi(k|yi, x̂, θ̂)[1− pi(k|yi, x̂, θ̂)]. (4)

2.2 Incorporating parameter uncertainty

The approximation of Eq. (1) will be a good one if the posterior of the model
parameters, p(x,θ|y), is very peaked around {x̂, θ̂}. Although this is a reasonable
assumption for the Gaussian distribution parameters θ – one cannot alter them
much without considerably decreasing the likelihood of the model – assuming
a sharp peak for the mesh position x is not necessarily accurate, since moving
vertices in areas with low image contrast does not drastically change p(x,θ|y).

We therefore propose to use a computationally more demanding but more
accurate way of approximating p(l|y). Specifically, we propose to draw a number
of samples x(n), n = 1, . . . , N from the posterior distribution p(x|y, θ̂) using
Monte Carlo sampling, and approximate the segmentation posterior by

p(l|y) '
∫
x

p(l|y,x, θ̂)p(x|y, θ̂)dx ' 1
N

N∑
n=1

p(l|y,x(n), θ̂), (5)
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where in the first step we have used the mode approximation in the direction of
θ, as before, but in the second step the remaining integral is approximated by
summing the contributions of many possible atlas warps (with more probable
warps occurring more frequently), rather than by the contribution of a single
point estimate x̂ only. Given enough samples, this approximation can be made
arbitrarily close to the true integral.

Once N samples x(n) are available, it follows from Eqs. (3–5) that the ap-
proximate posterior for the volume of tissue class k has mean and variance

vk =
1
N

N∑
n=1

vk(n) (6)

γ2
k =

1
N

[
N∑

n=1

[vk(n)− vk]2 + γ2
k(n)

]
, (7)

respectively, where vk(n) =
∑

i pi(k|yi,x(n), θ̂) and γ2
k(n) =

∑
i pi(k|yi,x(n), θ̂)[1−

pi(k|yi,x(n), θ̂)].

2.3 MCMC sampling

In order to obtain the required samples x(n), we use a MCMC sampling tech-
nique known as the Hamiltonian Monte Carlo (HMC) method [12], which is more
efficient than traditional Metropolis schemes because it uses gradient informa-
tion to reduce random walk behavior. Specifically, it facilitates large steps in x
with relatively few evaluations of the target distribution p(x|y, θ̂) and its gradi-
ent, by iteratively assigning a random momentum to each component of x, and
then simulating the Hamiltonian dynamics of a system in which − log p(x|y, θ̂)
acts as an internal “force”. In our implementation, we discretize the Hamiltonian
trajectories using the so-called leapfrog method [12], and simulate the Hamil-
tonian dynamics for a number of time steps sampled uniformly from [1, 50] to
obtain a proposal for the Metropolis algorithm. Discretization step sizes that
are adequate for some tetrahedra might be too large or small for others, leading
to either slow convergence or too many rejected moves. We therefore use the
following heuristic stepsize for each vertex: η/ max[∂2(− log p(x))/∂x2

j |x̂], where
η is a global adjustment factor and ∂2/x2

j denotes the second derivatives with
respect to the three spatial coordinates of vertex j. Two samples of p(x|y, θ̂)
obtained using the proposed scheme are displayed in Fig. 1.

3 Experiments and Results

To investigate the effect of approximating the true posterior over the segmenta-
tions using parameter sampling instead of point estimates, we compared the per-
formance of the estimated subfield volumes for both methods (Eq. (3) vs. Eq. (6))
in an Alzheimer’s disease classification task5. In particular, we collected the
5 Although this specific classification task is best performed using information from

the whole brain [13], the goal of this paper is to show the effect of MCMC sampling.
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volume estimates for all seven subfields (averaged over the left and right hemi-
spheres) into a feature vector v for each subject, and trained and tested a simple
multivariate classifier to discern between elderly controls (EC) and Alzheimer’s
disease patients (AD) in the corresponding feature space. We also compared
the variance (“error bars”) on the subfield volume estimates for both methods
(Eq. (4) vs. Eq. (7)), and investigated the effect of incorporating this information
in the training of the classifier as well.

3.1 Data and experimental set-up

The 400 baseline T1 scans from controls and AD subjects available in ADNI 6

where used in this study. The MRI pulse sequence is described elsewhere6. The
volumes were preprocessed and parsed into 36 brain structures using FreeSurfer.
We discarded 17 subjects for which FreeSurfer crashed. The demographics for
the remaining 383 were: 56.2% controls (age 76.1± 5.6), 43.8% Alzheimer’s (age
75.5± 7.6); 53.6% males (age 76.1± 5.6), 46.4% females (age 75.9± 6.8).

After the segmentation of subcortical structures, the FreeSurfer hippocampal
subfield segmentation routine (Section 2.1) was executed. The output {x̂, θ̂} was
used to initialize the HMC sampler, which was then used to generate N = 50
samples per subject. The parameter η was tuned so that the average Metropolis
rejection rate was approximately 25%. To decrease the correlation between suc-
cessive samples, we recorded x at the end of every 200th Hamiltonian trajectory
(chosen by visual inspection of the autocorrelation of subsequent runs). We al-
lowed 300 initial “burn-in” runs before collecting samples. The running time of
the sampling was roughly three hours.

3.2 Classification and ROC analysis

We used a Quadratic Discriminant Analysis (QDA) classifier, which assumes
that the feature vectors v in each group are normally distributed according to
N (v|µEC ,ΣEC) and N (v|µAD,ΣAD), respectively. The means and covariances
were estimated from the available training samples. In testing, a subject was
classified as EC or AD by thresholding the likelihood ratio N (v|µEC ,ΣEC)/
N (v|µAD,ΣAD) ≶ λ. The corresponding ROC curve (i.e., true positive rate
vs. false positive rate) was obtained by sweeping the threshold λ, and the area
under the curve (Az) was then used as a measure of performance. The ROCs
were computed using cross-validation with two randomly selected folds.

We also analyzed the accuracy when the volume of the whole hippocampus
is thresholded to separate EC from AD. We compared two estimates of the
volume: (1) the sum of the volumes of the subfields; and (2) the estimate from
the FreeSurfer pipeline. Finally, to assess the effect of sampling on training and
testing separately, we conducted an experiment in which the classifier was trained
on point estimate volumes and evaluated on MCMC volumes, and vice versa.

6 Online at http://www.adni-info.org/.
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3.3 Results

Fig. 2 shows the ROC curves and the areas under them (Az) for the different
methods. Also shown are the p-values of paired DeLong statistical tests [14] that
evaluate if the differences in Az are significant. At p = 0.05, sampling signifi-
cantly outperformed point estimates in all cases (subfields and whole hippocam-
pus). At the operating point closest to (0, 1), sampling provides a ∼ 2% increase
in classification accuracy. Using all the subfields performed significantly better
than the whole hippocampal volume alone. All methods based on the subfield
analysis outperformed the standard FreeSurfer hippocampal segmentation.

When the QDA was trained on the point estimate subfield volumes and tested
on those obtained with sampling, we obtained Az = 0.875, and when the roles
were switched, Az = 0.876. These values are better than when point estimate
volumes were used for both training and testing, but worse than when sampling
was used throughout, indicating that MCMC sampling is beneficial for both
obtaining better discriminative directions and classifying individual subjects.

We also compared the variances of the hippocampal subfield volume pos-
teriors (Table 1). The point estimates (Eq. (4)) clearly underestimate them,
especially for the larger subfields; e.g., the standard error for CA2-3 is 0.4%
of its volume, unrealistic given the poor image contrast (Fig. 1). In contrast,
sampling (Eq. (7)) produces values between 5% and 10%, better reflecting the
uncertainty in the estimated volumes.

In an attempt to take the MCMC volumetry uncertainty estimates into ac-
count in the classifier, we also trained a QDA by simply using all contributing
volumes vk(n), n = 1, . . . , N = 50 in Eq. (6) for each subject – effectively using
50 times more training samples than there are training subjects. The ROC and
the corresponding Az are displayed in Fig. 2 (labeled as “error bars”), showing
a modest further improvement compared to when the classifier is trained using
the mean values only. Although the improvement was not statistically significant
(p ≈ 0.1), the ROC seems to be consistently better in the region that is closest
to (0,1), where the operating point of the classifier would be typically defined.

4 Discussion

In this paper we proposed to approximate the segmentation posterior in prob-
abilistic segmentation models more faithfully by using Monte Carlo samples of
their free parameters. We demonstrated our technique by sampling atlas warps
in a Bayesian method for hippocampal subfield segmentation, and showed a sig-
nificant improvement in an Alzheimer’s disease classification task. The method is
general and can also be applied to other Bayesian segmentation models. It yields
realistic confidence intervals on the segmentation results of individual structures,
which we believe will convey important information when these techniques are
ultimately applied in clinical settings. Furthermore, such confidence information
may also help select the most suitable scanning protocol for imaging studies
investigating the morphometry of specific anatomical structures.
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Fig. 1: A coronal slice of an MR scan, zoomed in around the right hippocampus, and two
different samples from p(x|y, θ̂). Left: deformed mesh; right: corresponding priors p(l|x)
(at the locations in which more than one class prior is greater than zero, the color is a
linear combination of the class colors, weighted by their corresponding probabilities).
The abbreviations in the color code are: FI: fimbria, PS: presubiculum, SU: subiculum,
WM: white matter, GM: gray matter.

Subfield HF FI CA4 CA1 PS SU CA23

Volume (mm3) 38 56 248 265 324 326 517

γk/vk, point est. (%) 5.5 1.0 1.2 0.5 0.3 0.7 0.4

γk/vk, sampling (%) 9.9 4.8 7.3 7.4 6.3 8.0 5.8

Table 1: Mean volumes and relative standard deviations (γk/vk) for the different sub-
fields, estimated using point estimates and MCMC samples of atlas deformations. HF
stands for “hippocampal fissure”; the other abbreviations are as in Fig. 2.

Method Az pSFsp pSFpe pWHsp pWHpe pFS

SFeb .884 .101 .022 .011 .005 .002

SFsp .882 - .031 .019 .010 .006

SFpe .869 - - .046 .019 .009

WHsp .857 - - - .032 .012

WHpe .844 - - - - .025

FS .834 - - - - -

Fig. 2: Top: ROC curves
for the different methods.
“FreeSurfer” refers to the
whole hippocampus segmen-
tation produced using the
standard FreeSurfer pipeline.
Note that only the region
[0, 0.5] × [0.5, 0.95] is shown.
Bottom: Area under the curve
(Az) for each method as well
as p-values corresponding to
DeLong tests comparing Az

for different methods. “SF”
stands for subfields, “WH”
for whole hippocampus, “pe”
for point estimate, “sp” for
sampling, “eb” for sampling
with error bars (i.e. using all
volumes vk(n) in Eq. (6)),
and “FS” for FreeSurfer.



8 Iglesias, Sabuncu, Van Leemput, and ADNI

Acknowledgements

This research was supported by NIH NCRR (P41-RR14075), NIBIB (R01EB006758,
R01EB013565, 1K25EB013649-01), NINDS (R01NS052585), NIH 1KL2RR025757-
01, Academy of Finland (133611), TEKES (ComBrain), Harvard Catalyst, and
financial contributions from Harvard and affiliations.

References

1. Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a
hidden Markov random field model and the Expectation-Maximization algorithm.
IEEE Transactions on Medical Imaging 20(1) (2001) 45–57

2. Fischl, B., Salat, D., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., van der
Kouwe, A., Killiany, R., Kennedy, D., Klaveness, S., Montillo, A., Makris, N.,
Rosen, B., Dale, A.: Whole brain segmentation: Automated labeling of neu-
roanatomical structures in the human brain. Neuron 33 (2002) 341–355

3. Wells, W., Grimson, W., Kikinis, R., Jolesz, F.: Adaptive segmentation of MRI
data. IEEE Transactions on Medical Imaging 15(4) (1996) 429–442

4. Fischl, B., Salat, D., van der Kouwe, A., Makris, N., Segonne, F., Quinn, B., Dale,
A.: Sequence-independent segmentation of magnetic resonance images. NeuroIm-
age 23 (2004) S69–S84

5. Ashburner, J., Friston, K.: Unified segmentation. NeuroImage 26 (2005) 839–851
6. Pohl, K., Fisher, J., Grimson, W., Kikinis, R., Wells, W.: A Bayesian model for

joint segmentation and registration. NeuroImage 31(1) (2006) 228–239
7. Van Leemput, K., Bakkour, A., Benner, T., Wiggins, G., Wald, L., Augustinack,

J., Dickerson, B., Golland, P., Fischl, B.: Automated segmentation of hippocampal
subfields from ultra-high resolution in vivo MRI. Hippocampus 19 (2009) 549–557

8. Simpson, I., Woolrich, M., Groves, A., Schnabel, J.: Longitudinal brain MRI anal-
ysis with uncertain registration. In: Proceedings of MICCAI. (2011) 647–654

9. Risholm, P., Pieper, S., Samset, E., Wells, W.: Summarizing and visualizing un-
certainty in non-rigid registration. In: Proceedings of MICCAI. (2010) 554–561
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