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Longitudinal neuroimaging (LNI) studies are rapidly becoming more prevalent and growing in size. Today, no
standardized computational tools exist for the analysis of LNI data and widely used methods are sub-optimal
for the types of data encountered in real-life studies. Linear Mixed Effects (LME) modeling, a mature approach
well known in the statistics community, offers a powerful and versatile framework for analyzing real-life LNI
data. This article presents the theory behind LMEmodels, contrasts it with other popular approaches in the con-
text of LNI, and is accompanied with an array of computational tools that will be made freely available through
FreeSurfer — a popular Magnetic Resonance Image (MRI) analysis software package.
Our core contribution is to provide a quantitative empirical evaluation of the performance of LME and com-
peting alternatives popularly used in prior longitudinal structural MRI studies, namely repeated measures
ANOVA and the analysis of annualized longitudinal change measures (e.g. atrophy rate). In our experiments,
we analyzed MRI-derived longitudinal hippocampal volume and entorhinal cortex thickness measurements
from a public dataset consisting of Alzheimer's patients, subjects with mild cognitive impairment and healthy
controls. Our results suggest that the LME approach offers superior statistical power in detecting longitudinal
group differences.

© 2012 Elsevier Inc. All rights reserved.
Introduction

Longitudinal neuroimaging (LNI) studies have become increasing-
ly widespread over the last decade, e.g. (Asami et al., 2012; Blockx et
al., 2011; Chetelat et al., 2005; Davatzikos and Resnick, 2002; Desikan
et al., 2011; Driscoll et al., 2012; Fjell et al., 2009; Fotenos et al., 2005;
Fouquet et al., 2009; Frings et al., 2012; Giedd et al., 1999; Hedman
et al., 2012; Ho et al., 2003; Holland et al., 2009, 2012; Hua et al.,
2009, 2010; Jack et al., 2008, 2009; Josephs et al., 2008; Kaladjian
et al., 2009; Kalkers et al., 2002; Ment et al., 2009; Pantelis et al.,
2003; Paviour et al., 2006; Resnick et al., 2010; Sabuncu et al.,
2011; Schumann et al., 2010; Sidtis et al., 2010; Sluimer et al., 2008,
2009; Sullivan et al., 2011; Thambisetty et al., 2010, 2012; Tosun
et al., 2010; Whitwell et al., 2007, 2011). Compared to the
cross-sectional approach, the longitudinal design can provide increased
statistical power by reducing the confounding effect of between-subject
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variability (Thompson et al., 2011). Moreover, a serial assessment can be
the only way to unambiguously characterize the effect of interest in a
randomized experiment, such as a drug trial (Davis et al., 2005;
Dickerson and Sperling, 2005; Ge et al., 2000). Finally, longitudinal stud-
ies provide unique insights into the temporal dynamics of the underlying
biological process (Jack et al., 2012; Sabuncu et al., 2011).

LNI studies have yielded novel discoveries, yet a careful scrutiny of
the literature reveals that the statistical methods commonly lack
maturity and sophistication. We believe that the underutilization of
appropriate methodology in LNI studies is mainly due to two related
reasons. Firstly, the relevant statistical tools are not readily available
in user-friendly neuroimage analysis software environments (such
as SPM (Friston, 2007; SPM), FSL (Smith et al., 2004), or FreeSurfer
(Fischl, 2012)). Secondly, the technical intricacies of modeling longi-
tudinal data are not well understood and/or appreciated.

In this article, we advocate the use of Linear Mixed Effects (LME)
modeling, which provides a flexible and powerful statistical frame-
work for the analysis of longitudinal data (Fitzmaurice et al., 2011;
Verbeke and Molenberghs, 2000). We discuss the theoretical under-
pinnings of the LME framework and contrast it with other methods
popular in LNI.

There are two alternative approaches most commonly applied to
the analysis of prior LNI data. These are (1) repeated measures analysis
of variance (or within-subject ANOVA) (Girden, 1992), e.g., (Asami
et al., 2012; Blockx et al., 2011; Bonne et al., 2001; Fouquet et al.,
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2009; Giedd et al., 1999; Ho et al., 2003; Kaladjian et al., 2009;
Mathalon et al., 2001; Pantelis et al., 2003; Resnick et al., 2010;
Sidtis et al., 2010; Sluimer et al., 2009), ; and (2) cross-sectional (Gen-
eral Linear Model –GLM- based) analysis of summary measurements,
such as percent annualized difference, e.g., (Desikan et al., 2011;
Fjell et al., 2009; Fotenos et al., 2005; Fouquet et al., 2009; Frings
et al., 2012; Hedman et al., 2012; Holland et al., 2009; Hua et al.,
2009, 2010; Jack et al., 2009; Josephs et al., 2008; Kalkers et al.,
2002; Kasai et al., 2003; Paviour et al., 2006; Sabuncu et al., 2011;
Sluimer et al., 2008; Whitwell et al., 2007). However, these methods
are known to be sub-optimal for general real-life longitudinal data
since they do not model the covariance structure of serial measure-
ments appropriately and cannot handle imperfect timing and/or sub-
ject dropout (i.e., unbalanced data), in particular those cases with
only a single time-point (Fitzmaurice et al., 2011).

Another related approach is the two-stage strategy for solving the
hierarchical models adopted in functional neuroimaging (Friston,
2007). Yet these tools typically rely on assumptions that are unrealis-
tic for the LNI design we consider here.2 For example, in LNI studies
one usually has only a handful of scans per subject and not hundreds
of time-points. Furthermore, a pre-whitening step is unlikely to be
suitable since LNI data are not sampled at uniform time intervals
and do not obey a stationary autoregressive structure.

The contributions of this article are multi-fold. First, we present a
thorough overview of the LME approach in the context of longitudinal
studies. Computational tools implementing this approach will accom-
pany this article as a part of FreeSurfer, a MRI processing software,
(Dale et al., 1999; Fischl et al., 1999a, 1999b, 2002). We use a widely
studied longitudinal structural MRI dataset (from the Alzheimer's
Disease Neuroimaging Initiative, or ADNI) to illustrate how these
tools can be used for exploratory data visualization, model specifica-
tion, model selection, parameter estimation, hypothesis testing, and
statistical power analysis including sample size estimation. We fur-
ther perform a systematic empirical validation of the specificity,
sensitivity and repeatability of the LME method and alternative
approaches. Our results provide an objective quantification of the
improvement in statistical detection afforded by the LME approach
compared with competing methods. Finally, we assess the impact of
including subjects with a single time point in the LME method.

The paper is organized as follows. Section 2.1 provides a discus-
sion of the general characteristics of longitudinal data. Section 2.2
presents the LMEmethod for the analysis of longitudinal data. Section
2.3 includes a brief description of alternative methods used in prior
LNI studies. Section 2.4 offers a description of the data used in the
experiments. In Section 3, we present experimental results that illus-
trate the proposed approach and compare it to benchmark methods.
Finally, Section 4 provides a discussion of the main experimental find-
ings and Section 5 closes with concluding remarks.

Material and methods

The characteristics of longitudinal data

In a longitudinal study, outcome variables are measured repeatedly
on the same cohort of individuals at multiple time-points. The aim is
to characterize changes in the individuals' measurements over time
and their association with clinical, experimental or biological factors.
Unlike cross-sectional studies, where the measurement is obtained at
a single occasion, longitudinal studies allow direct assessment of
within-subject changes across different time points, free of any
between-subject variability. Changes in the mean measurement over
time can then be estimated with greater precision and without
2 In the LNI design we consider in this manuscript, each participant is scanned at po-
tentially several time points and the imaging measurement of interest at each time
point is a scalar, e.g., brain volume.
confounding cohort effects (Fitzmaurice et al., 2011). Furthermore,
more accurate predictions about an individual's measurement trajecto-
ry might be possible by pooling data across the population. This can be
useful, for instance, to assess the effect of a drug in a specific individual
in a pharmacological study.

In general, longitudinal data exhibit several distinctive character-
istics. (1) Longitudinal measurements are ordered in time, reflecting
the temporal trajectory of an underlying non-stationary continuous
process. This is the major difference between vectors of repeated
measures obtained in longitudinal studies and vectors of multivariate
measurements from cross-sectional studies, where single measure-
ments of multiple but distinct variables are taken simultaneously.
(2) Typically, serial measurements obtained for a single subject are
positively correlated. This correlation is due to the smooth trajectory
of the underlying biological process. In general, we expect pairs of
repeated measures that are close in time to be more highly correlated
than pairs of repeated measures further separated in time. (3) Between-
subject variance is not usually constant over the duration of the study;
instead, it might for example increase as a function of time due to the
diverging trajectories of individuals and/or groups. (4) Finally, missing
data andnon-uniform timing are extremely common, particularly for lon-
gitudinal studies of larger duration.

Linear Mixed Effects modeling for longitudinal data

There are two aspects of longitudinal data that require carefulmodel-
ing: the mean measurement trajectory over time and the correlation
structure among serial measurements. The models for the mean and
covariance are interdependent because the vector of residuals (i.e., the
observed minus fitted measurements) depends on the specification of
the model for the mean.

LME models use the linear regression paradigm (Montgomery et
al., 2007) to parsimoniously describe the average measurement and
its temporal trajectory. In this approach, the mean measurement is
expressed as a linear combination of a set of independent variables.
The temporal trajectory is then determined by the contribution
of time and/or time-varying variables. A major advantage of this
approach is that the subjects in the study are not required to have a
common set of measurement times (i.e., the data can be unbalanced).

Like any other statistical method, the selection of independent
variables that models the mean measurement has to be made based
on subject-matter grounds. On the other hand, without any additional
knowledge, a useful strategy to model the mean trajectory is to sim-
ply assume it is linear in time. This is the default implementation in
our toolkit. A justification for this strategy is due to the limited dura-
tion of studies, which typically can expose local and simple trends.
More complex trajectories can be captured via piece-wise linear
models or higher order (e.g. quadratic or cubic) polynomials. These
models can be chosen by the user based on a graphical exploratory
analysis of the data, such as by inspecting an illustration of smoothed
measurements, e.g., a “lowess” plot (Cleveland, 1979). Then, as it is
common in the linear regression paradigm, complex models can be
compared to reduced models to determine whether they fit the data
significantly better. For example, a quadratic model for the mean
response over time can be compared to a linear model by testing
the null hypothesis that the quadratic coefficient is zero.

There are generally three potential sources of variability influencing
the correlation structure in longitudinal data: (1) between-subject
variation, (2) inherent within-subject biological change, and (3) mea-
surement error (Fitzmaurice et al., 2011). The first source of variability
reflects natural variation in the individual's measurement trajectory.
Some individuals' measurements are consistently higher than the
population average, while others' are consistently lower. The inhe-
rent within-individual biological variation is a consequence of
some subject-specific biological process that progresses gradually
over time. Hence, random departures from an individual's modeled
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measurement trajectory are likely to bemore similar whenmeasure-
ments are obtained close together in time. Finally, measurement
error variance has a direct influence on the amount of correlation be-
tween serial measurements.

The LME method imposes structure on the covariance through the
introduction of random effects. This approach provides both flexible
and parsimonious models for the covariance and is particularly well
suited to handling longitudinal data that are irregularly timed. A unique
feature of these models is that they explicitly distinguish and allow the
analysis of the between-subject and within-subject sources of variabil-
ity. The following section provides the theoretical details of the LME
framework.

Linear Mixed Effects models: the theory
Let us formally introduce the LME model for longitudinal data:

Yi ¼ Xiβ þ Zibi þ ei; ð2:1Þ

where Yi is the ni×1 vector of serial measurements for subject i
(e.g. longitudinal MRI-derived thickness or volume measurements),
ni is the subject-specific number of serial measurements, Xi is the
ni×p subject design matrix for the fixed effects (including variables
such as gender, education, clinical group, genotype and scan time),
β=(β1,β2,…βp)T is a p×1 vector of unknown fixed effects regression
coefficients, Zi is the ni×q, q≤p design matrix for the random effects
(e.g. scan time), bi=(bi1,bi2,…,biq)T is a q×1 vector of random effects
and ei ¼ ei1; ei2;…; eini

� �T
is a ni×1 vector of measurement errors.

Here Zi links the vector of random effects bi to Yi and its columns
are a subset of the columns of Xi. That is, any component of β can
be allowed to vary randomly by simply including the corresponding
column of Xi in Zi. For example, in a model with only a randomly
varying intercept Zi is a ni×1 vector composed of 1's. Note that all
random effects other than the intercept need to be time varying,
than the intercept need to be time varying (In fact the measurement
time itself is usually a random effect). The following common distri-
butional assumptions are made:

bi∼N 0;Dð Þ;
ei∼N 0;σ2Ini

� �
;

where N(0,Σ) denotes a zero mean multivariate Gaussian with
covariance matrix Σ, Ini denotes the ni×ni identity matrix, and b1,…,
bm,e1,…,em are independent with m being the number of subjects in
the study. The components of bi reflect how the subset of regression
parameters for the ith subject deviate from those of the population.
The components of ei represent random sampling or measurement
errors.

The LMEmodel provides an important distinction between the con-
ditional and marginal means of Yi. The conditional or subject-specific
mean of Yi, given bi, is

E Yi bij Þ ¼ Xiβ þ Zibi;ð

while the marginal or population-averaged mean of Yi is

E Yið Þ ¼ Xiβ:

Thus, in the LMEmodel, the vector of regression parameters β (the
fixed effects), is assumed to be the same for all individuals and have
population-averaged interpretations, for example in terms of popula-
tion mean trajectory. In contrast, the vector bi (when summed with
the corresponding fixed effects) makes up subject-specific regression
coefficients, which describe the mean trajectory of the ith individual.

We can also distinguish between the conditional covariance

Cov Yi bij Þ ¼ Cov eið Þ ¼ σ2Ini
;

�

and the marginal covariance of Yi,

Cov Yið Þ ¼ Cov Zibið Þ þ Cov eið Þ ¼ ZiDZ
T
i þ σ2Ini ;

which is not a diagonal matrix.
Thus by introducing random effects, correlations among the com-

ponents of Yi can be modeled. One can see that the model allows for
the explicit analysis of between-subject (D) and within-subject (σ2)
sources of variation. Importantly, the marginal covariance of Yi is
expressed as a function of the time-varying random effects, which
commonly includes measurement time itself.

Consider the following simple LME model, which has a randomly
varying intercept and slope:

Yij ¼ β1 þ b11ð Þ þ β2 þ b21ð Þtij þ eij; ð2:2Þ

where Yij is the jth measurement from subject i, tij is the time of mea-
surement, and j=1,…,ni. Themodel of Eq. (2.2) allows each individual's
measurements to have his or her own unique linear mean trajectory.

Parameter estimation
In this section we consider the problem of estimating the unknown

coefficients β and model parameters σ and D. Given the distributional
assumptions that have beenmade, the vector of measurements are dis-
tributed as

Yi∼N Xi;β; ZiDZ
T
i þ σ2Ini

� �
: ð2:3Þ

For given estimates D̂ and σ̂ , we have a closed-form solution for
the maximum likelihood (ML) estimate of β:

β̂ ¼
Xm
i¼1

XT
i Σ̂

−1
i Xi

 !−1Xm
i¼1

XT
i Σ̂

−1
i yi ð2:4Þ

where Σ̂ i ¼ ZiD̂Z
T
i þ σ̂ 2Ini and yi is the realization of the random vec-

tor Yi.
An unbiased estimate for D̂ and σ̂ can be obtained viamaximizing the

following restricted likelihood function (ReML procedure) (Verbeke and
Molenberghs, 2000):

lReML ¼
1
2

Xm
i¼1

log Σ−1
i

��� ���−1
2

Xm
i¼1

yi−Xiβ̂
� �T

Σ−1
i yi−Xiβ̂
� �

−1
2
log

Xm
i¼1

XT
i Σ

−1
i Xi

�����
�����;

ð2:5Þ

where Σi ¼ ZiDZ
T
i þ σ2Ini .

There is no closed-form solution to the optimization of Eq. (2.5) and
numerical iterative solvers need to be used. We have implemented
three widely used optimization methods: The Expectation Maximiza-
tion (EM) algorithm (Laird et al., 1987) and two Newton–Raphson
based procedures using either the Hessian or the expected information
matrix of the restricted log-likelihood. The forms for the first and sec-
ond partial derivatives of lReML can be found in Lindstrom and Bates
(1988). When the expected informationmatrix is used in the optimiza-
tion procedure the algorithm is commonly referred to as the Fisher's
scoring scheme. Formulas for the expected information matrix can be
found in Kenward and Roger (1997). Finally, we note that we do
not impose any structure on D, other than it needs to be positive defi-
nite. To achieve this constraint, we parameterize it via its Cholesky
decomposition.

Selection of random effects
In the LME approach, given a model for the mean, the covariance

structure is determined by the choice of random effects. One good
strategy to identify the appropriate set of random effects is via the
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likelihood ratio test, where the likelihood of nested models can be
compared.

Here, one can start with a “basic model”, which would only
include the bias as a random effect. Once the model parameters and
coefficients are estimated for the basic model, the corresponding
restricted maximum likelihood value can be computed. One would
then proceed to add random effects to the basic model. For example,
time-varying variables can be added to the basic model as additional
random effects one by one in a greedy fashion, where the variable
that produces the highest increase in the restricted likelihood func-
tion will be added, only if this increase is statistically significant.
The significance of a likelihood increase in nested models can be
assessed based on a chi-square mixture statistic (Fitzmaurice et al.,
2011).

Hypothesis testing
In conducting hypothesis tests, we will use β̂ and its estimated

asymptotic covariance matrix

Côvasymptotic β̂
� �

¼
Xm
i¼1

XT
i Σ̂

−1
i Xi

 !−1

;

where Σ̂i is the ReML estimator of Σi.
In general, for a given contrast matrix L, the two competing

hypotheses are

H0 : Lβ ¼ 0 and HA : Lβ≠0:

Under the null hypothesis, it can be shown that the following
F-distribution holds:

F ¼
Lβ̂
� �T

LCôvasymptotic β̂
� �

LT
� �−1

Lβ̂

rank Lð Þ : ð2:6Þ

However, determining the degrees of freedom associated with the
above F-test is challenging and several approximations have been pro-
posed, e.g. (Satterthwaite, 1946). In particular, we have implemented a
Satterthwaite-based approximation for the following scaled F-statistic:

F ¼
κ Lβ̂
� �T

LCôvKR β̂
� �

LT
� �−1

Lβ̂

rank Lð Þ ; ð2:7Þ

whereCôvKR β̂
� �

is a small-sample bias corrected estimate of the covari-

ance matrix of β̂. This procedure allows the covariance among the ReML
covariance parameter estimates to be taken into account when estimat-
ing the effective degrees of freedom of the F-test and thus different
contrastswill exhibit differentdegrees of freedom.Details on the compu-

tation of κ, CôvKR β̂
� �

and the effective degrees of freedom can be found

in (Kenward and Roger, 1997).

Sample size estimation and statistical power analysis
Sample size and power calculations are more complex for longitu-

dinal designs than for the simpler cross-sectional setting. The major
challenge is missing data, which has a direct effect on power. In our
toolbox, we have implemented two approximate methods for
performing power calculations. The first method is intended for the
planning phase, i.e., before data are collected, and can be used to
obtain approximate estimates of the required sample size or the
power to detect a particular effect size for a given sample size. The
second method has a different purpose: namely, to provide an esti-
mate of the power of a realized study, i.e., after the data have been
collected.

The first method is based on a simple extension of the sample size
and power formulae for a cross-sectional study with a univariate
measurement (Fitzmaurice et al., 2011). In a two-group study, the ap-
proximate sample size N per group is:

N ¼
z 1−α=2ð Þ þ z 1−γð Þ
� �2

2φ2

δ2
; ð2:8Þ

where 1−γ is the power of the test, α is the significance level, z(1−α/2),
z(1−γ) denote the (1−α/2)×100% and (1−γ)×100% percentiles of a
standard normal distribution, δ is the effect of interest, which for exam-
ple can be any element of the vector β considered as a mixed effect
(e.g., intercept or slope) and φ2 is the corresponding diagonal ele-
ment of the following covariance matrix

C ¼ σ2 ZT
c Zc

� �−1 þ D;

with Zc denoting the subject-level common random effects design
matrix for the subjects in the study (i.e., assuming a balanced study).

Eq. (2.8) can be re-arranged to determine the power of the planned
study given a sample size:

z 1−γð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N

δ2

2φ2

s
−z 1−α=2ð Þ: ð2:9Þ

Finally, a conservative approach for adjusting for possible missing
data is to inflate the required sample size N in each group to account
for the expected proportion of subjects who will drop out before the
completion of the study, e.g. if the rate of attrition is expected to be
10% in each group, the sample size in each group should be N/0.9.

The second method for power calculations allows a more precise
approximation of the power of a realized (retrospective) experiment
(given the actual unbalanced data over time with the missing data pat-
tern). It is based on a non-central F-approximation to the distribution of
the F-statistic in Eq. (2.6) under the alternative hypothesis (Helms,
1992). The degrees of freedom of the non-central F-distribution are

c=rank(L) and ve ¼
Xm
i¼1

ni−rank XZ½ �ð Þ, with X=[X1TX2T…Xm
T ]T and Z=

Diag([Z1,Z2, …,Zm]) being the full fixed and random effects design
matrices of the study. The non-centrality parameter is given by

nc ¼ Lβ̂
� �T

LCôvasymptotic β̂
� �

LT
� �−1

Lβ̂ .

This non-central F-distribution can be used to perform power
computations for tests of fixed effect hypotheses. The approximate
power is

1−γ ¼ 1−F cv; c; ve;ncð Þ; ð2:10Þ

where F(cv;c,ve,nc) is the cumulative distribution function of the
non-central F-distribution evaluated at the critical value cv=F−1(1−
α;c,ve), which is the inverse of the cumulative distribution function of
the central F-distribution with c,ve degrees of freedom evaluated at
1−α.

Alternative methods for analyzing longitudinal neuroimaging data

Barring notable exceptions that use appropriate LME models,
e.g. (Davatzikos and Resnick, 2002; Driscoll et al., 2012; Lau et al.,
2008; Lerch et al., 2005; Shaw et al., 2008; Thambisetty et al., 2010;
Tosun et al., 2010; Whitwell et al., 2011), there are two alternative
methods that have been widely used to analyze LNI data in a large
number of prior studies. The first approach is repeated measures (or
within-subject) ANOVA, e.g. (Asami et al., 2012; Blockx et al., 2011;
Bonne et al., 2001; Giedd et al., 1999; Ho et al., 2003; Kaladjian et al.,
2009; Mathalon et al., 2001; Pantelis et al., 2003; Resnick et al., 2010;
Sidtis et al., 2010; Sluimer et al., 2009),which can be shown to be equiv-
alent to a linear model with at most a single random effect. Here,



Table 1
Longitudinal ADNI sample characteristics.

Variable Stable
HC

Converter
HC

Stable
MCI

Converter
MCI

AD p-value

Number of
subjects

210 17 227 166 188

Baseline
age

75.9±5
[60–90]

76.7±5.1
[63–84]

74.8±7.7
[55–90]

74.7±7.1
[55–89]

75.2±7.5
[55–91]

0.3464

Female % 48.1 47.1 33.48 38.6 47.3 b0.01a

APOE-ε4
Carriers %

25.7 41.2 43.2 67.5 66 b0.0001a

Education 16.1±2.8
[6–20]

16.1±2.8
[12–20]

15.6±3.1
[4–20]

15.7±2.9
[6–20]

14.7±3.2
[4–20]

b0.001

Baseline age (in years) and education values are in mean±standard deviation; Ranges
are listed in square brackets; p-values indicate effects across the groups.
Key: Converter MCI, mild cognitive impairment subjects who convert to Alzheimer's
disease; Converter HC, healthy controls who convert to either MCI or Alzheimer's
disease.

a Using Fisher's exact test; ANOVA-derived p-values were used in the other cases.
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measurement occasions are treated as levels of a within-subject factor
and time is not modeled as a continuous variable. Hence the method
is only well suited for balanced longitudinal data with a small number
of serial measurements. Furthermore, the correlation among repeated
measurements, if modeled, is supposed to arise from the additive con-
tribution of an individual-specific random effect, namely a random in-
tercept. This imposes a particular covariance structure known as
compound symmetry:

Var Yij

� �
¼ σ2

b þ σ2
e

Corr Yij; Yik

� �
¼ σ2

b

σ2
b þ σ2

e
i ¼ 1;…;Nð Þ; j; k ¼ 1;…;nð Þ; j≠k

whereσb
2 andσe

2 are the variance of the randomeffect and themeasure-
ment error respectively. This structure for the covariance has some jus-
tification in certain designs. For example, in an fMRI experiment where
the within-subject factor is randomly allocated to subjects, compound
symmetry can hold. However, the constraint on the correlation among
repeated measurements is not appropriate for longitudinal data,
where the correlations are expected to decaywith increasing separation
in time. Also, the assumption of constant variance across time is often
unrealistic.

Another common approach to the analysis of LNI data reduces the
sequence of repeated measures for each individual to summary
values (e.g. the annualized difference between two measures, the
slope of a regression line, or deformation tensors), e.g. (Desikan
et al., 2011; Fotenos et al., 2005; Fouquet et al., 2009; Frings et al.,
2012; Hedman et al., 2012; Holland et al., 2009; Hua et al., 2009,
2010; Jack et al., 2009; Josephs et al., 2008; Kalkers et al., 2002;
Kasai et al., 2003; Paviour et al., 2006; Sabuncu et al., 2011; Sluimer
et al., 2008; Whitwell et al., 2007). These summary measures are
then submitted to standard parametric or non-parametric statistical
methods for cross-sectional analysis. Such an approach is not appro-
priate when the data are unbalanced over time, since summary mea-
sures will not be drawn from the same distribution (e.g. will have
different variance), violating a fundamental assumption made by
standard statistical methods. In addition, as our experiments demon-
strate there can be a significant loss in statistical power due to ignor-
ing the correlation among the repeated measures and omitting
subjects with a single time-point.

Longitudinal ADNI data

In our experiments presented in the following section, we ana-
lyzed longitudinal brain MRI data (T1-weighted, 1.5 Tesla) from the
Alzheimer Disease Neuroimaging Initiative (ADNI). The data were
processed with FreeSurfer (version 5.1.0, http://surfer.nmr.mgh.
harvard.edu) and its new longitudinal processing pipeline (http://
surfer.nmr.mgh.harvard.edu/fswiki/LongitudinalProcessing) (Reuter
and Fischl, 2011; Reuter et al., 2010, 2012). The FreeSurfer processing
pipeline is fully automatic and includes steps to compute a represen-
tation of the cortical surface between white and gray matter, a repre-
sentation of the pial surface, a segmentation of white matter from the
rest of the brain; to perform skull stripping, bias field correction,
nonlinear registration of the cortical surface of an individual with a
stereotaxic atlas, labeling of regions of the cortical surface, and label-
ing of sub-cortical brain structures. Furthermore, for each MRI scan,
FreeSurfer automatically computes subject-specific thickness mea-
surements across the entire cortical mantle and within anatomically
defined cortical regions of interest (ROIs) such as the entorhinal cor-
tex, volume estimates of a wide range of sub-cortical structures such
as the hippocampus, and estimates of the intra-cranial volume (ICV).
In all subsequent analyses, we summed the volumes of the two hip-
pocampi to obtain the total hippocampal volume and averaged
thickness measurements from the bilateral entorhinal cortex ROIs to
compute the mean thickness within the entorhinal cortex.

The longitudinal stream in FreeSurfer (Reuter et al., 2012) utilizes an
unbiased subject-specific template (Reuter and Fischl, 2011), which is
created by co-registering scans from each time-point using a robust
and inverse consistent registration algorithm (Reuter et al., 2010). Sev-
eral steps in the processing of the serial MRI scans (e.g., skull stripping,
atlas registration, etc.) are then initialized with common information
from the subject-specific template. This strategy has been shown to
lead to increased statistical power and better separation of groups
based on atrophy rates (Reuter et al., 2012). Note that the publicly dis-
tributed version of FreeSurfer's longitudinal stream does not handle
subjects with a single MRI scan (i.e., single visit), which traditionally
have been processed using cross-sectional tools. Since the cross-
sectional image processing steps are different from the longitudinal
stream, inclusion of single time point measurements in subsequent sta-
tistical analysis can introduce a bias, as demonstrated in our supple-
mentary analysis. See also (Reuter et al., 2012) where a similar bias
was quantified by processing the first time point cross-sectionally and
the second longitudinally (initializing it with results from the first) in
a test–retest study with no expected structural change. To address
this issue we modified FreeSurfer's longitudinal framework to process
subjects with a single time point in the following manner: we created
a pose normalized (upright) version of the input images by symmetri-
cally registering it with its left–right reversed image into a mid-space
(Reuter et al., 2010), we then processed it as the subject-specific tem-
plate and used it for the initialization of subsequent image processing
steps, such as skull stripping. This ensures the input image from a sub-
jectwith a single scan undergoes the sameprocessing and interpolation
steps as serial images in the longitudinal stream and thus makes results
comparable (see Supplementary Material).

Tables 1 and 2 provide descriptive statistics of the analyzed sam-
ple. We subdivided the subjects into five clinical groups. (1) Stable
healthy control (HC): those who were clinically healthy throughout
the follow-up period. (2) Converter HC (cHC): those who were clini-
cally healthy at baseline but converted to Mild Cognitive Impairment
(MCI, a transitional phase between healthy and dementia) (Gauthier
et al., 2006) or dementia stage of Alzheimer's disease (AD) within the
follow-up period. (3): Stable MCI (sMCI): those who were catego-
rized MCI at baseline and remained so throughout the study. (4) Con-
verter MCI (cMCI): those who were MCI at baseline and progressed to
the dementia phase of AD during follow-up. (5) AD patients: those
whowere diagnosed with dementia of the Alzheimer type at baseline.

In our experiments, we only focused on two biomarkers, namely
mean thickness within the entorhinal cortex (averaged across hemi-
spheres; ECT) and total hippocampal volume (HV), since these are
two classical MRI-derived markers that are known to be strongly

http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu/fswiki/LongitudinalProcessing
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Table 2
Number and timing of scans per time point by clinical group (Stable HC, N=210;
Converter HC, N=17; Stable MCI, N=227; Converter MCI, N=166; AD, N=188).

Time point Stable
HC

Converter
HC

Stable
MCI

Converter
MCI

AD Time from baseline

Baseline 210 17 227 166 188 0
Year 0.5
(month 6)

197 17 194 161 166 0.58±0.07 [0.21–0.94]

Year 1 183 17 177 153 150 1.08±0.07 [0.68–1.38]
Year 1.5 0 0 153 136 0 1.59±0.08 [1.26–1.92]
Year 2 129 14 108 106 96 2.09±0.10 [1.58–2.88]
Year 3 115 6 68 70 0 3.09±0.09 [2.52–3.45]
Year 4 11 0 3 10 0 4.12±0.09 [3.98–4.38]
Total 845 71 930 802 600

Time from baseline (in years) is in mean±standard deviation; ranges are listed in
square brackets.

Fig. 1. Locally weighted smoothed mean measurement trajectory (lowess plot) for
each of the four clinical groups. This method produces a smooth curve by centering a
window of fixed size at each time-point and fitting a straight line to the data within
that window. The lowess estimate of the mean at a time-point is simply the predicted
values at that time-point from the fitted regression line. In this plot, the fraction of the
total number of data points included in the sliding window was set to 0.7. HC: healthy
control; sMCI: stable MCI; cMCI: converter MCI; AD: Alzheimer patients. (A) Hippo-
campal volume (HV). (B) Entorhinal cortex thickness (ECT).
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associated with early AD (Dickerson et al., 2001; Jack et al., 1997).
These measurements were automatically computed using FreeSurfer.

ADNI is a multi-site study, where the MRI data were collected
using a range of scanner types. Although a significant amount of effort
was put into matching the imaging protocol and quality across sites
(via phantom and subject scans), there is still a chance that the coil
type has an effect on the analysis. We conducted a supplementary
analysis to assess this effect. Our results indicate that there were
two coil types that had a significant influence on the measurement
of hippocampal volume (see Supplementary Table S3), but our gener-
al conclusions about longitudinal changes were not altered. Since
there was a significant number of subjects for which coil type infor-
mation were not provided (and therefore these subjects were omit-
ted from the supplementary analysis), we decided to drop coil type
information from all our subsequent analyses in order to boost sam-
ple size.

Unless specified otherwise, all analyses included the following
independent variables as fixed effects: time from baseline, clinical
group membership (HC was the reference group and there were indi-
cator variables for all remaining groups. E.g., for the sMCI indicator,
the value was one if the subject was clinically categorized as sMCI
and zero otherwise), the interaction between clinical group indicators
and time from baseline, baseline age, sex, APOE genotype status (one
if e4 carrier and zero if not), the interaction between APOE genotype
status and time (of scan) from baseline (note that this variable was
included based on the evidence that e4 accelerates atrophy during
the prodromal phases of AD (Jack et al., 2008)), and education
(in years). Furthermore an estimate of intra-cranial volume (ICV)
(Buckner et al., 2004) was included as a fixed effect for the analysis
of HV, but not ECT since there was no significant association with
the latter. Random effects were determined via a likelihood ratio
test as explained above. In all analyses both intercept and time were
included in the final model as random effects. This suggests that com-
pound symmetry did not hold for HV and ECT in the longitudinal
ADNI.

In general, longitudinal studies are conducted to assess group differ-
ences between the trajectories of variables of interest. Therefore, we
constrained our analysis to the association between the group-time
interaction (i.e., group-specific atrophy rate) for the two biomarkers:
HV and ECT.

Results

Comparing rates of atrophy across four clinical groups

In our first experiment, we excluded converter HC subjects, since
this is the smallest group (N=17) and little has been reported on
this group in prior work. Our goal here is to illustrate the LME meth-
odology for characterizing well-known differences between four
well-studied clinical groups: HC, stable MCI, converter MCI and AD
patients (see Tables 1 and 2 and previous section). Fig. 1 shows the
lowess plots for the two biomarkers (HV and ECT) in these four clini-
cal groups. These plots reveal that a linear model is likely to be suffi-
cient to capture follow-up trends and there is no need for including
higher order terms for time.

The hypotheses we tested and the inference results (F-value, degrees
of freedom –DF–, and uncorrected p-value) are as follows. Note that
somewhat unusually, the DF depends on the contrast, because of the



Table 3
Conservative estimates of total sample size (2N, where N is the number of subjects in
each group) for two prospective longitudinal studies (two-year studies with 5 serial
scans obtained every six months from baseline) comparing Alzheimer patients (AD)
vs. healthy controls (HC) and stable MCI (sMCI) vs. converter MCI (cMCI) groups,
respectively. The power is set to 80% and the effect size (rate of change per year) is
set to the slope regression coefficient estimated by the analysis of the ADNI data. Sam-
ple size estimates were inflated by a factor of 1.84 based on the drop out rate observed
in the ADNI data (45.5% of subjects dropped out at the end of 2 years).

Prospective longitudinal studies Effect size (per year) Total sample size

AD vs. HC/HV −131.94 mm3 30
AD vs. HC/ECT −0.1 mm 32
cMCI vs. sMCI/HV −62.99 mm3 162
cMCI vs. sMCI/ECT −0.05 mm 146

Key: HV, total hippocampal volume; ECT, average entorhinal cortical thickness.
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Satterthwaite-based approximation we use (see Eq. (2.7)). We include
exact expressions for these hypotheses in the Supplementary Material.

H1). Is there any difference in the rate of change among the four groups
(HC, sMCI, cMCI, and AD)?

HV: F value=43.7, DF=[3 645.3], p=0
ECT: F value=40.4, DF=[3 632.9], p=0

H2). Is there any difference in the rate of change between HC and
sMCI?

HV: F value=13.8, DF=[1 552.9], p=2.3e−4
ECT: F value=14.6, DF=[1 526.7], p=1.5e−4

H3). Is there any difference in the rate of change between sMCI and
cMCI?

HV: F value=28.3, DF=[1 578.3], p=1.5e−7
ECT: F value=30.3, DF=[1 554.3], p=5.5e−8

H4). Is there any difference in the rate of change between cMCI and
AD?

HV: F value=5.1, DF=[1 798.8], p=0.02
ECT: F value=1.4, DF=[1 830.6], p=0.22

Fig. 2 shows the retrospective power (Eq. (2.10)) for comparing
the rates of atrophy between sMCI and cMCI using the ADNI data.
ECT provides slightly more power than HV in detecting longitudinal
group differences. Table 3 provides sample size estimates (based on
Eq. (2.9)) for prospective studies that compare atrophy rates between
sMCI vs. cMCI and AD vs. HC. Effect sizes and dropout rates were com-
puted based on the ADNI sample.

Comparing rates of atrophy between HC and converter HC

Our second experiment focused on the converter HC (cHC) subjects
(N=17), whowere clinically healthy at baseline yet progressed to MCI
or AD over the course of the study. Mean time for conversion was
Fig. 2. Statistical power vs. alpha (false positive rate) to discriminate the atrophy
rates of stable and converter MCIs. HV: hippocampal volume. ECT: entorhinal cortex
thickness.
2.6 years from baseline (with a standard deviation of 1.1 years). We
compared HV and ECT atrophy rates between cHC and HC subjects.
Fig. 3 shows the corresponding lowess plots. For entorhinal cortex, the
lowess plot suggests that cHC subjects exhibit a nonlinear trajectory,
which can be captured with the following piecewise linear model:

β1 þ β2t þ β3 t−1:2ð Þþ; ð3:1Þ

where t is time (in years) from baseline, and (x)+ is only nonzero and
equal to x if x is positive and zero otherwise. We note that the term
1.2 in Eq. (3.1) comes from the visual inspection of Fig. 3B that reveals
a breakpoint in the trajectory of ECT around 1.2 years. For the hippo-
campus, we adopted a simple linear model as we did in the previous
experiment.

The hypotheses we tested and the inference results are as follows.

H5). Is there any difference between the trajectories of cHC and HC?

HV: F value=8.8, DF=[1 218.0], p=0.0034
ECT3: F value=4.3, DF=[2 392.7], p=1.5e−4

H6). Is there any difference between the first and second slopes of
the piecewise linear model in cHC subjects?

ECT: F value=4.5, DF=[1 622.3], p=0.034

H7). Is there any difference in the first slopes of HC and sHC subjects?

ECT: F value=0.0, DF=[1 685.4], p=0.97

H8). Is there any difference in the second slopes of HC and sHC
subjects?

ECT: F value=7.6, DF=[1 514.2], p=0.006

Fig. 4 shows the retrospective power (Eq. (2.10)) for comparing
the rates of atrophy between HC and cHC using the ADNI data.
Here, HV provides slightly more power than ECT in detecting longitu-
dinal group differences.

Comparison of LME to alternative methods

In the third experiment, our goalwas to provide an objective compar-
ison of the LME approachwith the twowidely-used alternativemethods,
namely repeated measures ANOVA (rm-ANOVA) and cross-sectional
analysis of the slope (x-slope), i.e. annualized rate of atrophy estimated
for each individual. We implemented rm-ANOVA via a LME model with
a single random effect for the intercept. As we discuss above, this
imposes a compound symmetry structure on the covariance between
repeated measures — a model that is unlikely to be appropriate for
3 Note that the inference involves two parameters corresponding to the two slopes
in the piecewise model of Eq. (3.1).
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Fig. 3. Locally weighted smoothed mean measurement trajectory (lowess plot) for two
groups. This method produces a smooth curve by centering a window of fixed size at
each time-point and fitting a straight line to the data within that window. The lowess
estimate of the mean at a time-point is simply the predicted values at that time-point
from the fitted regression line. In this plot, the fraction of the total number of data
points included in the sliding window was set to 0.7. HC: healthy controls who
remained so throughout the study; and cHC: converter HCs, who were healthy at base-
line but progressed to MCI or AD during follow-up. Mean time to progression was
2.6 years from baseline. (A) Hippocampal volume (HV). (B) Entorhinal cortex thick-
ness (ECT).

Fig. 4. Statistical power vs. alpha (false positive rate) to discriminate the atrophy rates
of stable and converter healthy controls (HC). HV: hippocampal volume. ECT: entorhi-
nal cortex thickness.
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typical LNI data. For the second benchmark, we estimated each subject's
slope using the best-fit line (in the least square sense) to its longitudinal
measurements. Then we conducted a standard least-square regression
(GLM) with the same independent variables as the other two methods.

We were interested in assessing the specificity, sensitivity and
reliability of the three methods in a realistic longitudinal design. To
achieve this, we conducted two-group comparison analyses on the
rates of HV loss in HC subjects and AD patients, using an empirical
strategy inspired by (Thirion et al., 2007). There were two main rea-
sons for our particular choice of biomarker and groups. Firstly, from
prior work we were confident that there is a significant difference
between the HV atrophy rates of HC and AD groups (Jack et al.,
2010). Secondly, our sample size estimates (see Table 3) indicated
that with a relatively small number of subjects, we had a good chance
of detecting the difference in atrophy rates. Hence, we could draw a
relatively large number of pseudo-independent subsamples (with
say N=10–30 subjects from each group) from the entire ADNI sam-
ple to conduct our analyses.

For each sample size value (e.g. N=15 per group), we randomly
selected two sets of independent AD+HC samples, (i.e., two
independent samples of 2N) from the eligible portion of the ADNI
sample (all ADNI HC and AD subjects). There was no overlap between
the two independent samples and each sample contained the same
number of AD and HC subjects. We repeated this procedure 200
times to obtain 200 random pairs of independent AD+HC samples
of a certain size (that is, 400 random AD+HC samples in total).

For each sample, we used the three methods (LME, rm-ANOVA
and x-slope) to compute parametric p-values for the difference
between the rates of atrophy of the two clinical groups (AD vs. HC).
Next, we conducted a permutation test (Good, 2000; Nichols and
Holmes, 2002) for each sample by shuffling the clinical group mem-
berships and repeating the inference (2000 permutations). A non-
parametric p-value was computed for each sample and each method
based on the ranking (with respect to the 2000 permutations) of the
corresponding parametric p-values. The permutation approach relies
on assumptions that are weaker than those required for the paramet-
ric p-values and is known to yield an accurate assessment of the prob-
ability of false positive (type 1 error, p-value, or equivalently
specificity) when the number of permutations is large (Nichols and
Holmes, 2002).

Thus, we considered the agreement between the parametric and
non-parametric p-values as ameasurement of the accuracy of the para-
metric p-values, or the specificity of the parametric model. Fig. 5 shows
themean (averaged across the 400 random AD+HC samples) absolute
difference between the parametric and non-parametric p-values for dif-
ferent sample sizes and different methods. These results revealed that
both LME and x-slope provided significantly higher specificity than
rm-ANOVA for modest sample sizes (2N less than 50).

To assess sensitivity, we computed the detection (true positive)
rate across the 400 samples (200 pairs) for a range of p-value
(alpha) thresholds and 2N=20 (see Fig. 6). Here we assumed that
the underlying ground truth was that there is a difference between
hippocampal atrophy rates of HC vs. AD subjects. Instances where
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Fig. 5. The mean absolute difference between non-parametric and parametric p-values
for three statistical methods in comparing hippocampal volume loss rates between
healthy controls (HC) and Alzheimer patients (AD) (Experiment 3) as a function of
total sample size. LME: Linear Mixed Effects model with random intercept and slope.
Rm-ANOVA: random effects ANOVA. X-Slope: GLM-based cross-sectional analysis of
annualized rate of atrophy (slope).
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the p-value was less than an alpha threshold were considered a
“detection” and remaining cases were treated as a false negative.
The true positive rate (or sensitivity) was quantified as the fraction
of detections. Our results indicate that LME yields significantly higher
sensitivity than the two alternative approaches. Note that, these
results indicate we have about 70% power with the threshold (alpha)
set to 0.05 and 2N=20. This is in agreementwith the approximate sam-
ple size estimate computed for 80% power (Table 3).

Finally, we were interested in quantifying repeatability, by compar-
ing results between the two independent samples obtained at each ran-
dom draw (200 pairs). Fig. 7 shows the rate at which eachmethod was
able to detect the difference in both samples for a range of p-value
thresholds (alpha values). These results suggest that LME yields
Fig. 6. Detection rate (the frequency of true positives) in differentiating hippocampal
volume loss rates between healthy controls and AD patients (Experiment 3), as a func-
tion of alpha (p-value threshold) with 2N=20 subjects. LME: Linear Mixed Effects
model with random intercept and slope. Rm-ANOVA: random effects ANOVA.
X-Slope: GLM-based cross-sectional analysis of annualized rate of atrophy (slope).
longitudinal findings that are more likely to be repeatable in an inde-
pendent sample.
Assessing the effect of including subjects with a single time point

In this final experiment, our goal was to quantify the effect of
including subjects with a single time-point into the LME-based anal-
ysis of longitudinal data. The theoretical expectation is that data
from subjects with a single visit may contain valuable information
about between-subject variability, which can in turn improve our
inference on the remaining longitudinal measurements. In practice,
most studies choose to exclude these subjects in their analyses,
because their methods cannot handle these cases and/or they are cau-
tious of introducing a bias into the analysis, since there might be
inter-group differences in dropout rates. However, the LME approach
recommends to include all scans from all time-points into the analy-
sis (Fitzmaurice et al., 2011).

As an objective assessment, we conducted the following experi-
ment. We first established a sample of 50HC+50AD subjects from the
ADNI data, in which each subject has four repeated measurements
(MRI-derived hippocampal volume). We call this the “full sample.”
We then performed 1000 simulations. In each simulation we randomly
selected 20 subjects from the AD group (20% of the full sample)
to remove their last three repeated measures from the data (therefore
leaving only their baseline HV measurements). Thus, for each simula-
tion we had a “reduced sample,” which consisted of a group of
50HC+30AD completers (i.e., they had all four repeated measures)
and 20 AD subjects with a single measurement (“dropouts”). We then
fit two LME models with the same independent variables as above:
one model was based on the reduced sample excluding the dropouts
(i.e., only 50HC+30AD completers). The second model was computed
based on the entire reduced sample, which included the 20 AD drop-
outs. We then compared these model fits with that obtained on the
full sample. Fig. 8 shows the difference between the fixed effect coeffi-
cient estimates obtained on the reduced sample (with and without
the dropouts) and full sample. These results suggest that including sub-
jects with a single time-point (dropouts) increases the accuracy of the
model fit, and would thus lead to improved inference.
Fig. 7. Repeatability (the frequency at which a method differentiates hippocampal vol-
ume loss rates between healthy controls and AD patients in two independent samples of
2N=20) vs. alpha (p-value threshold) (Experiment 3). LME: Linear Mixed Effects
model with random intercept and slope. Rm-ANOVA: random effects ANOVA.
X-Slope: GLM-based cross-sectional analysis of annualized rate of atrophy (slope).
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Discussion

Linear Mixed Effects (LME) models offer a more powerful and versa-
tile framework for the analysis of longitudinal data thanmany other pop-
ular methods (Fitzmaurice et al., 2011). The LME approach elegantly
handles unbalanced data (with variable missing rates across time-
points and imperfect timing), makes use of subjects with a single
time-point to characterize inter-subject variation, and provides a parsi-
monious way to represent the group mean trajectory and covariance
structure between serial measurements. Yet, its use in neuroimaging
seems to be limited to a small number of studies, which represent a mi-
nority in the rapidly growing LNI literature. We found that many prior
LNI studies used sub-optimal approaches that at best offer reduced
power to detect effects and at worst can lead to incorrect inferences.
Our goal in this work was to advocate the use of LME models for LNI
data analysis by providing the theoretical background and the implemen-
tation of an array of computational tools that build on the LME
framework. We intended to illustrate the proper use of these tools
using a well studied, real-life longitudinal dataset. Finally and most
importantly, we provided a validation of our tools and an objective com-
parisonwith two popular alternativemethods via analyses on these data.

In the first experiment, we applied the LME model to a well-known
pair of AD biomarkers (hippocampal volume –HV– and entorhinal cor-
tex thickness –ECT–) and obtained results that were in agreement with
prior work. The lowess plots revealed that a linear model was suitable
to characterize the longitudinal trajectories in the follow-up period.
Our inferences indicated that therewas a significant difference between
the HV and ECT atrophy rates across HC, sMCI, and cMCI subjects. This
difference diminished (and became statistically insignificant for ECT)
when comparing cMCI subjects and AD patients.

In the second experiment, we compared atrophy rates between
HC subjects and converter HC subjects, who were clinically healthy
at baseline but progressed to MCI or clinical AD at follow-up. The
lowess plots revealed an intriguing, nonlinear trajectory of entorhinal
cortex thickness in the cHC group, which could be captured via a
piece-wise linear model with a knot at 1.2 years. Our LME-based
inference further confirmed that this was an appropriate model,
since the two slopes of the piece-wise linear model were statistically
significantly different. Intriguingly, the knot (or elbow) of the piece-
wise linear model (at around 1.2 years) was on average about
Fig. 8. The influence of including subjects with a single time-point on LME-based inferenc
sample contained 50 HC and 50 AD subjects, all with 4 visits (scans). We had 1000 random
jects as dropouts and discarding their last three scans. The y-axis shows the average differenc
bars) or discarding (white bars) the 20 dropout AD patients, and the coefficients from the fu
These results suggest that including the subjects with a single time-point increases the acc
1.4 years prior to the event of clinical conversion, suggesting that
atrophy rates accelerate prior to the beginning of clinical symptoms.
Furthermore, our inferences confirmed that in the cHC group both
HV and ECT exhibited an overall longitudinal trajectory that was
statistically significantly different from the controls. For ECT this dif-
ference was driven by the apparently sudden acceleration of atrophy
in the cHC subjects at around the end of the first year of the study. For
HV, there was no such nonlinearity that was discernible in the group
trajectories.

In the third experiment, our goal was to provide an objective
assessment of the three competing methods widely used to analyze
longitudinal data. We focused on HV, a well-established marker of
AD, which also has a relatively large effect size. This enabled us to
interrogate a large number of random sub-samples of relatively
small size, where the effect of interest was detectable and average
across these random experiments. The ADNI data, with its variable
missing data pattern, imperfect follow-up timing, and multi-site
nature, provided a perfect example of a realistic LNI study, in which
we can objectively quantify the performance of the different
methods. Our results supplied evidence supporting our theoretical
expectations: the LME approach provides more sensitivity in a realis-
tic LNI setting than repeated measures ANOVA or the analysis of sum-
mary metrics such as annualized atrophy rates, with good control on
specificity. Furthermore, the resulting findings are more likely to be
replicated in an independent study.

Finally, in a fourth experiment, we aimed to quantify the improve-
ment in model fit afforded by the LME method by including subjects
with a single time-point. To achieve this, we first established a full
dataset with 50 AD and 50 HC subjects, all of which had four scans.
Then we simulated 1000 random subsets of this sample, where 20
AD patients dropped out after the first visit. Our results, once again,
were in line with the theoretical expectations: including subjects
with a single time point can dramatically improve the accuracy of
the model fit in the LME approach.

The present study focused on the univariate analysis, where the cor-
rection for “multiple comparisons” is not an issue. In future work, we
intend to extend the LME framework and our computational tools to
the mass-univariate setting, where one interrogates effects across a
large number of pixels/voxels. This will be the topic of an upcoming
follow-up paper.
e results. MRI-derived total hippocampal volume was the dependent variable. The full
simulations, in which a reduced dataset was generated, by treating 20 random AD sub-
e between the coefficient estimates obtained on the reduced sample by including (black
ll sample. The error bars show the standard deviations across 1000 random simulations.
uracy of the model fit and introduces minimal bias.
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Conclusions

The Linear Mixed Effects (LME) approach provides a powerful and
flexible framework for the analysis of LNI data. We have implemented
and validated these computational tools,whichwill bemade freely avail-
able within FreeSurfer to complement its longitudinal image-processing
pipeline.
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