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Using Spanning Graphs for Efficient
Image Registration

Mert R. Sabuncu, Member, IEEE, and Peter Ramadge, Fellow, IEEE

Abstract—We provide a detailed analysis of the use of minimal
spanning graphs as an alignment method for registering multi-
modal images. This yields an efficient graph theoretic algorithm
that, for the first time, jointly estimates both an alignment mea-
sure and a viable descent direction with respect to a parameterized
class of spatial transformations. We also show how prior informa-
tion about the interimage modality relationship from prealigned
image pairs can be incorporated into the graph-based algorithm. A
comparison of the graph theoretic alignment measure is provided
with more traditional measures based on plug-in entropy estima-
tors. This highlights previously unrecognized similarities between
these two registration methods. Our analysis gives additional in-
sight into the tradeoffs the graph-based algorithm is making and
how these will manifest themselves in the registration algorithm’s
performance.

Index Terms—Entropy, estimation, image registration.

1. INTRODUCTION AND PRIOR WORK

MAGE registration is the process of bringing images into
I spatial alignment. This is often a critical precurser to fusing
information and identifying dependence. If the images are
obtained through different sensing modalities, the problem is
called multimodal. There are two forms of uncertainty involved
in this form of registration: uncertainty in the modal relationship
and uncertainty in the spatial alignment. Registration attempts
to reduce uncertainty in the spatial alignment and in the process
also reduces the uncertainty in the modal relationship. The
wide range of registration applications has resulted in many
proposed solutions; see, for example, [10] and [18].

Generally speaking, a registration method comprises of three
coupled components: an alignment measure that quantifies the
quality of spatial alignment, a group of spatial transforma-
tions that defines the possible alignments, and an optimization
scheme that searches the group for the transformation that
optimizes the alignment measure.

Our work focuses on an alignment measure based on certain
minimal graphs. This approach is in turn motivated by the wide
use of entropy and related quantities as multimodal image align-
ment measures [7], [21]. Mutual information of pixel intensity
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values has been the most popular entropic measure [26], [17].
Variations of this measure, such as normalized mutual informa-
tion [24], mutual information of gradient-based features [3], and
mutual information combined with a gradient term [20], have
also been studied. More recently, Rényi entropy has also been
applied to image registration [1], [11], [19], [23], [27], [28]. For
a detailed survey of information-theoretic image registration ap-
proaches, see [21].

Motivated by the use of entropic alignment measures, in [12],
Hero et al. propose to use minimal graphs to obtain a direct esti-
mate of Rényi entropy and define an alignment measure. How-
ever, it is not clear how to efficiently search over the transforma-
tion space for the optimum of such graph-based measures, since
they are nondifferentiable.

One of the main contributions of this paper is an analysis of
minimal graph alignment measures and the joint determination
of both the alignment measure and a descent direction with re-
spect to alignment parameters. In particular, we show how to
efficiently use this descent direction for fast optimization.

To benchmark our graph theoretic registration method, we
provide a comparison with image registration methods based on
plug-in estimators of entropy. In a “plug-in” entropy estimator
[2], the probability distribution underlying the data is estimated
[8] (e.g., using Parzen windowing or histograms) and used in
the entropy formula to obtain an entropy estimate. Provided a
suitable density estimator is employed, it is relatively straight-
forward using this method to also obtain the gradient of the en-
tropy estimate with respect to a vector of registration parame-
ters.

We obtain closed-form expressions for a descent direction
of the minimal entropic graph estimator and compare this with
those for the gradient of plug-in methods. This approach leads to
some interesting insights on how the different estimators weight
the data and some predictions of likely performance.

An additional problem in multimodal registration is how to
incorporate prior knowledge about the modal relationship. This
prior knowledge may take the form of aligned image pairs from
earlier in a sequence of registration problems or may come from
a set of training examples. Leventon et al. [15] proposed esti-
mating the underlying joint prior intensity distribution of reg-
istered image pairs using training data and then employing a
maximum likelihood (ML) approach to define the alignment
measure for new image pairs. Subsequently, Chung et al. [5]
proposed to measure the quality of registration using the Kull-
back-Leibler (KL) divergence between the joint intensity distri-
bution of prealigned data (training pdf) and of the new images
(test pdf). Registration is then accomplished by minimizing this
KL divergence, which was shown to be superior to [15]’s ML
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approach. The KL divergence approach was recently extended
to nonrigid image registration in [9]. Alternatively, [16] pro-
poses to employ the Jensen—Shannon (JS) divergence to quan-
tify the discrepancy between the training and test pdfs. These
studies indicate experimentally that incorporating prior infor-
mation can produce a registration function with a wider basin
of attraction, making the algorithm more robust to initialization
and reducing the time required to achieve registration.

Our second main contribution is to incorporate prior informa-
tion within the graph theoretic image registration framework.
Our method employs the Jensen—Rényi (JR) divergence [27] to
define an alignment measure based on the discrepancy between
the training and test pdfs. This is similar to the KL and JS diver-
gence approaches of [5], [9], and [16]. We then estimate the JR
divergence-based alignment measure using an entropic graph.
Interestingly, this measure is a natural extension of the original
entropic graph measure that only uses the test images.

In summary, our main contributions are to explore and expand
the use of minimal entropic graphs as an alignment measure, to
develop efficient descent-based optimization methods for these
minimum entropic graphs, to compare this method both analyt-
ically and experimentally with popular plug-in estimators, and
to develop methods for incorporating prior information into the
entropic graph-based registration framework.

II. BACKGROUND: ENTROPY AND IMAGE REGISTRATION

The basic idea behind the use of entropic measures for
multimodal image alignment is that when two images,
I, I, R? +— R (where d is typically 2 or 3), are spa-
tially aligned, there is a strong statistical dependence between
corresponding pixel values. This is captured, for example, in the
joint entropy (or a related measure, e.g., mutual information) of
the paired pixel process (11, I2). Thus, image registration can
be posed as the following optimization problem:

®* = arg ming H(I(x), I>(®(x))) (D
where ® : R? — R is a spatial transformation and H is an esti-
mate of an entropic measure, e.g., Shannon’s entropy. Note that
this formulation requires the joint entropy of the paired process
to be estimated from the samples of ([ (x), I2(®(x))) given by
the current alignment of the images determined by ®( - ).

In this paper, we explore different estimators of the «-Rényi
entropy [defined in the following section in (3)] as align-
ment measures. This is similar to Shannon’s entropy-based
approaches, such as mutual information. In these algorithms
nonparametric estimation is usually the weapon of choice. The
so-called “plug-in” entropy estimator [2] is the most popular
technique and can be straightforwardly applied to estimate
various information theoretic quantities. It is a two-step process
based on estimating the pdf of the observed samples (using
e.g., Parzen windowing or histograms) and then plugging this
estimate into the expression for the entropic measure [21]. The
second step requires the evaluation of an expectation, which is
usually achieved with an approximation.

Alternatively, an estimate of an entopic measure can be ob-
tained by using so-called entropic graphs [12]. These estimates
are based on computing a minimal graph on a set of samples.

A monotonic function of the total edge length of the minimal
graph then provides a direct estimate of the underlying Rényi
entropy.

In the following subsections, we provide some additional
background on these two forms of entropy estimators.

A. Plug-In Estimators

Let S € R? be a random variable with the pdf p(s) and let
S = {s1,...,sn} be a set of independent samples of S. Our
goal is to estimate its entropy given the set of samples S.

We first use a Parzen-window estimator [8] to estimate the
density of S from its samples

L X
= NZK(S_Si)
i=1

where K:R? — R is a continuous density. This estimator cor-
responds to using a “blurred” histogram as an estimate of the
underlying pdf. Note that additional conditions on K determine
the convergence rate of this estimator and in practice most kernel
functions are selected to be symmetric, i.e., K(s) = K(—s).

Using the above density estimate, we then evaluate the ex-
pression for the desired entropic quantity, which requires the
evaluation of an expectation. Two approaches have been used
to compute this expectation. The first uses a sample mean and
was employed by Viola et al. in [26]. For example, the a-Rényi
entropy of S is defined as

(@)

Ho(p) = Ha(8) = 1= og B, ("' (5) )

where a > 0 and E,, denotes expectation. This formula can be
expressed in terms of the a-information potential

Va(p) = Ep(p° 7' (s))

as H,(S) = (1/1 — a)log V,,(p). An estimate of the -infor-
mation potential can be obtained from i.i.d. samples of S using
a Parzen-window estimator of the density p(-) and a sample
mean approximation of the expectation. This yields

“)

V]u S a NZAG 1
N [N ol
Z ZK i —s;) )
=1 \j=1

We have chosen this particular example because it will be useful
in our later analysis.

The second approach to evaluating the expectation, a his-
togram-based method, approximates the infinite integral in the
expectation using a finite sum [25]. If we ignore the nonlinearity
introduced by “binning” and impose some conditions on K, the
histogram-based estimate can be thought of as an approximation
of the sample mean estimate. For example, in the case of esti-
mating the o information potential, let Vi ( - ) denote the his-
togram-based estimate and VM( -) denote the sample mean es-
timate. Then Vi (S, o) &~ Var(q(S), ), where ¢( - ) is a quan-
tizer.
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Suppose the class of spatial transformations {®¢ } to be used
for registration is parameterized by t = (¢y,...,t7) € RT and
let

St = {(11(x), [(P4(x))) : x € 0} (6)

where  is a finite subset of R. Based on (1), image registration
can be formulated as

t* = arg mintVM(St, @) @)

for some o € (0,1). This optimization can be solved using a
gradient-descent type strategy, where the derivative of the align-
ment measure with respect to the transformation parameters t is
computed.

For a vector v, let v; denote the ith component of v and V,
denote the gradient w.r.t. v. Using the chain rule, the gradient
of a similarity measure can be written in the following form:

ViV(S,a) = Y [V, V(S, )] [Vis;] (8)
s; €S

where ’ denotes transposition. The first term in the summation
is a 2-D gradient vector of the alignment measure with respect
to sample values. The second term is the 2 x T-dimensional
Jacobian matrix of the sample value with respect to the trans-
formation parameters. Its value depends on the images, the in-
terpolation method and the geometric transformation, but not on
the alignment measure. Hence, the first term is of particular in-
terest when comparing different alignment measures.

An advantage of the sample mean plug-in estimator is that it
is readily differentiated. The gradient of (5) with respect to s;
can be written as

VsjV]\,[(S, Oz) = (Oz - 1) Z nAVI(‘S'; o, 7, k)
k#j
xfar(sj sk) (9)

where

nar(S a4, k) = N 2(p(s;)* 2 + p(se)* ) (10)

and

far(sj,sk) = VK(sj — sg). an

B. Entropic Graph Estimators

Let G = (E,S) be a graph with the finite vertex set S C R?
and edge set F. Each edge e = (s1,s2) € E has Euclidean
length ||e|]| = ||s1 — s2||. For v € R, the y-weight of G is
W, (G) 2 >eep el

Let G (S) denote the family of graphs conforming to a
specified topological constraint C' and having the common
vertex set S. G (S) might, for example, be all spanning trees,
all k-neighbor graphs, all TSP graphs, etc. We assume that C' is
fixed and will not explicitly indicate it henceforth.

For a fixed family of graphs G(S), define the minimal
v-weight of G(S) to be

W;(S): min W, (G)

12
GeG(S) a2)
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and let G*(S) = arg mingg sy W (G) denote a graph in G(S)
of minimal y-weight. Note that G*(S) may not be unique.

These constructions are of interest since they yield an
estimate of a-Rényi entropy. Let S be a random variable
taking values in [0,1]? with Lebesgue density p(s) and let
S = {sy,...,sn} be a set of independent samples of S. Let
v = 2(1 — «) and set

N 1 Wi, \(S)
H.(S) = 1_alog( <NQ> .

13)

Hero er al. [13] show that, for all « € (0,1), H,(S) +
log8/(1 — @) is a strongly consistent estimator of H,(S),
where /3 is a constant that depends on the topological constraint
C, and the parameter o, but not on pg. These results are based
on the general framework developed in [22], which provides
convergence results for some Euclidean length functionals of
specific graphs.

A corresponding graph-theoretic estimate of the « informa-
tion potential is

(8,00 = gz, (14)

Na
Now we come to an important point: the entropic graph esti-
mator is not differentiable (see Lemma 2 in appendix for de-
tails). This was thought to be a major disadvantage of using
these estimators for image registration. We can illustrate the
nondifferentiability using spanning trees as the topological con-
straint. Consider the vertex set S = {s1, s2, s3} with edges and
parameterized lengths: |le1a]| = 2 — ¢,|leas]| = t + 2 and
lle1s]] = 1. It is easy to show that at ¢ = 0~, the MST con-
sists of ep3 and ey3, whereas at t = 0%, e15 and e;3 belong to
the MST. Thus, dW(0~)/dt = 1 and dW (0")/dt = —1. Since
the left and right derivatives are not equal, the derivative of the
MST weight does not exist at £ = 0. This is the starting point of
our investigation.

III. DESCENT DIRECTION FOR THE ENTROPIC
GRAPH ESTIMATOR

In this section, we show that the gradient of the ~-weight of
any of the minimal graphs W, (G™) is a descent direction for the
y-weight W7 given by (12). This result can be used to efficiently
optimize the entropic graph estimator.

Let us consider a family of entropic graphs on these points
(e.g., MSTs) and find the minimal weight graph G*(E{, St) in
this class. Similar to (7) and based on (1) and (14), we can em-
ploy the corresponding weight W £ W2 (S¢) as an alignment
measure and formulate registration as

t* = argmin, W (15)

v,t
for some ~, where v and « are related as v = 2(1 — «).
We assume (for simplicity of notation) that the cardinality of
the set Sy does not depend on t. Hence, as we change t, the
points in S; move around in [0, 1]? and, in general, the topology
of a minimal graph changes as does its weight. The fact that the
topology of a minimal graph changes is precisely what leads to
the problem of nondifferentiability.
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Suppose that we have S, , a minimal graph G* (7, St,,) and
its weight W ¢ - at alignment to. Now let us fix the graph G*
and consider the gradient of the weight of G* with respect to t
at to. This yields the following result.

Theorem 1: Let u € R be a unit vector that satisfies

Y [Velle(to)l[Tu < 0.

eGE;‘O

(16)

Then there exists € > 0 such that W (to + hu) < W3 (to) for
all0 < h < e

Proof: If (16) exists and is negative, by vector calculus
there exists € > 0 such that

D lletto + A" < D [le(to)ll” = Wi (to)  (17)
c€E;, c€E;,
for all 0 < h < e. By definition, we have
W3 (to + hu) < Z lle(to + hu)l|”. (18)
eGEéO
Hence, combining (17) and (18), we get W7 (to + hu) <
W,;((t(]). |
Choose a minimal graph G*( ¢, , S, ). Define
d’Y(G*(E:wStO)) = _th’Y(G*(E:‘wStO))
== > Ville(to)l” (19)

REEt*O

the steepest descent direction for the chosen W.,(G*). It is easy
to see that, when nonzero and finite, d /||d || satisfies the con-
dition in (16) and, therefore, is a descent direction for Wj; Note
that, if zero length edges exist, i.e., some sample values coin-
cide, and v < 1, then (19) does not exist and (16) is never sat-
isfied. In practice, the direction we choose for this problematic

case is

e€E; lle]|#0

dy (G*(E¢,. Sy)) & — Ville(to)|”  (20)

which is the steepest descent direction for the graph that ex-
cludes the zero-length edges, i.e., the minimal graph on the
unique samples. Note that d, = d.,, when d., exists and is fi-
nite.

More complex schemes for finding a descent direction are
also possible, e.g., selecting several minimal graphs G* and
averaging the corresponding descent directions. However, we
focus our analysis on the descent direction obtained from one
of the minimal entropic graphs G*. Correspondingly, for a fixed
G*(S), we define the pseudo-gradient, g;(G*(S)), of the en-
tropic graph estimate of the a-information potential, Ve (S)(14)
w.r.t. s; as

g;(G(8)) £ (a=1) Y na(S, a4, k)fa(s;,s8)

SLES

2n

where

na(S, a4, k) = - A(GH(S)) i k)

- 22)

is the network weight and

f(sj: k)
_ [ 2lsi = sll7*(s5 = sk)s ifllsg = skl >0 g
0, else

is the sample pair attraction. A(G) is the adjacency matrix of the
graph G, which contains the topology information. The (7, j)th
entry A(G)(4,7) is the number of edges connecting vertices 4
and j. For example, if samples s; and s; are connected in the
minimum spanning tree (MST) of S = {s; }, then A(G)(7,7) =
1, since in an MST there is only one edge between connected
vertices. Note, we have put both the gradient of the sample mean
plug-in estimator (9)—(11) and descent direction (pseudo-gra-
dient) of the entropic graph estimator (21)—(23) into a common
comparative form involving a pairwise attraction and a corre-
sponding network weight.

IV. COMPARISON: ENTROPIC GRAPH ESTIMATOR
VERSUS PLUG-IN ESTIMATOR

In this section, we compare the “gradient” expressions for the
two entropy estimators. This analysis provides some useful in-
sights on the performance of registration algorithms formulated
similar to (7) and (15) which use entropy estimators and their
“gradients.” The optimization problem is typically solved with
an iterative descent scheme. The transformation parameters are
updated as t,,,4+1 =t + A Zj(Zk njkfjk)vts}”, where A,,
is a step size, f}, is the sample pair attraction, n ;i is the network
weight, V¢s7" is the gradient of the jth sample w.r.t the transfor-
mation parameters, and t,, is the value of t at the mth iteration.
nji and f;;, are summarized for the two entropy estimators in
Table I. Their product represents the influence of this sample
pair interaction on the total gradient. In the remainder, we use
St as defined in (6), i.e., a set of intensity sample pairs from the
two images at an alignment determined by the transformation
parameters t € RT. Also, to keep the discussion clear, we make
the following practical assumptions.

* The kernel used for the plug-in estimator is a 2-D separable
Gaussian, G, (z,y) = go(x)gs(y), Where g, (- ) is a zero
mean Gaussian with variance o2.

* The family of spanning tree graphs is used to compute a
minimal entropic graph. Note that an MST has a 0-1 adja-
cency matrix, i.e., A(G*)(4,5) = 0,1 for all 4, j.

A. Plug-In Estimator

First, let us consider the sample mean plug-in estimator. The
computation time of the estimator and its gradient is O(N?),
where N is the total number of samples.! Fig. 1 shows the at-
traction field magnitude |f;;| acting on a sample s; as a function
of distance ||s; — s;||. With the plug-in estimator, the attraction
field does not depend on «, but the network weight does. Also,
the attractive force between two samples is zero when they co-
incide, achieves a maximum value at a close distance o and be-
comes negligible when they are far apart.

ISome practical entropy-based registration algorithms employ his-
togram-based fast approximations of the plug-in estimate. Assuming the
number of histograms is O(N™), this entropy estimate has a computational
complexity of O(N™*1). Note m < 1 and typically around 1/3.
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TABLE 1
COMPARISON OF THE INFLUENCE OF SAMPLE PAIR (s; AND s, ) INTERACTIONS
ON THE UPDATE EQUATION. NOTE ¢ = 1/20? AND u; IS THE UNIT VECTOR
POINTING FROM s; TO s,

| |
£ || 2e=N5 =3k |1s; — s Jluyy,
nge | N2(s)° 2 + plsk) 7]

Plug-in | Entropic Graph |

2||s; — sill* 2wy
A(G*)(j,k)=1o0r0

Plug-in Estimator (¢ =0.1) MST-based Estimator
@
k1
3
£ 1
g a=05
g 08
£ a=09 —o01
06 o .

]
£
g o4
=§ 02
S
2z

o

o 005 01 0.15 02 [ 0.05 01 015 02
Distance from sample Distance from sample

Fig. 1. Attraction field magnitude profiles as a function of distance from
sample. The profiles have been normalized so that their maximum value is
1. Notice the very different profiles for different alpha values in the entropic
graph estimator. For alpha greater than 0.5, it diverges to plus infinity as one
approaches the origin.

To analyze the network effect consider a cluster of points,
where a cluster can be thought of as a set of points within a
relatively small diameter. Let s, and IV, denote the mean value
and number of samples within the cluster, respectively. The total
net force? generated by this cluster and acting on a sample s; is
approximately

— A o— A oa— —C||S;—S 2
NeN72[p(se)* 2 + p(s;)*2le= 1 s — sclue

where u;. is the unit vector pointing from the sample s; to the
cluster center s.. Assuming all s € S are independent sam-
ples of a sufficiently smooth density p( - ), by the law of large
numbers N. < Np(s.) and the total net force is approximately
proportional to

Ny (plse)sp(se))e P> P s = scljwje - 24)
where 15, (p(s.);p(sk)) = p(se)*™ + p(se)p(s;)*~? is the
total network weight between a cluster and a point. Note that n§,
is a monotonically increasing function of p(s.) when p(s.) >
p(s;), and a monotonically decreasing function of p(s;). Thus,
we observe that low probability samples are attracted to high
probability, i.e., more crowded, clusters with a force increasing
with the number of samples in the cluster.

B. Entropic Graphs

The computation time of the MST estimator is O(N log V).
One advantage of this estimator is that once the MST is com-
puted, the computation of the gradient for any « value is O(N)
and negligible in practice. As intersample distance ||s; —sg|| ap-
proaches zero, the sample pair attraction fg (s, s ) diverges to
~+o00 for a > 0.5, but converges to 0 for a < 0.5. Fig. 1 shows
the attraction field magnitude profiles for the entropic graph es-
timator with three different « values. When o > 0.5, the attrac-
tion field achieves arbitrarily large magnitudes around the origin

2Net force equals attraction force times network weight.
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and monotonically decreases at a slower pace than the plug-in
estimator as one moves away from the origin. When o < 0.5,
however, it is zero at the origin and monotonically increases as
one moves away. The network effect, on the other hand, is either
1, if the two samples are connected in the minimal graph; or O,
otherwise. Thus, only a small subset of the sample pair interac-
tions actually influence the gradient.

C. Samples, Gradients, and Image Registration

When digital images are uniformly sampled, coarse struc-
tures typically have a large representation, whereas fine detail
structures are weakly represented. Thus, with a pair of images,
sample clusters typically correspond to partially overlapping
coarse image structures. Outliers, i.e., isolated samples that
don’t belong to a cluster, are usually due to a misaligned region,
a point that has no correspondence, or noise. The goal of a
registration algorithm can be viewed as “to pull in” outliers
toward reliable clusters. Lacking any other useful information,
it is natural to trust clusters rather than outliers when driving
the registration algorithm.

At bad image alignment, we expect samples from fine de-
tail structures to have arbitrarily scattered values. In an entropic
graph estimator, by weighting shorter edges more heavily (with
a > 0.5), clusters of points drive the algorithm. However, for
a given sample, the entropic graph estimator relies on a small
subset of its neighbors, ignoring other samples. This is poten-
tially too aggressive. On the other hand, in the plug-in estimator,
all sample pair attractions are taken into account, and for a given
sample the attractions to different clusters are weighted aver-
aged (24), where the weights are proportional to the number of
samples within the cluster and the inverse of the distance to that
cluster. This observation leads to the following interpretation:
the number of samples within a cluster is used as a measure of
confidence about these samples being from a correctly aligned
region and samples are “pulled into” local high probability re-
gions. Based on this interpretation, we expect the plug-in esti-
mator to be more robust against bad initialization.

On the other hand, the lower computational complexity of
the entropic graph estimator makes this approach attractive for
applications where speed is of concern. These predictions are
empirically tested in Section VII.

V. IMPLEMENTATION OF AN MST ALIGNMENT MEASURE

In our implementation, we employ spanning trees as
the entropic graph family G. The alignment measure
is the minimum spanning tree (MST) weight function
WMST (r) = WMST(S,). We employ Kruskal’s algo-
rithm preceded by a Delaunay triangulation to compute the
MST. The computational complexity of this implementation
is O(N log N), where N is the number of samples. Extension
of these ideas to other entropic graphs, e.g., TSP, Steiner tree,
nearest neighbor graphs, etc., is also possible.

In the entropic graph estimator, only with oz > 0.5 is the at-
tractive field’s magnitude decreasing as one moves away from
the origin (see Fig. 1). Thus, consistent with our decision to trust
clusters, we choose a > 0.5 in our implementation. However,
for a > 0.5, very close samples undesirably dominate the com-
putation of the function gradient (21). Hence, we apply a hard
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threshold on f¢ (23) and assign a zero value when ||s; — si|| is
smaller than some small tolerance value. This threshold roughly
corresponds to the width of the Gaussian kernel used in the
plug-in estimator.

Experimental evidence suggests that o values closer to 1
yield better registration accuracy, whereas smaller o values,
i.e., closer to 0.5, yield a wider capture range. In our imple-
mentation, we start the algorithm with o« ~ 0.6 and gradually
increase to 0.9. To minimize the chance of getting trapped in
local optima, we employ a multiresolution pyramid scheme,
where the algorithm starts at a coarse resolution and works
its way up to the finest resolution. At each level, the initial
alignment is obtained from the result of the previous level. In
addition, we use quantization within each level to aggregate in-
formation. Image intensity values are quantized, initially using
a small number of quantization levels. Note that this approach
leads to a significant amount of coinciding samples. To handle
this issue, we compute the MST over the unique sample set
and replace the sample gradient with the average gradient of
coinciding samples. The number of quantization levels is then
gradually increased. An advantage of this multiscale quanti-
zation approach is the speed-up of the MST computation. Our
experiments suggest that the scheme also increases the capture
range. Similar to [26], we employ a stochastic gradient descent
optimization strategy, where at each iteration a random selection
of less than 1% of the pixels is used to approximate the gradient.
A software package that contains this implementation is freely
available at: http://people.csail.mit.edu/msabuncu/sw/mst/.

VI. INCORPORATING PRIOR KNOWLEDGE

In this section, we present a method to incorporate prior
knowledge about the modality relationship from prealigned
image pairs into the MST-based registration algorithm. The
goal is to improve the performance of the registration algo-
rithm. These prealigned images can be provided by an expert
as a training set or one can use previously registered image
pairs within an image sequence. The modality relationship
is assumed to be invariant across all image pairs and, hence,
information about the modality relationship gained from prior
alignments is useful in the registration of new images.

Our approach is parallel to [5], [9], and [16], where the align-
ment measure is defined using an information-theoretic diver-
gence to quantify the discrepancy between the intensity distribu-
tion of the images to be aligned (test) and the prealigned training
image pair(s). In [16], the authors propose the employment of
the Jensen-Shannon divergence (JSD). Compared to the popular
KL divergence, JSD has the advantage of being symmetric and
well-defined for zero-probability regions. In this paper, we in-
vestigate a generalization of JSD, namely the Jensen-Rényi di-
vergence (JRD) as an alignment measure.

JRD was used for mono-modal image registration in [11] and
[28], while [1] extended its usage to a multimodal application.
In these approaches, JRD is computed between the (1- D, con-
ditional) probabilities of (scalar) pixel intensity values in the
second image conditioned on the intensity values of the first.
This can be viewed as a generalization of standard mutual in-
formation registration approaches and [28] shows that it is max-
imized at correct alignment. In [1], the authors propose a nor-

malization strategy that is successfully applied to the particu-
larly difficult MR-PET registration problem.

We, on the other hand, employ JRD to measure the discrep-
ancy between the (2-D) test joint intensity distribution and prior
distribution from the prealigned images. In this setting, our goal
is to minimize (not maximize) JRD.

JRD is a distance measure between multiple probability dis-
tributions. For two distributions px and py and a fixed a €
(0,1),m € [0,1], it is defined as

Ja,’lr(vapY) = Ha(”rpX + (1 - W)py)
_[WHa(pX) + (1 - 7l')I{oz(pY)]'

Since H, is concave, Jo »(px,py) > 0 when px # py and
Jo,x(Px,py) = 0 when px = py (ae.).

Let I](x) and I} (x) denote two aligned training images from
different modalities. For a given test transformation ®(x), as-
sume that each pixel intensity value in the image pairs ST =
{(I], 1})} and 8® = {(I1, I, o ®)} are sets of i.i.d samples
from p' and p?®, respectively. Then the distance between these
distributions is a useful way of determining the quality of the
current alignment. In particular

Ja,ﬂ(pT7P@> = Ha(ﬂpT + (1 - W)pq))

—wH,(p') — (1 —7)Ha(p®) (25)
can be employed as a supervised alignment measure that incor-
porates prior training data.

In practice, however, relying heavily on the prior distribution
to determine the quality of alignment makes the algorithm’s per-
formance sensitive to noise. Also, note the negative marginal
entropy term, H,,(p®), in (25). This term suggests that in some
cases decreasing J, - (p®,p') may increase the marginal en-
tropy. Recall that in previous sections we motivated H,, (p?) as
a blind alignment measure, i.e., to evaluate the quality of align-
ment based only on the test images and the algorithm was to
minimize H, (p®).

Based on these observations, we investigate the following hy-
brid measure that combines the blind and supervised alignment
measures:

Qua(I1, 120 ®) = Jo =(p',p®) + vH.(p®)  (26)

where m,v € [0,1] are free parameters. Choosing m# =
|S®|/(|ST| +|S®|) presents a practical advantage:3 the entropy
of the mixture distribution [i.e., the first term on the right-hand
side of (25)] becomes easily estimable. Moreover, v = 1 — 7
cancels out the H, (p) term in (25). Since H,(p') does not
depend on the current alignment, it can be removed from the
objective function. With the chosen weights, the resulting
expression then simplifies to

Ro(I1, Iy 0®) = Ho((1 — m)p" + 7p?) 27

which can be estimated using the pooled sample set S = ST U
S®. We can assume that the samples in S are drawn from a
mixture distribution equal to (1 — 7)p’ + 7p®, where 7 =
|S®|/(|ST|+|S®|). Using the entropic spanning graph estimator

3] - | denotes set cardinality.
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on the pooled sample set, Wz*(ka) (S), as defined in (12), yields
a consistent estimate of (27) and can be used as an alignment
measure (e.g., see Figs. 2 and 3, where the prealigned images
are a simulated t1-t2 MR image pair [6]; for the test case, the
second image was artificially rotated by 10°). Since the training
samples are “stationary,” i.e., are independent of the alignment,
they behave like anchors, pulling in the observed samples. This
“anchoring effect” improves the capture range of the algorithm.
Fig. 4 shows the effect on the alignment measure profile. Inter-
estingly, Zollei and Wells recently presented an approach to in-
corporate prior knowledge into an information-theoretic frame-
work by pooling the training data with the test data [29]. This re-
sult was derived using a probabilistic model and Dirichlet prior.
The final result is strikingly similar to the entropy of the pooled
sample set in (27).

A. Computational Issues

The additional computational load of introducing a large set
of training samples is important. The following theorem indi-
cates that an MST of the training samples, computed offline,
can be used to decrease the computational overhead.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 17, NO. 5, MAY 2008

t2 weighted

t1 weighted pd weighted

Fig. 5. Axial slices of the Brainweb volumes.

Let T and T® be the edges in the MSTs of ST and S®,
respectively. Let F'' be the minimum spanning forest (MSF)*
of the edges that connect samples from ST to S?.

Theorem 2: The edges in a MST of S® U ST are a subset of
TTuT® U FL.

Proof: 1f an edge is not in TT U T® U F'F| it is the longest
edge in a cycle and, thus, by Kruskal’s algorithm, cannot be in
the final MST. [ ]

In our implementation, for large training sets, we replace F'~
by the set of edges, E v, that connect each sample in S® to its
k-nearest neighbors in ST. This approach yields a fast approx-
imate MST algorithm that uses edges in 7T U T® U Eyy. In
our experience, the output tree is a good approximation of the
complete MST (see Fig. 3). This approach reduces the compu-
tational complexity from O(NTlog NT) to O(log NT), where
NT = |S%| is the number of training samples.

VII. EMPIRICAL RESULTS

A. Three-Dimensional Simulations

To perform an objective comparison of our algorithms and
other well-known registration methods, we employed a sim-
ulated 3-D MR data set [6]. This is a realistic simulation of
three different MR modality images of a healthy subject’s brain:
tl weighted, t2 weighted, and proton density (pd) weighted.
Fig. 5 shows representative axial slices. All three images are of
181 x 217 x 181 (1 mm? voxel size) resolution, contain about
5% noise and 20% intensity nonuniformity. Here, we provide
results for five different 3-D rigid registration algorithms.5

 NMI: Histogram-based normalized mutual information
[24] with an implementation of the Nelder—Mead simplex
optimization method [14]. We used [4]’s partial volume
histogramming approach that produced the smoothest
alignment measure profiles and most accurate results.

* JRD: The normalized alignment measure based on the
JR divergence proposed in [1] with the same optimization
and histogramming methods as NMI. Unsurprisingly, this
method yielded very similar results to the JRD-based tech-
nique of [28], [11], which are not included.

* RPI: A sample mean-based estimate of the joint Rényi en-
tropy (7). A stochastic gradient descent strategy was em-
ployed.

e MST: An MST-based estimate of the joint Rényi entropy
(15). A stochastic gradient descent strategy was employed.

4The MSF of a graph G is a union of the MSTs of the connected components.

SRigid-body transformations were parameterized with six parameters: Three
translations and three rotations.
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e TMST: A trained MST-based alignment measure, which is
an estimate of the entropy of a mixture of the test samples
and training samples (27). The training samples came from
a different noise realization and subvoxel misalignment.

Now, we present registration results for two different sce-
narios: good and bad initialization, and three modality pairings:
t1-t2, t1-pd, and t2-pd. The random experiments were repeated
100 times for each modality pairing.

We simulated a “ground truth” transformation by indepen-
dently drawing from a uniform distribution on [—10, 10] for all
six transformation parameters (in mm for translations, and de-
grees for rotations). This transformation was then used to warp
the second image which yielded an average initial misalignment
of up to 28 mm per voxel. Fig. 6 summarizes the performance
of all five algorithms for this “good initialization” scenario. We
see that all five algorithms on average achieve subvoxel accu-
racy (less than 1 mm) and the quality of alignment is com-
parable (especially, as measured by the mean square intensity
error between the output moving image and ground truth). In
computational speed, however, it is obvious that the stochastic
gradient descent approach [26] yields substantially faster algo-
rithms (RPI, MST, and TMST). There are two reasons for this:
first, the gradient information is used when searching the trans-
formation space and second, at each iteration the algorithm only
uses a fraction (less than 1%) of the total voxels which speeds
up the computation of the alignment measure and its gradient.
Moreover, as predicted, the MST-based algorithm achieves the
fastest registration (with less than 5 s). In the “bad initializa-
tion” scenario, the ground truth transformation was generated
by independently drawing the six transformation parameters (in
mm for translations, and degrees for rotations) from a uniform
distribution on [—30, —10] U [10, 30]. This yielded a maximum
average initial misalignment of 85 mm per voxel. Our experi-
ments showed that, when an algorithm converged to a correct
result, the performance (in speed and accuracy) was compa-
rable to the results presented for the “good initialization” sce-
nario. However, as expected, not every algorithm converged al-
ways to a correct result. Fig. 7 shows the convergence rates
for each algorithm. The convergence rate is defined as the frac-
tion of instances where an algorithm achieved a subvoxel (less
than 1 mm) alignment accuracy. Notice that NMI and RPI con-
verged almost always to the correct result. NMI was initially
proposed as an “overlap-invariant” alignment measure robust to

S > ® =

CONVERGENCE RATES

N

0 e

‘m pd

- 2-pd
0.
0.
0.

NMI JRD RPI MST TMST

3

Fig. 7. Convergence rates: Initialized with a misalignment of up to 85 mm, the
fraction of instances each algorithm output, an alignment of subvoxel accuracy.

bad initial alignments [24]. Also, in Section IV-C, we had the-
oretically predicted RPI to perform well with bad initialization
since it employed a plug-in based entropy estimator. Another in-
teresting observation that supports our predictions is that, with
training (i.e., by pooling samples from a prealigned image pair),
the convergence rate of the MST algorithm can be improved
substantially (for t2-pd, we observe an increase from 25% to
85%).

B. Three-Dimensional PET-MR Registration

Here, we present a result from a real world application: 3-D
intrapatient MR-PET® rigid registration using the proposed
MST algorithm. Fig. 8 shows the volumes before and after reg-
istration. Visual inspection suggests that the algorithm achieves
voxel-resolution accuracy in aligning these two modalities.
Fig. 9 shows the MSTs computed on pixel intensity values
before and after rigid-body registration. The final result was ob-
tained using a single-threaded MEX/Matlab implementation of
the proposed MST algorithm. The run-time was approximately
2.0 s on a Dual-Core PC at 2.66 GHz and with 4-GB RAM.

VIII. CONCLUSION

In this paper, we investigated and expanded the employ-
ment of Rényi entropy for multimodal image registration. We
developed a common framework where two popular entropy
estimators, namely the plug-in estimator and entropic graph
method, were analytically comparable. This comparison pro-
vided valuable insight on how these techniques weight data
which lead to predictions of likely performance when applied

6Both data-sets were re-sampled onto a 128 X 128 x 128 grid prior to regis-
tration.
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Fig. 8. Checkerboard representations of the patient 17 MR and PET data sets (left) before and (right) after EMST-based rigid-body registration: transverse,

sagittal, and coronal views.
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Fig. 9. Scatter plots and MSTs for (left) before and (right) after MST-based
rigid-body registration of the patient 17 MR and PET data sets. The average
Euclidean edge length in the MSTs are 0.2145 before registration and 0.1363
after registration.

Pixel intensity from PET Image

to image registration. In summary, we expect the plug-in es-
timator to yield a wider capture range, while the MST-based
algorithm can produce accurate results at higher speeds. These
interpretations were confirmed by experiments. Finally, we
proposed a method for incorporating prior information about
the modality relationship from prealigned image pairs into the
entropic graph-based registration framework. Empirical results
suggest that the employment of this knowledge improves the
capture range of the alignment measure and makes it more
robust against bad initial alignment.

One important point to note is that the presented MST-based
registration framework is extendible to more than two images.
This will potentially allow for efficient group-wise image regis-
tration algorithms, where the group alignment measure will be a
function of the MST computed over the samples in a space with
a dimensionality equal to the number of images, not just two.
This extension, we believe, is a promising direction for future
research.

APPENDIX

A. Differentiability of the Entropic Graph Estimate

Let S® = {sY,...,s%} be a set of N samples in [0,1]? and
u be a unit vector in R2. Define G*(S8%) £ {G*(S8°)}, the set of

all minimal graphs on S°. The following lemma states that after
a slight perturbation of the value of a sample in S°, some of the
current minimal graphs remain as minimal graphs and no other
graph can become a minimal graph.

Lemma 1: For any k € {0,...,N } there exists an € > 0

such that G*({s9,...,s? + hu,...,s%}) C G*(89), for all
h] < e
Proof: Let § £ mingeg\g-(W-(G(S)) — W2 (SY)).

Note v > 0. If [h| < (|le]|” + §/2N)Y7 — |le]| for all ||e]|
in G, then using the triangle inequality on each edge, it is
easy to show that the change in W, (G) is upper bounded
by 6/2. Recall that |le]| < +/2, since all s € [0,1]%. Set
max((6/2N)Y/7,(27/2 4 §/2N)Y/7 — \/2). Then

€ =
for [h] < € and all G;,G, € G(SY), the change in
W,(G1) — W,(G2) will be upper bounded by ¢. Thus, if

G ¢ G*(8Y),G will not achieve a W,(G) smaller than
W;‘(SO).
Now, let us look at the partial derivative of a power weighted

edge length, ||e;;]| £ [|si — s;]|

alless ) [ Nl (sie = sje), if'si# s

s 0, ifs; =s;and y>1
Fie +o0, ifs; =s;and v < 1

fori,j = 1--- N and ¢ = 1, 2. Note that the derivative does not

exist if the samples are coinciding and v < 1. Elsewhere, it is
well defined.
Lemma 2: Forasy, € S,Vs, W3 (S) exists if and only if
Vs, W, (G*(S)) exists and is equal for all G*(S).
Proof: Using the formal definition of the right derivative

8W;(S)/88kc|sk6=52j = hli)[gl
Wj/( ({S?V"?Sg—i_hudm“ SN}) W*(SO)
h

= Gergr;l*lg‘lso)8WA{(G)/8S]W|S’“:S?‘T. (28)

Similarly, the left derivative is equal to the maximum of the left
derivatives among all the G*(S°)s. Now, consider the two cases.



1) sy has a unique value s). Then, Vs, W, (G*(S)) exists
for all G*(S°). Here, W (S) /sy exists if and only if
the maximum and minimum derivatives are equal for all
c € {1,2}.

2) sy is not unique, i.e., there are other samples with the same
value. Then it is easy to see that all minimal spanning
graphs G*(S)s contain at least one zero length edge with
sk as an endpoint. If 0 < v < 1, then the right and left
derivatives of this edge length are +o00 and —oo, respec-
tively. Thus, Vs, W (S) does not exist. If v > 1, the edge
length derivatives exist and the argument from 1 holds.

REFERENCES

[1] A.Bardera, M. Feixas, and I. Boada, “Normalized similarity measures
for medical image registration,” in Proc. SIPE Medical Imaging: Image
Processing, J. Fitzpatrick and M. Sonka, Eds., 2004, vol. 5370, pp.
108-118.

[2] J. Beirlant, E. Dudewicz, L. Gyorfi, and E. van der Meulen, “Nonpara-
metric entropy estimation: An overview,” Int. J. Math. Statist. Sci., vol.
6, pp. 17-39, 1997.

[3] T. Butz and J. Thiran, “Affine registration with feature space mutual
information,” in Proc. MICCAI, W. Niessen and M. Viergever, Eds.,
2001, pp. 549-556.

[4] H. Chen and P. Varshney, “Mutual information-based CT-MR brain

image registration using generalized partial volume joint histogram es-

timation,” IEEE Trans. Med. Imag., vol. 22,n0. 9, pp. 1111-1119, Sep.

2003.

A. Chung, W. Wells, A. Norbash, and W. Grimson, “Multi-modal

image registration by minimising Kullback-Leibler distance,” in Proc.

MICCAI, T. Dohi and R. Kikinis, Eds., 2002, pp. 525-532.

C. Cocosco, V. Koolokian, R. Kwan, and A. Evans, “Brainweb: Online

interface to a 3D MRI simulated brain database,” in Proc. Neurolmage

3rd Int. Conf. Functional Mapping of the Human Brain, Copenhagen,

Denmark, 1997, vol. 5, p. S425, (4, part2/4).

[7]1 T. Cover and J. Thomas, Elements of Information Theory. New York:
Wiley, 1991.

[8] R. Duda, P. Hart, and D. Stork, Pattern Classification. New York:
Wiley-Interscience, 2001.

[9] C. Guetter, C. Xu, F. Sauer, and J. Hornegger, “Learning based non-
rigid multi-modal image registratyion using Kullback-Leibler diver-
gence,” in Proc. MICCAI J. Duncan and G. Gerig, Eds., 2005, pp.
255-262.

[10] J.Hajnal, D. Hill, and D. Hawkes, Eds., Medical Image Registration.
Boca Raton, FL: CRC, 2001.

[11] A.Hamza and H. Krim, “Image registration and segmentation by maxi-
mizing the Jensen—Rényi divergence,” Proc. EMMCVPR, pp. 247-263,
2003.

[12] A. Hero, B. Ma, O. Michel, and J. Gorman, “Applications of entropic
spanning graphs,” IEEE Signal Process. Mag., vol. 19, no. 5, pp. 85-95,
May 2002.

[13] A.Hero and O. Michel, “Asymptotic theory of greedy approximations
to minimal k-point random graphs,” IEEE Trans. Inf. Theory, vol. 45,
no. 6, pp. 1921-1938, Jun. 1999.

[14] J.Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence
properties of the Nelder—Mead simplex method in low dimensions,”
SIAM J. Optim., vol. 9, no. 1, pp. 112-147, 1998.

[15] M. Leventon and W. Grimson, “Multi-modal volume registration using
joint intensity distribution,” in Proc. MICCAI, W. Welles, E. Colch-
ester, and S. Delp, Eds., 1998, pp. 1057-1066.

[16] R. Liao, C. Guetter, C. Xu, Y. Sun, A. Khamane, and F. Sauer,
“Learning-based 2D/3D rigid registration using Jensen—Shannon
divergence for image-guided surgery,” in Proc. MIAR, G. Yang, Ed.,
2006, pp. 228-235.

[17] F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Seutens,
“Multimodality image registration by maximization of mutual infor-
mation,” /IEEE Trans. Med. Imag., vol. 16, no. 2, pp. 187-198, Feb.
1997.

[5

—_

[6

—

SABUNCU AND RAMADGE: USING SPANNING GRAPHS FOR EFFICIENT IMAGE REGISTRATION 797

[18] J. Maintz and M. Viergever, “A survey of medical image registration,”
Med. Image Anal., vol. 2, no. 1, pp. 1-36, 1998.

[19] H. Neemuchwala, A. Hero, and P. Carson, “Image matching using
alpha-entropy measures and entropic graphs,” Signal Process., vol. 85,
no. 2, 2002.

[20] J. Pluim, J. Maintz, and M. Viergever, “Image registration by maxi-
mization of combined mutual information and gradient information,”
IEEE Trans. Med. Imag., vol. 19, no. 8, pp. 809-814, Aug. 2000.

[21] J. Pluim, J. Maintz, and M. Viergever, “Mutual information based reg-
istration of medical images: A survey,” IEEE Trans. Med. Imag., vol.
22, no. 8, pp. 986-1004, Aug. 2003.

[22] C.Redmond and J. E. Yukich, “Asymptotics for Euclidean functionals
with power weighted edges,” Stochastic Process. Appl., vol. 6, pp.
289-304, 1996.

[23] M. Sabuncu and P. Ramadge, “Spatial information in entropy-based
image registration,” in Biomedical Image Registration. New York:
Springer-Verlag, 2003.

[24] C. Studholme, D. L. G. Hill, and D. Hawkes, “An overlap invariant
entropy measure of 3D medical image alignment,” Pattern Recognit.,
vol. 32, no. 1, pp. 71-86, 1999.

[25] P. Thvenaz and M. Unser, “Optimization of mutual information for
multiresolution image registration,” I[EEE Trans. Image Process., Vol.
9, no. 12, pp. 1083-1100, Dec. 2000.

[26] P. Viola and W. Wells, “Alignment by maximization of mutual infor-
mation,” Int. J. Comput. Vis., vol. 24, no. 2, pp. 137-154, 1997.

[27] Y. He, A. Hamza, and H. Krim, “Information divergence measure for
ISAR image registration,” in Proc. SPIE, Oct. 2001, vol. 4379, pp.
199-208.

[28] Y.He, A. Hamza, and H. Krim, “A generalized divergence measure for
robust image registration,” IEEE Trans. Signal Process., vol. 51, no. 5,
pp. 1211-1220, May 2003.

[29] L. Zollei and W. Wells, “Multi-modal image registration using
Dirichlet-encoded prior information,” in Proc. WBIR, J. Pluim, B.
Likar, and F. Gerritsen, Eds., 2006, pp. 34—42.

Mert R. Sabuncu (M’99) received the B.Sc. degree
from the Electrical and Electronics Engineering De-
partment, Middle East Technical University, Ankara,
Turkey, in 2001, and the Ph.D. degree from the De-
partment of Electrical Engineering, Princeton Uni-
versity, Princeton, NJ, in 2006.

Between 2003-2006, he was an intern and tempo-
rary research staff at Siemens Corporate Research,
Princeton. In August 2006, he joined the medical vi-
sion group at MIT’s Computer Science and Artificial
Intelligence Lab as a Postdoctoral Researcher. His
current research interests are in image processing, medical image analysis, pat-
tern recognition, and fMRI.

Peter Ramadge (S’79-M’82-SM’92-F°96) re-
ceived the B.Sc., B.E., and M.E. degrees from the
University of Newcastle, Australia, and the Ph.D. de-
gree from the Department of Electrical Engineering
at the University of Toronto, Toronto, ON, Canada.

He joined the faculty of Princeton University,
Princeton, NJ, in September 1984, where he is cur-
rently the Professor and Chair of the Department of
Electrical Engineering. He has been a Visiting Pro-
fessor at the Massachusetts Institute of Technology,
Cambridge, and a Visiting Research Scientist at
IBM’s Tokyo Research Laboratory, Tokyo, Japan. His current research interests
are in high-dimensional signal processing, fMRI imaging, medical imaging,
and video/image processing.

Dr. Ramadge is a member of SIAM. He has received several honors and
awards including a paper selected for inclusion in the IEEE book Control
Theory: Twenty Five Seminal Papers (1932-1981); an Outstanding Paper
Award from the Control Systems Society of the IEEE; the Convocation Medal
for Professional Excellence from the University of Newcastle, Australia; an
Engineering Council Teaching Award from the School of Engineering and
Applied Science, Princeton University; an IBM Faculty Development Award;
and the University Medal from Newcastle University, Australia.



