
A Universal and Efficient Method to Compute
Maps from Image-based Prediction Models

Mert R. Sabuncu?

A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital,
Harvard Medical School, Charlestown, MA, USA

Abstract. Discriminative supervised learning algorithms, such as Sup-
port Vector Machines, are becoming increasingly popular in biomedical
image computing. One of their main uses is to construct image-based
prediction models, e.g., for computer aided diagnosis or “mind reading.”
A major challenge in these applications is the biological interpretation
of the machine learning models, which can be arbitrarily complex func-
tions of the input features (e.g., as induced by kernel-based methods).
Recent work has proposed several strategies for deriving maps that high-
light regions relevant for accurate prediction. Yet most of these methods
either rely on strong assumptions about the prediction model (e.g., lin-
earity, sparsity) and/or data (e.g., Gaussianity), or fail to exploit the
covariance structure in the data. In this work, we propose a computa-
tionally efficient and universal framework for quantifying associations
captured by black box machine learning models. Furthermore, our theo-
retical perspective reveals that examining associations with predictions,
in the absence of ground truth labels, can be very informative. We apply
the proposed method to machine learning models trained to predict cog-
nitive impairment from structural neuroimaging data. We demonstrate
that our approach yields biologically meaningful maps of association.
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1 Introduction

Broadly, there are two approaches in statistical data analysis [1]: generative (i.e.,
model based or classical) and discriminative (i.e., prediction oriented). While
the former offers more interpretable models, the latter can yield more accurate
predictions [1]. Over the last decade, discriminative supervised learning models
have been widely adopted to analyze biomedical image data, for example to
demonstrate that one can accurately predict a clinical diagnosis form imaging
measurements, e.g. [2–6]. The main challenge in these studies is the biological
interpretation of image-based prediction models.

One way to gain biological insight is to derive maps of association, which have
traditionally been obtained via mass-univariate techniques, such as voxel-based
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morphometry [7]. Motivated by this approach, recent studies have employed
various strategies to compute such maps based on multivariate discriminative
models, e.g. [8–11]. These techniques attempt to quantify the statistical relevance
of voxel-level features with respect to the predicted variable. Several methods
to compute feature relevance, or variable importance, have also been proposed
in the machine learning literature, e.g. [12–16]. Yet, as we elaborate in the next
section, most of these methods suffer from drawbacks, such as being specific to
a type of algorithm/model (non-universality).

In this paper, we present a universal and computationally efficient method
to examine associations captured by black box machine learning models. Our
method does not rely on knowledge about the learning algorithm. Furthermore,
we do not make any strong distributional assumptions about the data. In its
simplest form, the proposed method simply uses a dataset, on which predictions
have been computed. Our theoretical framework demonstrates that, even in the
absence of ground truth labels, the associations we quantify can be informative
about the underlying biology. We apply the proposed method to compute maps of
association from discriminative models trained to predict a clinical or behavioral
condition from structural brain magnetic resonance imaging (MRI) scans.

2 Theory

2.1 Motivation

A popular approach for interpreting a linear discriminative model is to examine
the weights, e.g. [17]. Yet, as recently pointed out [11], this interpretation can be
misleading. Furthermore, it is not clear whether directly examining the estimated
model parameters provides any insight about the underlying biology. This is
because the model can be arbitrarily inaccurate and thus model parameters alone
might provide little information about the target variable. Sampling strategies,
e.g. [9, 13, 15] address this issue by randomly perturbing the data and examining
the variation in model parameters and/or predictions. This approach, however,
typically requires repeatedly running the computationally expensive training
step or resorting to approximation strategies. Moreover, it assumes a particular
model structure, e.g. linear, sparse, or a tree.

More general methods applicable to any black box prediction model have
recently been proposed, e.g. [14, 18]. Yet these techniques often make strong as-
sumptions about the data (e.g. binary or Gaussian) to offer practical solutions.
Our goal in this work is to propose a technique for measuring feature relevance
that is universal (i.e. applicable to any black box model), computationally effi-
cient, and robust with respect to the data and the algorithm. Furthermore, we
would like the proposed method to capture nonlinear relationships, as well. To
achieve this, we build on the theoretical framework that was recently used to
derive a generalized measure of correlation [19].
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2.2 Proposed Feature Relevance Measure and Its Properties

Let’s assume a black box predictive model. We will use capital letters to denote
random variables. Let X be the input data vector, which is typically high dimen-
sional, e.g., images, P be the prediction produced by the model, and Y be the
target variable that we aim to predict, e.g., clinical status. Note P is typically a
non-random function of X and we denote the i’th component of X as Xi.

A generalized measure of correlation (GMC) between two random variables,
say P and Y , can be derived based on the well-known variance decomposition
formula [19]:

V (Y ) = V (E(Y |P )) + E(V (Y |P )), (1)

where V denotes (conditional) variance and E denotes (conditional) expecta-
tion, defined over appropriate random variables. The first term on the right,
V (E(Y |P )), can be interpreted as the explained variance of Y by P . Thus the
GMC between Y and P , which we denote as γ(Y |P ), can be defined as:

γ(Y |P ) =
V (E(Y |P ))

V (Y )
. (2)

The GMC is a measure of correlation that quantifies both linear and non-linear
dependencies [19] and ranges from 0 (no correlation) to 1 (max. correlation).

We expand Eq. 1 by applying another variance decomposition to V (E(Y |P )):

V (Y ) = V (E(E(Y |P )|Xi)) + E(V (E(Y |P )|Xi) + E(V (Y |P )), (3)

where Xi is an input variable and V (E(E(Y |P )|Xi)) can be viewed as the
explained variance of Y by Xi, as captured by the model’s prediction P . Thus,
we define the captured correlation as:

κ(Y |P |Xi) =
V (E(E(Y |P )|Xi))

V (Y )
. (4)

Some of the properties of κ(Y |P |Xi) are as follows (Proofs of P1-4 are omitted
due to space constraints). Note ρ denotes Pearson’s correlation.

P1. 0 ≤ κ(Y |P |Xi) ≤ γ(Y |P ) ≤ 1.
P2. If P and Xi or P and Y are independent, then κ(Y |P |Xi) = 0.
P3. If ∃f s.t. f(P ) = Y , then κ(Y |P |Xi) = γ(Y |Xi).
P4. If ∃g s.t. g(Xi) = P , then κ(Y |P |Xi) = γ(Y |P ).
P5. If ρ(Xi,Xj) = ±1, then κ(Y |P |Xi) = κ(Y |P |Xj).
Proof: If ∃a 6= 0, b s.t. Xi = aXj + b, then, for any Z, E(Z|Xi) = E(Z|Xj).

Thus, V (E(E(Y |P )|Xi)) = V (E(E(Y |P )|Xj)), where we use Z , E(Y |P ).
P6. If ρ(E(Y |P ), P ) = ±1, then κ(Y |P |Xi) = γ(Y |P )γ(P |Xi).
Proof: Define Z , E(Y |P ). If ∃a 6= 0, b s.t. Z = aP + b, then a2V (P ) = V (Z)

and V (E(Z|Xi))
a2 = V (E(P |Xi)). Then κ(Y |P |Xi) = V (E(Z|Xi))

V (Y )
V (P )a2

V (P )a2 =
V (E(Z|Xi))

a2V (Y )
a2V (P )
V (P ) = V (E(P |Xi))

V (Y )
V (Z)
V (P ) = γ(Y |P )γ(P |Xi).
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The first five properties summarize the general behavior of κ as a dependency
measure. For example, it is zero if the model’s prediction is independent of the
variable Xi. If the model is perfectly accurate, κ reduces to the GMC between
Y and Xi. Moreover, as P5 suggests, the captured correlation is indifferent to
whether a variable is directly used in the prediction or correlated alternatives
are. Thanks to this property, captured correlation will not highlight an arbitrary
subset among correlated variables, the way sparse models do.

P6 is a particularly interesting property, which states that under a specific
condition, the captured correlation is proportional to the GMC between the
prediction P and input variable Xi. We note that, in fact E(Y |P ) = P is a
common modeling assumption that seems to hold in many practical problems.
For example, many regression models (where Y is continuous), assume a zero-
mean independent additive Gaussian noise model. Or, in binary classification, P
can be the probability of class 1. In both examples, these models imply E(Y |P ) =
P and thus κ(Y |P |Xi) ∝ γ(P |Xi). In this case, the ranking of variables with
respect to their captured correlations is the same as their ranking with respect
to their GMC with the prediction. This is a critical observation. It suggests that,
in the absence of ground truth data, examining the associations between input
variables and the model’s predictions can be informative about the relationships
with the (ground truth) target variable.

2.3 A Non-parametric Estimator

We propose to employ a non-parametric strategy, which relies on the mild dis-
tributional assumption of finite first and second order moments, to estimate
the correlation measures κ and γ. Here, we assume that we have access to N
independent samples of (X,P, Y ), where for notational simplicity we have re-
placed Xi with X. We denote these samples as {xj , pj , yj}, where lower case
letters represent observations, indexed by subscripts. We use the well-known
Nadaraya-Watson estimator:

E(Y |P ) ≈
∑N

j=1 kP (pj − P )yj∑N
l=1 kP (pl − P )

=
N∑

j=1

k̄P (pj − P )yj , (5)

where kP is an appropriate kernel function and k̄P (pj − P ) = kP (pj−P )PN
l=1 kP (pl−P )

.
Similarly, we can write:

E(E(Y |P )|X) ≈
N∑

k=1

k̄X(xk −X)
N∑

j=1

k̄P (pj − pk)yj , (6)

where k̄X(xk −X) = kX(xk−X)PN
l=1 kX(xl−X)

and kX is an appropriate kernel. Now, let’s
concatenate the observations into length N column vectors {x,p,y} and define
two N ×N matrices KX and KP , the (j, k)’th entries of which are k̄X(xj − xk)
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and k̄P (pj − pk), respectively. Given the above, an estimate of κ is:

κ(Y |P |X) =
V̂ (KXKP y)

V̂ (y)
, (7)

where V̂ denotes the sample variance, defined as V̂ (y) = 1
N−1

∑N
j=1(yj − ȳ)2

with ȳ = 1
N

∑N
j=1 yj . Similarly, an estimate of γ is: γ(P |X) = V̂ (KXp)

V̂ (p)
.

In our implementation, we employed Gaussian kernel functions for kX (and
similarly kP ). I.e., kX(xj − xk) = exp(− (xj−xk)2

hX
). Based on Silverman’s rule of

thumb we set the bandwidth as: hX = V̂ (x)/N0.2. Note that, this choice also
ensures that the estimates are invariant to rescaling a variable.

3 Experimental Results

Data: We analyzed data from two public datasets, OASIS (oasis-brains.org)
and ADNI (adni.loni.usc.edu), which contain brain MRI scans from healthy and
demented subjects. We processed the T1-weighted structural brain MRIs using
FreeSurfer (FS v5.1, surfer.nmr.mgh.harvard.edu) to obtain thickness measure-
ments across the entire cortex, resampled onto a common template, fsaverage.
FS also provides estimates of volumes for a range of cortical and sub-cortical
structures, such as the hippocampus. The target variable we used was mini
mental state exam (MMSE) score, which measures cognitive impairment and
is associated with dementia, including Alzheimer’s disease (AD). The OASIS
sample consisted of young healthy subjects (YCN, N=200, 26.8±9.7 years, 55%
Female), old cognitively normal (OCN, clinical dementia rating, CDR, zero) sub-
jects (N=135, 69.1±13.8 y, 72% F) and AD patients (CDR> 0, N=100, 76.8±7.1
y, 59% F). We subdivided the OASIS OCN+AD sample (N=235) into five parti-
tions (of equal size) for cross-validation. We call this the OASIS cross-validation
sample. The entire ADNI sample contained N=810 (75.2 ± 6.9 y, 42% F) CN
subjects, subjects with mild cognitive impairment and AD patients.

Machine Learning Algorithms: We explored two classes of publicly avail-
able algorithms to predict MMSE from brain MRI measurements. The first one
is the Relevance Voxel Machine1 [8] (RVoxM), which is an adaptation of a sparse
Bayesian model, customized to handle image data. The second algorithm was
the Support Vector Machine (SVM) with a radial basis function kernel2. We
trained RVoxM and SVM to predict MMSE, based on FS-computed cortical
thickness data. We also trained a separate SVM only on volumes of brain struc-
tures (saved as FS file aseg.stats), which we call SVM-aseg. We performed 5-fold
cross-validation on the OASIS sample, where each of the five partitions was
treated as the test sample in each fold, with the remaining subjects used for
training. Thus, each OASIS subject was treated as a test case once, during

1 downloaded from people.csail.mit.edu/msabuncu/sw/RVoxM/index.html
2 downloaded from csie.ntu.edu.tw/ cjlin/libsvm
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Fig. 1. All visualizations (in color) are on inflated fsaverage surface, a population
average representation of the human cerebral cortex. Top and bottom rows show lateral
and medial views, respectively. Only left hemispheres are shown. (A) Weights of RVoxM
model trained on entire OASIS OCN+AD sample to predict MMSE from cortical
thickness data. Note that most regions have no contribution to the model, i.e., have
zero weight (shown in gray). (B) Captured correlation (κ) computed based on RVoxM’s
MMSE predictions on OASIS cross-validation sample. (C) κ-map for SVM’s MMSE
predictions on OASIS cross-validation sample (trained on cortical thickness). (D) κ-
map for SVM-aseg’s MMSE predictions on OASIS cross-validation sample

which the (“out-of-bag”) image-based prediction was computed. The Pearson
correlation between out-of-bag predictions and ground truth values were 0.46,
0.53, and 0.35 (all P< 10−10) for RVoxM, SVM and SVM-aseg, respectively. The
ADNI data were only used for training to obtain prediction models.

Results: Fig. 1A visualizes the weights of the RVoxM model trained to
predict MMSE from cortical thickness data on the OASIS sample. Because of
RVoxM’s sparsity assumption, most cortical regions have zero contribution to
the model. We argue that this fact, along with the issues associated with in-
terpreting the parameters of a discriminative model [11] makes it hard to make
biological sense of this map and the SVM models. Moreover, we could not visual-
ize the (non-linear) kernel SVM models, since there is no well-accepted strategy
to do so. Fig. 1B-D illustrate maps of captured correlation (κ) computed with
three different models trained on the OASIS cross-validation samples (based
on out-of-bag predictions). All these maps bear a striking resemblance to AD-
associated thinning maps reported in prior work [20]. Note MMSE is a variable
strongly correlated with and used to clinically diagnose AD. The right-most map
was actually computed based on an SVM model trained on the aseg features,
which do not include regional cortical thickness measurements (although there
is a variable that measures global cortical volume). There is strong agreement
between these three κ-maps (pairwise Pearson correlations > 0.84, see Fig. 2D),
which suggests that the captured correlation measure is robust to the variation
in prediction algorithm and utilized image features.

Fig. 2A-C illustrate maps of GMC, (γ(P |X), which ignores the ground truth
variables Y ) between cortical thickness values and the RVoxM predictions of
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Fig. 2. (A) GMC (γ) between RVoxM’s MMSE predictions and cortical thickness values
computed on OASIS cross-validation sample. (B) γ-map between the ADNI RVoxM
model’s MMSE predictions and cortical thickness values computed on OASIS AD+CN
sample. (C) γ-map between the ADNI RVoxM model’s MMSE predictions and cortical
thickness values computed on OASIS CN sample. (D) Pearson correlations of different
maps with the RVoxM κ-map computed on OASIS cross-validation (shown in Fig. 1B).
SVM, SVM-aseg, RVoxM γ, RVoxM γ ADNI, and SVM-aseg γ ADNI refer to maps of
Fig. 1C, 1D, 2A, 2B, and 2C, respectively. For further details see caption of Fig.1.

MMSE. The correlation between the RVoxM-derived κ and γ-maps (Fig. 1-B
and Fig. 2-A) is 0.97, providing evidence that the associations with the pre-
dicted values are informative about associations with the ground truth (thanks
to property P6 of captured correlation). Fig. 2B-C were in fact computed using
models trained on a separate dataset (ADNI). The map of Fig. 2C is particularly
intriguing, as it was computed on healthy subjects (the OASIS young and old
cognitively normal sample). Since this sample does not include subjects with
dementia, there is little variation in the MMSE values (29.1±1.1). However, the
γ-map with the predicted MMSE scores demonstrate that, even in this healthy
cohort, regions of potentially significant association with cognitive impairment
can be detected. There is a correlation of 0.54 (P< 1e − 10) between the map
of Fig. 2C and the benchmark map of Fig. 1B. This result demonstrates the
robustness of the proposed measure with respect to substantial variation in the
data, since both the training and testing data are different between the analyses.

4 Conclusion

We proposed a novel measure, called captured correlation, to quantify asso-
ciations between input features and the target variable, as captured by the
prediction model. We applied this measure to image-based prediction models
and demonstrated that captured correlation yields biologically meaningful maps
that are robust to the choice of learning algorithm. We showed that under cer-
tain assumptions, captured correlation is proportional to the association between
features and predictions. Intriguingly, this perspective provides a theoretical jus-
tification for examining associations with predictions, in the absence of ground
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truth labels. For example, one can analyze large, unlabeled datasets in order to
identify potentially relevant areas, which could then be further interrogated on
labeled datasets. Our approach can also be used to examine and prioritize mul-
tivariate relationships, such as the association between multiple image features
and the target variable. Future work will pursue these interesting directions.
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