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This paper presents a method for the statistical analysis of the associations between longitudinal neuroimaging
measurements, e.g., of cortical thickness, and the timing of a clinical event of interest, e.g., disease onset. The
proposed approach consists of two steps, the first of which employs a linear mixed effects (LME) model to
capture temporal variation in serial imaging data. The second step utilizes the extended Cox regression model
to examine the relationship between time-dependent imaging measurements and the timing of the event of
interest. We demonstrate the proposed method both for the univariate analysis of image-derived biomarkers,
e.g., the volume of a structure of interest, and the exploratory mass-univariate analysis of measurements
contained in maps, such as cortical thickness and gray matter density. The mass-univariate method employs a
recently developed spatial extension of the LME model. We applied our method to analyze structural measure-
ments computed using FreeSurfer, a widely used brain Magnetic Resonance Image (MRI) analysis software
package. We provide a quantitative and objective empirical evaluation of the statistical performance of the
proposedmethod on longitudinal data fromsubjects suffering fromMild Cognitive Impairment (MCI) at baseline.

© 2014 Elsevier Inc. All rights reserved.
Introduction

Medical events, such as the onset of disease, represent major land-
marks in the course of a patient's clinical history. A significant portion
of biomedical research is dedicated to studying the risk factors associated
with these events, aiming to predict, delay and ultimately prevent their
occurrence.

In recent decades, neuroimaging has accelerated the study of brain-
related clinical conditions. A classical neuroimaging approach has been
to contrast measurements obtained from those who have experienced
the event (i.e., cases) with measurements from those who have not
(i.e., controls). This methodology has yielded reliable markers of
disease, e.g., (Jack et al., 2012),while providing insights about underlying
biological mechanisms, e.g. (Buckner et al., 2005; Sabuncu et al., 2012).

Yet, the classical case–control approach treats the two groups
as distinct entities and assumes a certain amount of within-group
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homogeneity. This approach can therefore be limited when the control
group is a high-risk cohort, that is, when a significant proportion of
subjects have not yet experienced the event of interest but are likely
to do so in the not-too-distant future. Such “pre-event” cases, which,
in the absence of other information will be treated as controls, typically
fall in the gray area between a pure case and a pure control. Thus the
within-group homogeneity assumption is violated, which will in turn
impact statistical inference. Common examples for this are longitudinal
studies of populations that are at high risk for disease, based on
their genetic make-up (e.g., carriers of a faulty allele of the Huntingtin
gene in a Huntington's study (Albin et al., 1990)), familial history
(e.g., subjects who have a first-degree relative with schizophrenia
(Whitfield-Gabrieli et al., 2009)) or clinical presentation (e.g., subjects
with Mild Cognitive Impairment, or MCI, in an Alzheimer's study
(Forsberg et al., 2008)). These examples are particularly relevant to
drug trials focused on the pre-clinical or early phases of a disease and
thus target high-risk populations. In such scenarios, an inappropriate
statistical treatment of the group of subjects who have not been
observed to experience the event (diagnosis or conversion to disease)
during the follow-up period (sometimes referred to as “non-converters”)
can introduce bias into the analysis and/or reduce efficiency.

An alternative strategy that addresses this issue, directly models the
timing of the event of interest, while accounting for finite follow-up or
censoring. This is the event time (or survival) analysis approach
(Kleinbaum and Klein, 2012), which includes classical models such as
Cox proportional hazards regression (Cox, 1972). Standard event time
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analysis models have been applied in prior neuroimaging studies
(Desikan et al., 2009, 2010; Devanand et al., 2007; Geerlings et al.,
2008; Marcus et al., 2007; Sabuncu, 2013; Stoub et al., 2005; Tintore
et al., 2008; Vemuri et al., 2011) and have yielded novel insights about
various clinical conditions. Most of these prior studies have analyzed
associations between imaging measurements from a single baseline
visit and the timing of the event of interest identified via follow-up
clinical assessments. These analyses typically rely on survival models
(e.g., the standard Cox model) that assume the explanatory variables
are independent of time (gender, genetic marker, birth place, etc.).
The employedmodels are useful for constructing individualized survival
curves and making predictions about the timing of a future event.
Furthermore, they offer insights about the relationships between inde-
pendent variables and the event time. As such, survival models have
been used to draw conclusions about associations between neuroimag-
ing measurements (e.g., volume of a structure) and the clinical event
(e.g., disease onset). This type of inference, however, suffers from two
problems. Firstly, imaging measurements typically vary over time
(e.g., due to anatomical changes). Yet, interpretation of the standard
Cox model, for example, has to be done with respect to the baseline
imaging measurements only and not with respect to the dynamically
changing measurements. Secondly, in longitudinal designs that span
an extended time period, imagingmeasurements are likely to vary sub-
stantially over time, making it harder to detect associations between
baseline imaging markers and the clinical event.

Longitudinal neuroimaging (LNI) studies, where multiple serial
images are acquired for each participant, provide ameans to characterize
the temporal trajectories of imaging measurements. Furthermore LNI
studies can offer a substantial increase in statistical power for studying
imaging markers (Bernal-Rusiel et al., 2013a,b), while opening up
the possibility of examining the relationship between the temporal
dynamics of imaging markers and clinical variables (Sabuncu et al.,
2011). Today, the standard strategy for analyzing the association
between LNI data and the occurrence of a clinical event, such as disease
onset, is to perform a group comparison based ondichotomizing the sub-
jects into, for example, “converters” versus “non-converters” (Borgwardt
et al., 2011; Chetelat et al., 2005; Jack et al., 2008a; Morgan et al., 2011;
Sun et al., 2009). However, as we discussed above, this approach can
be sub-optimal, since the non-converter group likely includes subjects
who might convert beyond the study follow-up.

The core goal of this paper is to propose a powerful method for the
statistical analysis of the associations between longitudinal neuroimag-
ingmeasurements, e.g., of gray matter density or cortical thickness, and
the timing of a clinical event of interest, such as disease onset. The
proposed approach combines a linear mixed effects (LME) model that
captures the spatiotemporal correlation pattern in serial imaging data
(Bernal-Rusiel et al., 2013a,b; Verbeke and Molenberghs, 2000) and an
extended Cox regression model that allows the examination of associa-
tions between the time-dependent imaging measurements and the
timing of a clinical event (Kleinbaum and Klein, 2012). Recent work
showed that such a joint analysis can reduce bias and increase statistical
efficiency by exploiting all available information (Tsiatis and Davidian,
2004).

We demonstrate the proposed method both for the univariate and
mass-univariate analysis of imaging measurements automatically
computed with FreeSurfer, a widely used brain Magnetic Resonance
Image (MRI) data analysis software package (Dale et al., 1999; Fischl,
2012; Fischl and Dale, 2000; Fischl et al., 1999a,b).We include a quanti-
tative and objective empirical evaluation of the statistical performance
of the proposed method based on publicly available data (the
Alzheimer's disease neuroimaging initiative, ADNI3) from a group
of subjects with Mild Cognitive Impairment (MCI) (Gauthier et al.,
3 http://tinyurl.com/ADNI-main.
2006), a clinically defined condition associated with high-risk incipient
dementia. Our experiments revealed that the proposed method
offers a substantial increase in statistical efficiency relative to a “two-
sample” benchmark method that compares those who convert from
MCI to clinical AD against those who remain MCI through follow-
up; and a classical Cox regression analysis that employs only baseline
scans.

The paper is organized as follows. The Cox proportional hazards
model and its extension section and the Linear mixed effects models
for longitudinal data section review the Cox proportional hazards and
linear mixed effects models, respectively. The Proposed strategy for
joint analysis of event time and LNI data section presents the proposed
method that unifies these two frameworks. The Alternative methods
section describes the alternative analysis strategies that we will use to
benchmark our experimental results. The ADNI data section offers a
description of the data used in the experiments and the Statistical
models section details the statistical analyses conducted on these data.
In the Experimental results section, we present experimental results
that illustrate the proposed joint modeling approach and compare it
against benchmarks. Finally, the Discussion section provides a discus-
sion of the main experimental findings and the Conclusions section
closes with concluding remarks.

Material and methods

The Cox proportional hazards model and its extension

In this section, we provide a brief overview of the classical Cox
proportional hazards model (Cox, 1972) and its extension for time-
varying explanatory (independent) variables. For a detailed treatment,
the reader is referred to dedicated texts, such as Kleinbaum and Klein
(2012).

A core component of event time models is the so-called hazard
function h(t), which is the instantaneous probability of experiencing
the event of interest (e.g., disease onset), given no event up to time t.
The hazard function is mathematically defined as:

h tð Þ ¼ lim
dt→0

P t ≤ T b t þ dtjT ≥ tð Þ
dt

;

where T is the random variable that represents the time of event and p(.
|.) denotes conditional probability. The classical Cox model assumes that
the hazard function of a samplewith p time-independent explanatory var-

iables X ¼ X1;X2;…Xp

� �
can be expressed as:

h t;Xð Þ ¼ h0 tð Þ exp
Xp
i¼1

αiXi

 !
; ð1Þ

where h0(t) is the so-called baseline hazard function andα=(α1,…,αp)
is the coefficients associated with the explanatory variables. This model
assumes that the hazard function can be written as a product of two
factors: one that varies with time but is independent of X, and another
that is a function of the time-independent explanatory variables X
and thus is fixed over time. The foundation of the classical Cox model is
the proportional hazards assumption, i.e., the proportion of the hazard

functions of two samples is constant over time:
h t;X1ð Þ
h t;X2ð Þ ¼ exp

∑
p

i¼1
α X1

i −X2
i

� �� �
¼ const: , where Xj is the independent variables of

the j'th sample.
A popular strategy to estimate the coefficients α is the so-called

partial likelihoodmaximizationmethod (Cox, 1972, 1975). In particular,
the partial likelihood is expressed as a product of K terms, each corre-
sponding to the likelihood of an observed event computed based on
the time of occurrence (i.e., there are K events observed during the

http://dx.doi.org/10.1001/archneurol.2011.3405
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study and K ≤ N, where N is the total number of samples4). Note that,
although only observed events are considered, their likelihood values
depend on those samples that haven't experienced the event yet and
still remain in the study (i.e., have not dropped out or are not “censored”
before the particular event time5).

For readability, let us index the samples such that the first K are
those that we have event timing information on. All remaining samples
are thus censored. That is, they either drop out of the study before
experiencing the event or do not experience the event during their
follow-up. Then, mathematically, the partial likelihood is computed as:

L ¼ ∏
K

k¼1
Lk;where Lk ¼

h tk;Xk
� �

X
r∈Rk

h tk;Xr
� �

:
ð2Þ

In Eq. (2), tk and Xk denote the event time and exploratory variables
of the k'th sample, respectively. Rk is the so-called risk set at tk, i.e., the
set of samples that are known to have not experienced the event at tk.
The partial likelihood function of Eq. (2) is thenmaximizedwith respect
to the unknown model parameters α via a numerical optimization
strategy, such as Newton–Raphson.

As mentioned above, the original Cox model requires that the
explanatory variables be constant over time (e.g., a genetic marker).
Hence, this model is not appropriate for analyzing longitudinal imaging
measurements that typically vary over time. We note that baseline
imaging measurements, however, have been employed in prior neuro-
imaging studies with standard proportional hazard models (Desikan
et al., 2009, 2010; Devanand et al., 2007; Geerlings et al., 2008;
Marcus et al., 2007; Tintore et al., 2008; Vemuri et al., 2011). Although
these analyses offer predictive models, their use for inferring associa-
tions is restricted to baseline measurements.

The Cox model can easily be extended to handle time-varying
variables (Kleinbaum and Klein, 2012). The hazard function is then
expressed as:

h t;X; Y tð Þð Þ ¼ h0 tð Þ exp
Xp
i¼1

αiXi þ
Xq
j¼1

γ jY j tð Þ
0
@

1
A; ð3Þ

where the second term in the exponential includes the effects of q
time-varying variables Y(t) = (Y1(t), …, Yq(t)) with associated coeffi-
cients γ = (γ1, …, γq). Partial likelihood maximization can also be
employed to solve the extended Cox model of Eq. (3).

Here, we make a crucial observation. To evaluate the partial likeli-
hood function of the extended Cox model, at each event time we need
to be able to compute or observe the time-dependent variable for all
samples in the risk set, that is those samples under observation and
have not experienced the event yet. Note that, this means that the value
of a time-dependent variable of a subject needs to be identifiable not
only for the event time of that particular subject, but also for other
relevant event times that are prior to the subject's own event/censor
time as well.

Longitudinal neuroimaging (LNI) studies offer us the opportunity for
identifying the time-varying imaging measurements at different time
points. However, in a typical LNI study, image data are acquired at
certain intervals (e.g., every six months). Furthermore, these serial scans
are usually unbalanced across subjects, i.e., their number and timing can
vary between subjects. Finally, the visits for clinical assessments and
image acquisitionsmight not coincide.Hence, the fundamental challenge
4 In this paper,we assume that each sample can experience the event of interest atmost
once. There are extended treatments that relax this assumption. We consider these out-
side the scope of this manuscript.

5 We note that the Cox model does not assume that the event will definitely occur for
each individual during his or her lifetime, since T can theoretically approach infinity.
of the application of the (extended) Cox model to the analysis of LNI data is
the computation (or estimation) of the image data at the times of the
clinical events. Note that, even if we have image data coinciding with a
subject's own event time (e.g. disease onset), we typically will not
have the corresponding imaging measurements for that subject for
other relevant event times observed in the study. We propose to use a
linear mixed effects (LME)model, which captures the temporal trajectories
of each individual's imaging measurements, to estimate image data at all
observed event times. The following section provides a brief description
of the LME approach and its recently introduced spatial extension.

Linear mixed effects models for longitudinal data

In two recent papers (Bernal-Rusiel et al., 2013a,b), we illustrated
the use of linear mixed effects (LME) models for the analysis of longitu-
dinal neuroimage data. The classical LMEmodel can handle unbalanced
data with high inter-subject variability in scan times and missing data
points, while offering a parsimonious yet effective strategy to model
the mean and covariance structure in longitudinal data (Fitzmaurice
et al., 2011; Verbeke and Molenberghs, 2000). The central idea in LME
is to allow a subset of the regression parameters to vary randomly
across subjects. Hence, themean trajectory ismodeled as a combination
of population-level “fixed” effects and subject-specific “random” effects
(together, they are called mixed effects).

Formally, the LME model for longitudinal data can be expressed as:

Y tð Þ ¼
Xf
i¼1

βi Fi tð Þ þ
Xr
j¼1

bjRj tð Þ þ e; ð4Þ

where Y is the time-dependent outcomemeasurement of a subject, F(t)
denotes the value of F at time t, F = (F1, …, Ff) is the f so-called “fixed”
effects that can include subject-level constant variables (e.g., gender,
genotype) or time-varying variables (clinical status, measurement time,
etc.), R = (R1, …, Rr) is the r “random” effects, which can include a
constant bias term and/or a subset of the time-varying fixed effect
variables (e.g., measurement time). β = (β1, …, βf) and b = (b1, …,
br) are the unknown fixed and random effect coefficients, respectively
and e is independent and identically distributed zero-mean Gaussian
measurement noise with an unknown variance σ2. We further assume
that the random effect vector b is sampled for each subject from a
zero-mean Gaussian with an unknown, non-diagonal r × r covariance
matrix D. The unknown model parameters are the measurement
variance σ2 and random effect covariance matrix D. The traditional
LME approach solves for themodel parameters via an iterative restricted
maximum likelihood (ReML) procedure.

Given estimates D̂ and σ̂ , we have a closed-form solution for the
maximum likelihood (ML) estimate of the fixed effect coefficients β̂.
We can further use these estimates to compute a prediction for the
values of the subject-specific random effect coefficients b̂s , where the
subscript s denotes subject index (Fitzmaurice et al., 2011). One can
then easily compute an unbiased prediction for the temporal trajectory
for subject s as:

Ŷs tð Þ ¼
Xf
i¼1

β̂i Fsi tð Þ þ
Xr
j¼1

b̂sjRsj tð Þ: ð5Þ

We recently extended the classical LMEmodel to handle spatial data,
such as image-widemeasurements in amass-univariate analysis (Bernal-
Rusiel et al., 2013b). This approach, called ST-LME, essentially builds on
the LME framework but modifies it to model spatial correlations via a
parametric spatial covariance matrix. The parameters associated with
the spatial matrix are added to the list of unknown model parameters
and estimated via ReML. The prediction of subject-level trajectories can
then be computed exactly the same way using the estimated model
coefficients and Eq. (5). Our prior experiments have demonstrated
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that the ST-LME model offers superior statistical efficiency since it
exploits the spatial structure in image data.

Proposed strategy for joint analysis of event time and LNI data

As discussed above, the extended Cox model requires that the value
for the time-dependent variables be specified for each subject in the risk
set at each observed event time. In general, many of these imaging
measurements are unavailable. However, one can estimate these
data based on serial measurements available in a study. We propose
to use the LME model to compute these estimates. The LME approach
(and its mass-univariate, spatial extension) provides a way to parsimo-
niously model the spatial and temporal correlation structure in serial
imaging data, while accounting for unbalanced longitudinal data
collection.

The proposed strategy consists of two steps. In the first step, we
fit an LME model to the longitudinal imaging data. The details of
model selection, the determination of random effects, and parameter
estimation are provided in Bernal-Rusiel et al. (2013a,b). Once the
model parameters are estimated, one then computes and saves the
population-level fixed-effect coefficients and subject-level random-
effect coefficients.

In the second step, we fit an extended Cox regression model
(Eq. (3)) to the event time data, where for each observed event time
we compute the imaging measurements of each subject based on
the LME model fit in the previous step (Eq. (5)). Statistical inference
(i.e., hypothesis testing) on the association between imaging measure-
ments and the event can then be conducted based on theWald statistic

of the approximately standard normal distribution of γ̂iffiffiffiffiffiffiffiffiffiffiffiffi
Vâr γ̂ið Þ

p (a Z score),

which yields a p-value for the effect of interest (Kleinbaum and Klein,
2012). The estimate for Vâr γ̂ið Þ is computed as the negative of the
inverse of the Hessian matrix associated with the ML solution of the
extended Cox model.

Here,wewould like tomake several remarks. First, the LMEmodel of
thefirst step and the extendedCoxmodel of the second step can contain
different sets of time-independent variables, although in our experi-
ments we chose to use the same set for both models. This decision
was motivated by recent joint frameworks, where models for the
event time distribution and longitudinal data are taken to depend on a
common set of effects (Tsiatis and Davidian, 2004). We note that the
selection of the explanatory variables to be included in a model is a
general problem in regression and should be made based on domain
knowledge and study constraints. Second, the time-dependent
variables of the LME model have to be identifiable for arbitrary time-
points, since we need to compute predictions for all relevant observed
event times, which in general do not coincide with the imaging times.
Common examples for such time-varying variables are time elapsed
from baseline, subject age, and functions of these, e.g., time squared.
Finally, the predicted image measurements computed at the exact
imaging times, in general, will not be equal to the actual measurements
themselves. Rather, they can be considered as “denoised” measure-
ments, where the error in longitudinal observations is estimated and
discounted via the LME model. This is similar in spirit to recent joint
longitudinal and survival models, e.g. (Kleinbaum and Klein, 2012).

Alternative methods

To date, themost common approach to perform an analysis between
neuroimage data and a clinical event of interest, such as disease onset,
relies on a two-group comparison (Borgwardt et al., 2011; Chetelat
et al., 2005; Jack et al., 2008a; Julkunen et al., 2009; Morgan et al.,
2011; Risacher et al., 2009; Sun et al., 2009). In thismethod, the subjects
are divided into two groups: “converters”, i.e., those who experience
the event during follow-up, and “non-converters”, i.e. those who
remain clinically stable for a certain amount of follow-up time. In our
experiments, we used the two-group approach with a LME model that
has been demonstrated to offer excellent statistical power for the
analysis of longitudinal neuroimage data (Bernal-Rusiel et al., 2013a,
b). Here, the output variables are the imaging measurements and the
analyses examine the differences between the intercepts and slope
coefficients of the two groups.

As a second alternative, we consider employing the extended Cox
model but with a simpler method to estimate the longitudinal trajecto-
ries of the imaging data. Recall that the proposed approach fits an LME-
based statistical model to longitudinal neuroimage data, which is then
utilized to estimate the imaging measurements for all observed event
times in the second step. The LME-based statistical model examines
the entire data, in order to characterize and estimate the individual-
level temporal trajectories. Amore basic strategywould be to fit a linear
function independently to each individual's serial imaging data. Note
that this alternative approach, while computationally very efficient,
ignores the spatial structure in the images. Furthermore,when estimating
the individual temporal trajectories, it does not pool information across
the population, the way the LME approach does. Hence, we expect the
estimates of the temporal trajectories of the imaging measurements to
be noisier and thus the inference of the extended Cox model to be
statistically less efficient.

Finally, to our knowledge, all prior neuroimaging studies that
conducted a Cox regression analysis, simply utilized the baseline scans
of each subject. In our experiments, we considered this method as a
benchmark as well. However, as we discuss below, this analysis tests a
slightly different association.
The ADNI data

MRI processing
We analyzed serial brainMRI data (T1-weighted, 1.5 T), whichwere

acquired and made public by the Alzheimer Disease Neuroimaging
Initiative (ADNI). We processed all MRI scans automatically using
FreeSurfer (Fischl, 2012) (version 5.1.0, http://surfer.nmr.mgh.harvard.
edu, specifically its longitudinal processing pipeline (http://surfer.nmr.
mgh.harvard.edu/fswiki/LongitudinalProcessing) (Reuter and Fischl,
2011; Reuter et al., 2010, 2012)).

FreeSurfer computes volume estimates for a wide range of brain
structures such as the hippocampus, and estimates of the intra-cranial
volume (ICV). In all subsequent analyses, we summed the volumes of
the left and right hippocampi to obtain the total hippocampal volume
(HV). Additionally, for each MRI scan, FreeSurfer automatically
computes subject-specific thickness measurements across the entire
cortical surface of each cerebral hemisphere. These measurements are
further spatially re-sampled onto a standard surface-based template
(fsaverage), which represents an average brain.

In our experiments we performed both univariate and mass-
univariate analyses. Our goal was to detect the association between
the longitudinal measurements of neuroimaging biomarkers of AD
and clinical progression from MCI to AD. Total hippocampal volume
(HV) was the imaging variable of interest in the univariate analyses.
The mass-univariate analyses were conducted on cortical thickness
data computed across the entire cortex. These two types of measure-
mentswere chosen since they have been shown to be strongly associated
with progression fromMCI to AD (Dickerson et al., 2001, 2009; Jack et al.,
1997; Lerch et al., 2005). Cortical thickness maps were smoothed by
applying an iterative nearest neighbor averaging procedure that
approximatesGaussian kernel smoothing on the high resolution surface
of FreeSurfer's fsaverage template subject (full-width at half max =
15 mm) (Hagler et al., 2006; Han et al., 2006). For computational
efficiency, the mass-univariate analyses were conducted on the left
hemisphere of fsaverage6, which is a lower resolution version of
fsaverage (FreeSurfer's average template surface) and has about 35k
vertices.

http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu/fswiki/LongitudinalProcessing
http://surfer.nmr.mgh.harvard.edu/fswiki/LongitudinalProcessing


Fig. 1. Non-parametric estimate of the AD diagnosis cumulative distribution function for
the ADNI MCI subjects. The dashed lines show the 95% confidence interval.
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Longitudinal data from MCI subjects
In our experiments, we analyzed longitudinal imaging and clinical

data from the ADNI subjects with MCI (N = 374, 75.7 ± 6.7 years,
32.6% female). As can be appreciated from Table 1, there is substantial
variation between the timing and number of longitudinal visits across
these subjects. In many prior studies, the MCI subjects were sub-
divided into two categories: progressor MCIs (or converters), i.e., those
who convert to clinical AD during follow-up; and stable MCIs (or
non-converters), i.e., those who do not progress. However, as we have
emphasized above, many so-called stable MCIs, in fact, drop out from
the study prematurely or might convert beyond the study follow-up.
Hence, a better illustration of the MCI-to-AD conversion data is the
non-parametric estimate of the cumulative AD diagnosis probability
(see Fig. 1).

In the analyzed data, there were 160 observed event times
(i.e., diagnosis of clinical AD), which was on average 1.32 years from
baseline with a standard deviation of 0.77 years. For the remaining
214 MCI subjects, the average censor time, i.e., the final follow-up
visit, was on average 2.35 years from baselinewith a standard deviation
of 1.16 years.

Statistical models

Proposed method
The first step of the proposed method fits an LME model to the

longitudinal neuroimage data. Here, two important design decisions
need to be made: (1) the specification of time-dependent variables
that model the mean temporal trajectory, and (2) the selection of the
intercept and/or time-dependent variables that will determine the
temporal covariance structure. For further detail, the reader is referred
to Bernal-Rusiel et al. (2013a). In the mass-univariate setting, these
model specification/selection questions are particularly challenging
due to the large number of tests that need to be conducted. In our pre-
vious analyses of the ADNI data (Bernal-Rusiel et al., 2013a,b), we found
that a clinical group-specific linear trajectory was an appropriate model
for Alzheimer-associated hippocampal atrophy and cortical thinning
during the 4.5-year follow-up period of the ADNI study.

In all reported analyses with the proposed method, the following
variables were included as independent (fixed effect) variables: time
from baseline, baseline age, sex, APOE genotype status (one if e4 carrier
or zero otherwise), interaction between time and APOE genotype status
(note that this variable was included based on the evidence that e4
accelerates atrophy during the prodromal phases of AD (Jack et al.,
2008b)), and education (in years). For hippocampal volume (HV), we
further added ICV to normalize for the confounding effect of head size.
Intercept and time from baseline were the only random effect variables
in the LME models. For the mass-univariate analyses, we used the
recently developed spatial extension of LME, namely ST-LME, with the
parameter setting recommended in Bernal-Rusiel et al. (2013b).

We report the results of the statistical tests that examine the associ-
ation between LNI data and the timing of MCI-to-AD progression. This
test employs an extended Cox model with the aforementioned
Table 1
The ADNI MCI cohort: Number and timing of analyzed longitudinal MRI scans per visit.

Visit Number of individual scans Time from baseline (years)

Baseline 374 0
Year 0.5 (month 6) 354 0.58 ± 0.07 [0.32–0.94]
Year 1 319 1.08 ± 0.07 [0.82–1.35]
Year 1.5 281 1.59 ± 0.07 [1.26–1.92]
Year 2 210 2.08 ± 0.08 [1.70–2.52]
Year 3 100 3.09 ± 0.08 [2.98–3.45]
Year 4 13 4.10 ± 0.10 [3.98–4.38]
Total 1651

Time frombaseline (in years) is inmean ± standard deviation; ranges are listed in square
brackets.
explanatory variables and the time-dependent imaging measurements
(variable of interest) estimated using the LME model fit in the first
step. For all the mass-univariate analyses, multiple comparisons were
corrected by employing a powerful two-stage adaptive False Discovery
Rate (FDR) procedure at q-level = 0.05 (Benjamini et al., 2006). We
note that the proposed method tests for the hypothesis that there is
an association between the imaging measurements and concurrent
AD onset.

Benchmark two-group method
Our two-sample LME-based analyses used the same independent

fixed and random effect variables as the proposed method. In addition,
thesemodels included a binary clinical groupmembership variable (1 if
the subject converted to fromMCI to AD or 0 if subjectwas stable during
follow-up6), and the interaction between group membership and time
as additional fixed effects. Under the null hypothesis of the extended
Cox analysis there is no association between the imagingmeasurements
and MCI-to-AD conversion. The corresponding null hypothesis for a
two-group analysis is that the coefficients associated with group
membership are zero. In other words, under the null, the progressor
and stable MCIs have the same intercept and slope coefficient. All the
reported results for the benchmark two-group method employed an
F-test that was based on this null hypothesis.

Alternative Cox models
We conducted two alternative event time analyses using the Cox

proportional hazards model. The first method replaces the first step of
the proposed approach with a simple line-fitting scheme. So, instead
of fitting an LME based (or ST-LME based) model to the longitudinal
imagingdata,we fit the best line (in the least squares sense) to the serial
measurements of each individual. In the mass-univariate setting, each
spatial location was treated independently. We then computed the
imaging measurements for each subject and at each observed event
timebased on these estimated linear trajectories. Given these estimates,
the extended Cox regressionmodel and statistical test were identical to
the proposedmethod. The tested hypothesis was identical to that of the
proposed model.

In the second method, we ignored the temporal trajectories in
the imaging data and simply treated baseline measurements as
time-independent variables in a classical Cox regression analysis. All
6 Stable MCIs were those subjects who were categorized as MCI at baseline and
remained so during a clinical follow-up of at least 1 year. Converter MCIs were those
MCI subjects who were diagnosed with clinical AD at follow-up.
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Fig. 2. Empirical sensitivity (statistical power) as a function of (a) the p-value threshold
(N = 50) and (b) sample size (p-value threshold = 0.05) for detecting the association
between total hippocampal volume, a univariate marker, and MCI-to-AD conversion.
The proposed method (Ext. Cox with LME) yields the most statistical power. Ext. Cox
(line) replaces the LME-based first step of the proposed method with a simple line fit.
Two-class LME is the popular approach of comparing converter MCIs with stable MCIs.
Cox baseline uses only the baseline scans and treats imaging measurements as time-
independent exploratory variables in a classical Cox regression. See text for further details.

14 M.R. Sabuncu et al. / NeuroImage 97 (2014) 9–18
remaining explanatory variables were identical to the extended Cox
models. The reported results were for the test of association between
the baseline image variables and time of event. Here, we caution the
reader that the tested hypothesis is in fact somewhat different from
the one tested with the longitudinal neuroimage data. Relying on
baseline measurements allow us only to test associations between the
baseline measurement and the timing of a future event. In contrast,
the extended Cox analysis we propose in this paper can be used to
test associations between the (time-dependent) imaging marker and
clinical event. We return to this issue in the Discussion section, where
we emphasize the distinction between the two approaches.

Experimental results

Univariate analysis of hippocampal volume

In our first experiment, we compared the statistical performance
of the proposed method with the alternative benchmarks based on
detecting the known association between MCI-to-AD conversion and
total hippocampal volume. To achieve this, we utilized an empirical
strategy inspired by Thirion et al. (2007).

For different sample size values (N=30–100),we randomly selected
two sets of independent MCI samples (i.e., two independent samples of
size N), from the MCI subjects in the ADNI sample (Total N = 374).
Note that there was no overlap between the two independent samples.
We repeated this procedure 1000 times to obtain 1000 random pairs of
independent MCI samples of a certain size (that is, for a given size we
had 2000 random MCI samples in total).

To assess sensitivity, we computed the detection (true positive) rate
across the 2000 samples for a range of p-value thresholds and sample
sizes (N = 30–100). Here we assumed that the underlying ground
truth was that there is an association between hippocampal volume
and MCI-to-AD conversion. Instances where the p-value was less than
a threshold were considered a “detection” and remaining cases were
treated as a false negative. The true positive rate (or sensitivity) was
quantified as the fraction of detections.

Fig. 2 shows empirical sensitivity as a function of the p-value thresh-
old and sample size. Fig. 3 plots repeatability, defined as the rate
of detection in both of the independent samples. These results demon-
strate that the proposed method offers the highest statistical sensitivity
and repeatability for detecting associations between imaging measure-
ments and the clinical event of interest. Yet, as we emphasized above,
technically, each method is testing a slightly different hypothesis.
In particular, the classical Cox analyses of the baseline measurements
are testing associations between these values and the timing of
the future diagnosis of AD. The two-group method is testing for
differences in the trajectories of imaging measurements between
those who convert to AD and those who remain MCI during follow-up.
Finally, the extended Cox analyses directly test for the associations
between the value of imaging measurements and concurrent risk of
AD diagnosis.

The boost in statistical efficiency with respect to the common two-
group method is substantial: for a given sample size (e.g. 50) and
p-value threshold (e.g. 0.05), the increase in statistical power can be
over 10%. These results further illustrate that employing longitudinal
imaging data can improve the statistical efficiency of a Cox regression
model. Finally, these univariate analyses revealed that the proposed
LME-based two-step approach can offer a modest, yet consistent
improvement over a more basic extended Cox strategy that uses a
simple line-fitting scheme to interpolate the imaging data. This result
suggests that the LME-based model, which pools data across subjects,
provides improved estimates of the longitudinal trajectories of the
imaging measurements.

Finally, to examine the type I error control offered by the Cox
models, we conducted an additional analysis. Here, we randomly
permuted the event time information within each sample (1000 times),
and repeated the analyses with the three Cox-based methods: (i) a
classical proportional hazards model that uses the baseline scans only,
extended Cox models, with (ii) a line-based interpolation scheme, and
(iii) the proposed LME-based estimation strategy. The random permu-
tations simulate a null hypothesis, where the imaging measurements
and the event of MCI-to-AD conversion were statistically independent.
Since the random permutations broke down the relationship between
the image data and the timing of MCI-to-AD conversion, we considered
these data as samples from the null hypothesis (Good, 2000; Nichols
and Holmes, 2002). Then, for each p-value threshold, we computed
the detection rate of the association between the event time and
imagingmeasurement, with eachmethod. Under these randompermu-
tations, amethodwith good type I error control should achieve a detec-
tion rate that is close to the used theoretical threshold. Table 2 shows
that this is indeed the case. All three Cox-based methods achieve type
I error rates that are very close to each other and to the theoretical
threshold.
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Fig. 3. Repeatability (the frequency at which a method detects an association between
total hippocampal volume, a univariate marker, and MCI-to-AD conversion in two
independent samples) as a function of: (a) the p-value threshold (N = 50), (b) sample
size (p-value threshold = 0.05). See caption of Fig. 2 for further details.

Fig. 4. Empirical statistical power as a function of FDR q-value for detecting the association
between mass-univariate cortical thickness measurements and MCI-to-AD conversion in
groups of 80 MCI subjects. The proposed method (Ext. Cox with LME) yields the most
statistical power. Ext. Cox (line) replaces the LME-based first step of the proposedmethod
with a simple linefit. Two-class LME is the popular approach of comparing converterMCIs
with stable MCIs. Cox baseline uses only the baseline scans and treats imaging measure-
ments as time-independent exploratory variables in a classical Cox regression. See text
for further details.
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Mass-univariate analysis of cortical thickness

In our second experiment, we exploited the known association
between regional cortical thinning and MCI-to-AD conversion
(Dickerson et al., 2009) and used an empirical strategy similar to the
one in the first experiment. Out of 374 ADNIMCI subjects, we randomly
drew independent pairs of samples of 80 subjects. Each independent
pair shared no common subject. This way, we generated 1000 pairs of
independent samples (or 2000 samples in total). For each sample, we
used the aforementioned methods to compute significance maps for
the association between cortical thickness values and MCI-to-AD
conversion. We used the two-stage adaptive FDR procedure with an
Table 2
Empirical type I error rate for the three Cox-based event timemodels and different p-value
thresholds. The null hypothesis was simulated by randomly permuting the event time
data.

Theoretical p-value threshold 0.01 0.03 0.05 0.10

Cox with baseline scans 0.00 0.03 0.06 0.11
Extended Cox with line-based interp. 0.01 0.03 0.06 0.12
Extended Cox with LME 0.01 0.03 0.06 0.11
array of q-values (Benjamini et al., 2006) to control for multiple
comparisons. Thus, for each sample, each method and each q-value
threshold, we obtained a map of significant associations.

We computed the statistical power (sensitivity) at the sample-level
as the fraction of instances (out of the 2000) where a statistical method
detected a significant association at a given FDR q-value (see Fig. 4).
Next, we assessed repeatability via the overlap area between the two
independent MCI samples of size 80 (for FDR q-value = 0.05). Fig. 5
shows the means and standard errors across the 1000 random draws
for the four methods that were compared in this study. These results
demonstrate that the benchmark two-group method offers the least
repeatability, while the extended Cox strategy yields a dramatic
improvement in the repeatability of the results. The proposed method
Fig. 5. Average overlap area (in mm2) between the detection maps obtained from two in-
dependent samples consisting of 80MCI subjects. The detectionmapswere binarymasks,
where the FDR-corrected statistical association (q-value = 0.05) between cortical thick-
ness and MCI-to-AD conversion was recorded. Vertices that exhibited a significant
association in both independent samples were included in the overlap area. See caption
of Fig. 4 and text for further details. Errorbars show the standard error of the mean.
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of using an LME-based first step to capture the spatiotemporal patterns
in the neuroimaging data provides a subtle increase in repeatability.

Analyzing the entire ADNI MCI sample

Finally, we employed the proposed strategy to analyze the associa-
tion between longitudinal cortical thickness measurements and MCI-
to-AD conversion in the entire ADNI MCI sample. Fig. 6 presents the
map of significant associations.We note that thesemaps, which include
regions associated with the default-mode network, show a striking
resemblance to previously reported regions where cortical atrophy
was correlated with AD dementia (Buckner et al., 2005; Dickerson
et al., 2009). The strong agreement between these results and prior
studies increases our confidence in the validity of the proposedmethod.

Discussion

As shown by recent studies, the event time analysis framework can
provide a substantial increase in statistical efficiency when examining
associations between imaging biomarkers and a clinical event of
interest in a longitudinal study design (Vemuri et al., 2011). In contrast
with the more popular two-group comparison method that compares
converters and non-converters (i.e., those who experience the event
and those who do not), the event time analysis method exploits the
variation in the event timing data and, crucially, accounts for finite
follow-up. Hence non-converters, i.e., those who are not observed to
experience the event of interest, are not treated as a uniform group, sep-
arate from the converters, since some of these subjectsmight eventually
experience the event beyond the study follow-up.

The Cox proportional hazards model, which has been employed in
neuroimage analysis before (Desikan et al., 2009, 2010; Devanand et al.,
2007; Geerlings et al., 2008; Marcus et al., 2007; Stoub et al., 2005;
Tintore et al., 2008; Vemuri et al., 2011), is a very flexible and powerful
method for conducting event time analyses. However, this method
has only been employed to analyze baseline measurements with
respect to the timing of a future event, which restricts the associations
we can examine and detect.
Fig. 6. Brain regions where there is an association between cortical thickness and MCI-to-AD
longitudinal ADNI MCI sample. Results are overlaid on an inflated representation of the co
cortical folding. Colored regions represent significant association (uncorrected p b 0.01). The c
(see color bar). The sign encodes the direction of association, where a positive value suggests
AD dementia. Top and bottom rows show views of the lateral and medial surfaces, respectivel
An alternative approach is tomodel the temporal trajectory in image
data and use an extended Cox model that handles time-dependent
variables. Longitudinal neuroimaging studies offer us this opportunity.
However, the fundamental challenge is that in the extended Cox
modeling approach, time-varying variables have to be identifiable at
all relevant observed event times, and not just the time of event for
the corresponding sample. In this paper, we proposed to model the
spatiotemporal patterns in neuroimaging measurements using an
LME-based approach (Bernal-Rusiel et al., 2013a,b). The LME model is
then used to estimate the image data at observed event times.

We conducted an empirical evaluation of the proposedmethod, along
with three alternative strategies. Each comparison with a benchmark
allowed us to quantify the effect of a different factor. The comparison
with the popular two-group analysis, which simply contrasts the longi-
tudinal data of converters versus non-converters, reveals the influence
of explicit event time modeling achieved with the Cox approach. The
comparison with the baseline Cox model, which ignores the longitudi-
nal neuroimage data and simply uses the baseline scans (as done in
prior neruoimaging studies), gives us information on the effect of
exploiting longitudinal imaging. Finally, the comparison with an alter-
native extended Cox method that uses a simple line-fitting step to
model the temporal trajectory in the imaging measurements, uncovers
the impact of the LME-based first step in the proposed approach.

In agreementwith prior studies, we found that the Cox proportional
hazards approach offers a significant improvement in statistical power
and repeatability. For example, the agreement between the maps of
two independentMCI samples of 80 subjectswas about 50 times greater
for the proposed method compared to the two-group benchmark.
Similar gains were consistently observed in other univariate and
mass-univariate analyses.

Secondly, the proposed method was substantially more powerful
and reliable than a classical Cox analysis of the baseline scans. In the
mass-univariate experiment, this gain was slightly less than the
improvement with respect to the two-groupmethod, yet it was consis-
tent across all analyses. These results highlight the advantage of utilizing
and modeling longitudinal imaging data in a Cox analysis. Obviously,
thismight be impractical in experimental designswith no serial imaging
conversion, as determined by the proposed method and based on analyzing the entire
rtex of an average human brain (fsaverage). The gray pattern reflects the underlying
olor reflects the significance of the association, which was computed as –log10(p-value)
that thinner cortex at that particular location is associated with an earlier date of onset of
y. Left and right panels correspond to the left and right hemispheres, respectively.
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follow-up. However, to our knowledge, we offer the first discussion
of this issue in neuroimaging and propose a strategy that might boost
statistical efficiency for detecting associations of interest.

Finally, we can quantify the effect of the LME-based first step in the
proposed approach. The LMEmodel attempts to capture the spatiotem-
poral structure in the neuroimaging data by examining the entire longi-
tudinal sample. In contrast, a simpler strategy would be to estimate the
temporal trajectory of each imaging measurement in isolation, without
considering other subjects or spatial locations in a mass-univariate
analysis. From a theoretical standpoint, we expect the proposedmethod
to yield a more accurate model for the longitudinal data, and hence
improve the power of the Cox regression, which relies on the estimates
of the imaging data at time-points with no observation. Empirically, we
find this is indeed the case. Our experiments suggest that the improve-
ment in statistical power and reliability due to the LME step is subtle, yet
consistent. In the mass-univariate setting, the agreement between the
maps of two independent samples can increase by over 5% as a result
of the LME step.

The extended Cox analysis we advocate in this article has several
drawbacks and technical subtleties, as discussed in prior work (Fisher
and Lin, 1999). Firstly, the model parameters have no straightforward
interpretation as in the classical Cox model, where under the propor-
tional hazards assumption, the estimated coefficients can be interpreted
as a constant hazard ratio. Therefore, we are largely constrained to
testing the statistical strength of associations, rather than presenting
interpretable hazard ratios. Secondly, we need to underscore the differ-
ence between internal versus external time-dependent variables, as
distinguished by Kalbfleisch and Prentice (2011). Internal variables
are those that are generated by the studied subject directly (e.g., blood
pressure) and are directly related to the event (i.e., the event is defined
via this variable or these variables cannot bemeasured after the event—
e.g., blood pressure after death). When dealing with such variables and
events, the relationship between the conditional hazard function and
survival function breaks down. For example, a measurable value of
blood pressure is indicative of the subject being still alive and hence
survival at that time point is known. However, in the scenarios we con-
sidered in this article, longitudinal imagingmeasurements,whichmight
be considered as internal, do not generally suffer from this technical
problem. This is because scans can be and are acquired after the event
of interest and the event is not directly defined via imaging measure-
ments. Another issue with time-dependent variables is that usually
they do not yield individual predictions of event risk curves. This is
because these curves dependon the typically unknown temporal trajec-
tories of the time-dependent variables. Finally, our analysis interrogated
the relationship between imagingmeasurements and concurrent risk of
event. Alternative functional forms for this relationship can also be used
within the extended Cox analysis. For instance, one could consider the
cumulative history of the variable (e.g., history of high blood pressure).
One alternative promising approach in neuroimaging might be to
consider the concurrent or past slope (rate of change) in imaging
measurements as a potential biomarker of the event. Thiswould require
reliable estimates of derivatives of the longitudinal imaging trajectory,
which could also be obtained from the LME step. We leave the explora-
tion of this direction to future work.
Conclusions

We presented a statistical method for the event time analysis of
longitudinal neuroimage data. We have implemented and validated
the proposed method for mapping longitudinal brain atrophy effects
within the FreeSurfer framework, yet its adaptation to other types of
spatial data is straightforward. Our results suggest that the proposed
method can offer excellent statistical power for detecting associations
between longitudinal imaging measurements and a clinical event,
such as disease onset.
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