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Abstract	

Complex	physiological	and	behavioral	traits,	including	neurological	and	psychiatric	disorders,	often	

associate	with	distributed	anatomical	variation.	This	paper	introduces	a	global	metric,	called	

morphometricity,	as	a	measure	of	the	anatomical	signature	of	different	traits.	Morphometricity	is	

defined	as	the	proportion	of	phenotypic	variation	that	can	be	explained	by	macroscopic	brain	

morphology.	We	estimate	morphometricity	via	a	linear	mixed	effects	model	that	utilizes	an	

anatomical	similarity	matrix	computed	based	on	measurements	derived	from	structural	brain	

Magnetic	Resonance	Imaging	(MRI)	scans.	We	examined	over	3,800	unique	MRI	scans	from	9	large-

scale	studies	to	estimate	the	morphometricity	of	a	range	of	phenotypes,	including	clinical	diagnoses	

such	as	Alzheimer’s	disease;	and	nonclinical	traits	such	as	measures	of	cognition.	Our	results	

demonstrate	that	morphometricity	can	provide	novel	insights	about	the	neuroanatomical	correlates	

of	a	diverse	set	of	traits,	revealing	associations	that	might	not	be	detectable	through	traditional	

statistical	techniques.	

	

Significance	

Neuroimaging	has	largely	focused	on	two	goals:	mapping	associations	between	neuroanatomical	

features	and	phenotypes,	and	building	individual-level	prediction	models.	This	paper	presents	a	

complementary	analytic	strategy	called	morphometricity	that	aims	to	measure	the	neuroanatomical	

signatures	of	different	phenotypes.	Inspired	by	prior	work	on	heritability,	we	define	morphometricity	

as	the	proportion	of	phenotypic	variation	that	can	be	explained	by	brain	morphology,	e.g.,	as	

captured	by	structural	brain	Magnetic	Resonance	Imaging	(MRI).	In	the	dawning	era	of	large-scale	

datasets	comprising	traits	across	a	broad	phenotypic	spectrum,	morphometricity	will	be	critical	in	

prioritizing	and	characterizing	behavioral,	cognitive,	and	clinical	phenotypes	based	on	their	

neuroanatomical	signatures.	Furthermore,	the	proposed	framework	will	be	significant	in	dissecting	

the	functional,	morphological,	and	molecular	underpinnings	of	different	traits.				
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Introduction	

The	structural,	functional,	and	molecular	properties	of	the	brain	support	numerous	traits	spanning	

the	behavioral,	cognitive	and	clinical	spectra.	Neuroanatomical	features	are	in	turn	influenced	by	

factors	such	as	age,	sex,	training,	and	genetics	[1-4].	Neuroimaging	allows	us	to	characterize	these	

bidirectional	associations	by	revealing	variation	in	brain	structure	and	function	across	individuals.	

Conventional	methods	that	we	use	to	probe	these	associations	aim	to	anatomically	map	effects,	build	

prediction	models,	or	test	hypotheses.	Yet,	we	do	not	have	a	standard	technique	to	measure	and	

compare	the	often	spatially	distributed	and	complex	patterns	of	neuroanatomical	correlates	of	

different	phenotypes.	Here	we	present	a	novel	metric	called	morphometricity	that	offers	this	

capability.		

	

To	date,	structural	neuroimaging	studies	have	primarily	relied	on	three	classes	of	analytic	approaches.	

The	first	strategy	is	hypothesis-driven	and	utilizes	a	regression	model	to	examine	associations	

between	behavioral	traits	or	clinical	conditions	and	a	small	number	of	a	priori	image-derived	

measurements,	such	as	those	restricted	to	an	anatomical	region	of	interest	(ROI)	[5].	The	ROI-based	

approach	provides	useful	insights	about	the	underlying	biology	and	can	be	efficient	in	limited	sample	

size	scenarios,	but	is	restricted	to	the	tested	hypothesis.	The	second	approach	is	exploratory	and	aims	

to	compute	maps	of	associations	by	conducting	brain-wide	tests	[6],	as	exemplified	in	voxel-based	

morphometry	(VBM)	[7],	or	vertex-wise	cortical	thickness	analysis	[see	e.g.,	8].	Such	massive	

univariate	analyses	can	offer	a	comprehensive	picture	of	the	underlying	anatomical	associations,	yet	

they	can	also	be	inefficient	in	revealing	subtle,	multivariate	patterns	of	association,	because	each	

anatomical	location	is	typically	examined	in	isolation	and	the	burden	of	multiple	testing	correction	

can	constrain	statistical	power.	The	third	class	includes	multivariate	techniques	such	as	Canonical	

Correlation	Analysis	(CCA)	[9],	Partial	Least	Squares	(PLS)	[10],	Bayesian	inference	algorithms	[11],	or	

other	machine	learning	methods	[12,13].	These	studies	are	focused	on	either	discovering	the	

multivariate	patterns	of	association	or	demonstrating	individual-level	prediction	capabilities,	but	the	

biological	interpretation	of	trained	multivariate	models	can	be	challenging	[14].	Furthermore,	these	

methods	often	suffer	from	high	computational	demand,	and	can	be	sensitive	to	implementation	

details,	such	as	the	choice	of	learning	rule,	optimization	algorithm,	and	local	optima	in	training.	
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We	present	morphometricity	analysis	as	a	novel	approach	to	examine	the	global	statistical	

association	between	brain	morphology	and	observable	traits.	Inspired	by	prior	work	on	trait	

heritability	in	population	and	statistical	genetics	[15,16],	we	define	morphometricity	as	the	

proportion	of	phenotypic	variation	that	can	be	explained	by	brain	morphology,	e.g.,	as	captured	by	

measurements	derived	from	structural	brain	Magnetic	Resonance	Imaging	(MRI)	scans.	Unlike	ROI-

based	or	massive	univariate	association	tests,	morphometricity	analysis	is	not	concerned	with	specific	

anatomical	structures	or	the	precise	anatomic	localization	of	effects.	In	contrast	to	the	application	of	

machine	learning	to	population	data,	the	primary	aim	of	morphometricity	analysis	is	not	to	maximize	

individual-level	prediction	accuracy,	but	examine	and	quantify	statistical	associations.	The	proposed	

strategy	thus	affords	a	unique	perspective	on	the	biological	underpinnings	of	different	phenotypes,	

and	allows	us	to	compare	and	contrast	imaging	modalities,	types	of	anatomical	measurements,	and	

processing	streams.		

	

Morphometricity	is	grounded	in	linear	mixed	effects	(LME)	modeling,	a	classical	statistical	framework	

that	was	recently	employed	in	population	genetics	to	quantify	the	heritability	of	a	trait	using	genome-

wide	genetic	variants	[17-19].	The	model	relates	the	variation	in	brain	morphology	computed	from	

brain-wide,	MRI-derived	measurements	to	the	variation	in	observable	traits,	and	can	be	fitted	using	

well-established,	robust	computational	tools.	In	our	implementation,	we	use	FreeSurfer	[20],	a	freely	

available,	widely	used,	and	extensively	validated	brain	MRI	analysis	software	package,	to	

automatically	process	structural	MRI	scans	and	obtain	a	vector	of	volumetric	measurements	across	

subcortical	structures	and	cortical	thickness	measurements	across	the	entire	cortical	mantle,	which	

constitute	a	comprehensive	description	of	the	structural	neuroanatomy.		

	

We	applied	the	morphometricity	analysis	to	over	3,800	unique	brain	MRI	scans	from	9	large-scale	

studies	and	computed	the	morphometricity	of	clinical	conditions	including	Alzheimer’s	disease,	

attention-deficit	hyperactivity	disorder	(ADHD),	schizophrenia,	autism	spectrum	disorder,	and	

Parkinson’s	disease;	and	nonclinical	traits	including	sex,	age,	intelligence,	education	level,	and	an	

array	of	cognitive	measures.	Our	results	demonstrate	that	morphometricity	analysis	promises	to	offer	

a	unique	perspective	on	the	relationship	between	brain	anatomy,	and	behavioral,	cognitive	and	

physiological	traits.	
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Results	

Overview	of	the	Model.	The	proposed	morphometricity	analysis	is	based	on	the	following	linear	

mixed	effects	(LME)	model:		

𝒚 = 𝑿𝜷 + 𝒂 + 𝝐,	 (1)	

where	𝒚	is	an	𝑁-dimensional	column	vector	of	a	quantitative	phenotype	with	𝑁	being	the	sample	size	

(i.e.,	number	of	subjects),	𝑿	is	the	(design)	matrix	of	confounding	variables	(sometimes	called	

covariates	or	nuisance	variables)	such	as	age	and	sex,	𝜷	is	the	(fixed	effect)	coefficient	vector,	𝒂 ∼

N(𝟎, 𝜎/0𝑲/)	is	an	𝑁-dimensional	random	effect	vector	drawn	from	a	zero-mean	multivariate	Gaussian	

distribution	with	a	covariance	matrix	that	is	equal	to	the	scaled	anatomic	similarity	matrix	(ASM)	𝑲/,	

and	the	elements	of	the	noise	vector	𝝐	are	assumed	to	be	drawn	from	independent	and	zero-mean	

Gaussian	distributions	with	homogeneous	variance	𝜎3
0.	The	ASM	encodes	global	morphological	

resemblance	between	pairs	of	individuals	in	the	sample,	and	in	principle	can	be	any	non-negative	

definite	matrix	with	its	diagonal	elements	constrained	to	be	equal	to	1	on	average,	and	𝜎/0	can	thus	

be	interpreted	as	the	total	variance	captured	by	the	ASM.	In	this	paper,	we	considered	two	types	of	

intuitive	and	widely	used	metrics	that	quantify	the	similarity	of	volumetric	and	cortical	thickness	

measurements	extracted	from	structural	brain	MRI	scans	between	pairs	of	individuals:	(1)	a	linear	

similarity	metric	(i.e.,	inner	product	between	normalized	imaging	measurements);	and	(2)	a	nonlinear	

Gaussian-type	similarity	metric	(see	Methods).	Using	a	model	selection	approach,	we	found	that	the	

Gaussian	similarity	metric	provided	consistently	better	description	of	the	data	across	the	traits	we	

studied	(see	Methods	and	Supplementary	Table	S1).	Therefore,	all	reported	morphometricity	

estimates	were	based	on	the	Gaussian	metric.	

	

Formally,	we	define	morphometricity	based	on	the	LME	model	of	Equation	(1)	as:	

𝑚0 ≐
𝜎/0

𝜎/0 + 𝜎30
=
𝜎/0

𝜎60
,					(2)	

where	𝜎60	is	the	phenotypic	variance.	Morphometricity	is	thus	the	proportion	of	phenotypic	variation	

that	can	be	explained	by	brain	morphology,	the	variation	of	which	is	captured	by	the	ASM.	Estimates	

of	morphometricity	can	be	computed	by	plugging	the	restricted	maximum	likelihood	(ReML)	

estimates	[21,22]	of	the	variance	components,	𝜎/0	and	𝜎30,	into	Equation	(2).	
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We	extend	this	definition	to	the	case-control	design,	i.e.,	binary	disease	traits	(affected	vs.	

unaffected),	using	the	classical	liability-threshold	model,	which	is	widely	employed	in	population	and	

statistical	genetic	studies	[23,24].	The	model	assumes	that	the	underlying	disease	liability	(which	is	a	

quantitative	variable)	follows	a	Gaussian	distribution	and	individuals	are	cases	(affected)	if	their	

liability	exceeds	a	threshold.	The	morphometricity	estimate	𝑚0	for	a	disease	trait	on	the	observed	

scale,	obtained	by	fitting	the	model	of	Equation	(1)	to	the	binary	phenotype	data,	can	be	easily	

transformed	to	the	liability	scale	[24,25]:	

𝑚9
0 = 𝑚0 𝐾(1 − 𝐾)

𝜑(𝑡)0
𝐾(1 − 𝐾)
𝑃(1 − 𝑃) ,					(3)	

where	𝑚9
0	is	the	morphometricity	on	the	liability	scale,	𝐾	is	the	prevalence	of	the	disease	in	the	

general	population	(i.e.,	the	proportion	of	the	population	having	the	disease),	𝑃	is	the	prevalence	of	

the	disease	in	the	study	sample,	𝑡 = ΦBC(1 − 𝐾)	is	the	liability	threshold,	Φ	is	the	standard	Gaussian	

cumulative	distribution	function,	and	𝜑	is	the	standard	Gaussian	density	function.	In	real	disease	

studies,	cases	are	often	considerably	oversampled	relative	to	their	population	prevalence	(known	as	

non-random	ascertainment),	in	which	case	𝑃	is	larger	than	𝐾.	Transforming	morphometricity	

estimates	from	the	observed	scale	to	the	liability	scale	makes	them	independent	of	population	and	

sample	prevalence,	and	thus	comparable	across	different	diseases.	
	

Overview	of	the	Data.	We	analyzed	brain	MRI	scans	and	trait	data	from	over	3,800	unique	individuals	

spanning	9	large-scale	studies:	the	Harvard/Massachusetts	General	Hospital	Brain	Genomic	

Superstruct	Project	(GSP)	[26],	the	Human	Connectome	Project	(HCP)	[27],	the	Alzheimer’s	Disease	

Neuroimaging	Initiative	(ADNI)	[28],	the	Attention-Deficit	Hyperactivity	Disorder	(ADHD	200)	sample	

[29],	the	Open	Access	Series	of	Imaging	Studies	(OASIS)	cross-sectional	sample	[30],	the	Center	for	

Biomedical	Research	Excellence	(COBRE)	schizophrenia	sample	[31],	the	MIND	Clinical	Imaging	

Consortium	(MCIC)	schizophrenia	sample	[32],	the	Autism	Brain	Imaging	Data	Exchange	(ABIDE)	[33],	

and	the	Parkinson	Progression	Marker	Initiative	(PPMI)	[34].	See	the	Methods	section	for	further	

details	on	the	datasets.	The	traits	of	interest	were	grouped	into	three	categories:	clinical	diagnoses,	

general	nonclinical	traits	and	measures	of	cognition.		

	

Morphometricity	of	Clinical	Diagnoses.	The	clinical	traits	we	examined	included	Alzheimer’s	disease,	

attention-deficit	hyperactivity	disorder	(ADHD),	schizophrenia,	autism	spectrum	disorder,	and	
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Parkinson’s	disease.	Table	1	lists	the	characteristics	of	the	corresponding	samples,	along	with	

morphometricity	estimates	(on	the	liability	scale)	and	assumed	population	prevalence	values	[35-41].	

Figure	1	shows	the	estimated	morphometricity	values	on	the	liability	scale.	Our	analyses	revealed	

that	Alzheimer’s	disease	is	substantially	morphometric	(with	a	95%	confidence	interval	of	[0.94-1.00]),	

suggesting	that	this	clinical	condition	is	associated	with	a	substantial	anatomical	signature.	On	the	

other	hand,	ADHD,	schizophrenia	and	autism	showed	moderate	morphometricity	values,	all	greater	

than	0.35.	Finally,	we	found	that	Parkinson’s	disease	was	modestly	morphometric,	with	an	estimated	

liability-scale	value	of	0.20.	All	examined	clinical	conditions	were	statistically	significantly	associated	

with	whole-brain	macroscopic	morphology,	i.e.,	the	estimated	morphometricity	values	were	

significantly	larger	than	zero	(all	p-values	<	0.005).	Supplementary	Table	S2	lists	point	estimates	of	

morphometricity	and	their	standard	errors	computed	via	jackknife	resampling	[42].	These	results	are	

in	strong	agreement	with	the	parametric	estimates	in	Table	1.	

	

We	had	access	to	two	independent	samples	that	allowed	us	to	replicate	our	morphometricity	

estimates	of	Alzheimer’s	disease	(OASIS)	and	schizophrenia	(COBRE).	We	observed	that	there	was	

strong	agreement	between	the	estimates	from	independent	samples	(Figure	1).	Supplementary	Table	

S3	provides	further	data	about	these	replication	analyses.	

	

Morphometricity	of	General,	Nonclinical	Traits.	The	nonclinical	traits	we	examined	were	age,	general	

intelligence	(IQ),	sex,	and	education	level.	Table	2	lists	the	characteristics	of	the	samples	used	in	the	

primary	analyses,	along	with	the	estimates	of	morphometricity.	These	results	revealed	that	all	the	

examined	general	traits	are	significantly	and	substantially	morphometric	(Figure	2);	all	

morphometricity	point	estimates	were	greater	than	0.8,	and	all	p-values	<	1e-8.	Supplementary	Table	

S2	lists	morphometricity	estimates	and	their	standard	errors	computed	via	jackknife	resampling.	

These	results	and	the	parametric	estimates	in	Table	1	are	virtually	identical.	

	

We	had	access	to	independent	replication	samples	for	all	the	general	nonclinical	traits	we	examined.	

It	can	be	seen	in	Figure	2	that	the	replication	analyses	revealed	remarkably	consistent	

morphometricity	estimates.	Supplementary	Table	S4	provides	further	data	about	these	replication	

analyses.	
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Contrasting	with	ROI-based	Association	Analyses.	The	most	common	analytic	strategy	in	today’s	

neuroimaging	studies	involves	examining	associations	between	traits	and	measurements	from	

regions	of	interest	(ROIs).	Our	goal	in	this	analysis	was	to	contrast	the	proposed	whole-brain	

morphometricity	analysis	with	such	ROI-based	techniques.	We	restricted	our	analysis	to	the	six	

phenotypes	(age,	IQ,	sex,	education,	Alzheimer’s	disease,	and	schizophrenia),	for	which	we	had	two	

independent	datasets.	We	then	used	one	of	the	samples	(the	replication	sample	in	the	analyses	

above)	for	the	discovery	of	the	most	significantly	associated	ROI	with	the	trait,	and	the	other	sample	

(the	primary	sample	in	the	analyses	above)	to	quantify	the	strength	and	magnitude	of	association.	

Supplementary	Table	S5	lists	the	structures	that	exhibited	the	strongest	association	with	the	traits	in	

the	discovery	analysis.		

	

Figure	3	visualizes	the	magnitude	of	association	between	the	ROI-based	measurements	and	

phenotypic	variation,	assessed	using	the	same	LME	modeling	framework	of	whole-brain	

morphometricity.	Here,	we	replaced	the	global	ASM	with	one	computed	based	on	ROI	measurements	

(see	Methods	for	further	details).	It	can	be	seen	that	the	proportion	of	variance	explained	by	ROI-

based	measurements	was	consistently	lower	than	whole-brain	morphometricity	estimates	(with	

general	intelligence	exhibiting	the	smallest	discrepancy).	Most	notably,	for	education	and	

schizophrenia,	ROI-based	associations	were	much	weaker	(both	in	magnitude	and	statistical	

significance)	than	whole-brain	associations	(Figure	3	and	Supplementary	Table	S5).	In	fact,	education	

and	schizophrenia	did	not	exhibit	a	statistically	significant	correlation	with	individual	ROI-based	

measurements,	while	whole-brain	morphometricity	analyses	revealed	significant	associations.	

	

Morphometricity	Analysis	of	Cognitive	Measures.	We	used	the	most	recent	release	of	the	Human	

Connectome	Project	(HCP)	data	(downloaded	on	December	15,	2015)	to	compute	morphometricity	

estimates	for	an	array	of	cognitive	measures.	Our	primary	analysis	relied	on	190	non-twin	subjects	of	

non-Hispanic	European	ancestry	(28.9+/-3.8	years,	47.3%	female),	drawn	from	separate	families	(i.e.,	

there	were	no	siblings	in	this	sample).	Figure	4	shows	the	morphometricity	estimates	computed	for	

variables	that	measure	sustained	attention,	non-verbal	and	verbal	episodic	memory,	working	

memory,	executive	function,	delay	discounting,	language	(vocabulary	comprehension	and	reading	

decoding),	spatial	orientation,	processing	speed,	fluid	intelligence,	and	self-regulation	(impulsivity).	

We	conducted	a	secondary	(replication)	analysis	on	208	non-Hispanic	white	twins	(29.4+/-3.2	years,	
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61.4%	female),	with	one	twin	drawn	from	each	family,	and	thus	there	were	no	siblings	in	this	

replication	sample.	Figure	4	shows	the	results	obtained	from	this	secondary	analysis	as	well.	

	

Our	results	demonstrated	that	all	examined	variables,	except	for	the	measure	of	self-regulation,	are	

statistically	significantly	morphometric.	We	note	further	that	there	was	an	important	amount	of	

variability	in	the	degree	of	morphometricity	across	cognitive	measures.	This	variation	was	remarkably	

consistent	between	the	primary	and	secondary	analyses.	Measures	of	attention,	cognitive	flexibility,	

working	memory,	verbal	episodic	memory,	and	inhibition	were	substantially	morphometric	(with	

estimates	greater	than	0.80	in	both	primary	and	secondary	analyses).	Measures	of	language,	non-

verbal	episodic	memory,	spatial	orientation,	processing	speed,	and	fluid	intelligence	were	moderately	

morphometric	(with	point	estimates	greater	than	0.50).	

	

Discussion	

Morphometricity:	A	Novel	Metric	to	Quantify	Whole-brain	Associations	with	a	Trait.	In	this	paper,	

we	introduced	a	novel	technique	for	analyzing	the	neuroanatomical	underpinnings	of	various	clinical,	

physiological,	and	behavioral	traits	using	large-scale	neuroimaging	data.	In	contrast	with	association	

testing	techniques	widely	used	in	today’s	neuroimaging	studies,	our	approach	does	not	focus	on	a	

priori	ROIs	or	conduct	independent	(massive	univariate)	interrogations	at	each	candidate	region	or	

voxel.	Instead,	morphometricity	is	a	global	quantification	of	the	whole-brain	anatomical	signature	of	

a	trait.		

	

While	the	proposed	approach	is	intimately	related	to	image-based	multivariate	prediction	

performance,	there	are	two	characteristics	of	morphometricity	that	make	it	different	from	the	

application	of	machine	learning.	Firstly,	the	metric	does	not	require	cross-validation,	which	is	often	

the	technique	utilized	in	machine	learning	to	gauge	prediction	accuracy.	Cross-validation	is	usually	

computationally	demanding,	and	relies	on	the	unbiased	setting	of	model	parameters	(which	might	be	

achieved	via	a	nested	cross	validation	strategy),	and	repeated	and	balanced	partitioning	of	data	into	

train	and	test	sets.	In	contrast,	the	proposed	LME-based	approach	exploits	the	entire	dataset	to	fit	

the	model	and	estimate	the	unknown	variance	component	parameters,	and	in	turn	morphometricity,	
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in	an	unbiased	fashion.	Secondly,	morphometricity	is	a	classical	statistical	measure	of	explained	

variance	and	is	therefore	familiar	to	interpret.		

	

Morphometricity	has	many	parallels	to	heritability	in	genetics	[15,16].	Both	concepts,	statistical	in	

nature,	are	about	phenotypic	variation	and	the	proportion	of	variance	explained.	Thus,	the	

interpretation	has	to	be	carried	out	within	a	probabilistic	framework,	is	limited	by	the	studied	

population,	depends	on	the	technique	used	to	quantify	the	trait,	and	can	be	confounded	by	

unmeasured	variables	acting	through	unknown	mechanisms.	The	biases	due	to	confounds	such	as	

(cryptic)	relatedness	between	subjects	or	population	admixture	are	well-studied	in	heritability	

analysis.	As	we	elaborate	below,	morphometricity	alone	cannot	be	used	to	infer	causal	relationships,	

but	has	to	be	followed	up	with	further	studies	that	will	home	in	on	potential	mechanisms.	The	core	

difference	between	morphometricity	and	heritability	is	the	direction	of	association.	In	heritability,	

this	direction	is	known	and	fixed,	because	there	is	no	known	biological	mechanism	that	would	allow	

the	phenotype	to	alter	the	genotype.	In	morphometricity,	however,	the	directionality	can	go	either	

way	and	has	to	be	dissected	with	further	biological	studies.		

	

Traits	Can	Be	Morphometric	to	Different	Degrees.	Virtually	all	traits	we	examined	in	this	study	were	

significantly	morphometric.	However,	our	analyses	also	revealed	interesting	variation	in	the	whole-

brain	anatomical	signature	of	different	traits.	Certain	phenotypes,	such	as	Alzheimer’s	disease,	age,	

and	(maybe	surprisingly)	general	intelligence	(IQ)	were	substantially	morphometric	(with	estimates	

exceeding	0.90),	while	other	measures,	such	as	non-verbal	episodic	memory,	spatial	orientation,	

processing	speed,	and	fluid	intelligence	exhibited	moderate	morphometricity.	Furthermore,	the	

psychiatric	disorders	we	examined	(schizophrenia,	ADHD	and	autism)	were	all	moderately	

morphometric,	unequivocally	pointing	to	a	neuroanatomical	substrate	for	these	clinical	conditions.	

The	proposed	morphometricity	analysis	is	the	first	coherent	framework	that	enables	us	to	directly	

quantify	and	compare	the	morphological	signatures	of	such	diverse	sets	of	traits.	

	

The	traits	we	presented	in	this	study	have	been	examined	extensively	in	prior	structural	

neuroimaging	studies	to	reveal	morphological	correlates.	While	many	of	these	studies	relied	on	

regional	or	voxel-level	association	tests	that	are	conducted	at	each	location	independently,	there	is	

growing	evidence	that	multiple	brain	regions	are	implicated	in	complex,	multivariate	relationships	
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with	many	common	phenotypes.	For	example,	patterns	of	atrophy	in	neurodegenerative	conditions	

such	as	Alzheimer’s	disease	have	been	shown	to	spread	through	large-scale,	distributed	brain	

networks	that	can	be	circumscribed	based	on	resting-state	activity	[43].	Furthermore,	developmental	

mechanisms	such	as	neuronal	migration,	synapse	formation,	myelination,	and	synaptic	pruning	follow	

predictable	and	robust	spatiotemporal	patterns,	which	are	likely	associated	with	behavioral	traits	

such	as	intelligence	and	disrupted	in	psychiatric	disorders	such	as	schizophrenia	[44,45].	Our	data	

from	ROI-based	analyses	support	the	premise	of	analyzing	brain-wide	patterns,	rather	than	isolated	

regions,	for	associations	between	neuroanatomical	features	and	behavioral	or	clinical	phenotypes.			

	

Morphometricity	Estimates	Are	Consistent	Across	Independent	Samples.	For	most	of	the	traits	we	

examined	in	this	study,	we	replicated	our	analyses	on	independent	data.	All	point	estimates	fell	

within	95%	confidence	intervals	of	the	estimates	computed	on	the	corresponding	independent	data.	

These	results	suggested	that	the	presented	morphometricity	estimates	are	consistent	across	different	

samples.	We	present	these	results	with	a	cautionary	note	however.	As	we	emphasized	above,	

morphometricity	is	a	statistical	metric	that	depends	on	the	studied	population	and	the	measurement	

of	the	trait.	Thus,	variations	in	the	patient	composition	for	example	or	changes	in	diagnostic	criteria	

will	inevitably	lead	to	different	estimates	of	morphometricity.	In	our	replication	analyses,	these	

factors	seemed	to	play	only	a	minor	role.		

	

Whole-brain	Morphometricity	Analyses	Can	Be	More	Powerful	than	ROI-based	Analyses.	We	

present	morphometricity	analysis	as	an	alternative	to	the	classical	region-based	interrogation	

conducted	in	neuroimaging,	which	is	often	focused	on	discovering	or	characterizing	biomarkers	and	

mapping	biological	effects.	The	central	challenge	in	region-based	approaches	is	that	we	need	to	

either	confine	our	analyses	to	a	priori	ROIs,	or	exhaust	statistical	power	by	probing	a	large	number	of	

candidate	regions.	In	our	experiments,	we	conducted	a	direct	comparison	between	whole-brain	

morphometricity	analysis	and	an	ROI-based	approach.	To	identify	trait-specific	ROIs,	a	discovery	

analysis	was	run	on	independent	samples	of	each	trait.	The	associations	between	the	identified	ROIs	

and	traits	were	then	tested	in	non-overlapping	samples.	Identifying	the	most	associated	ROI	and	

estimating	the	magnitude	of	association	in	independent	samples	avoided	the	issue	of	circular	analysis	

[46,47],	and	produced	unbiased	morphometricity	estimates	for	individual	ROIs.	Our	results	

demonstrated	that	whole-brain	morphology	consistently	explained	more	of	the	phenotypic	variation	
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than	single	ROIs.	Furthermore,	morphometricity	analysis	could	reveal	associations	that	were	not	

detectable	when	focused	on	isolated	regions.	For	example,	education	and	schizophrenia	were	found	

to	be	not	significantly	associated	with	volumetric/thickness	measurements	of	any	of	the	individual	

ROIs;	yet,	both	traits	were	moderately	and	significantly	morphometric	in	whole-brain	analyses,	which	

indicates	that	they	may	have	spatially	distributed	neuroanatomical	signatures	that	cannot	be	

captured	by	individual	ROIs.	In	addition,	whole-brain	morphometricity	analysis	offers	the	capability	of	

capturing	interactions	between	brain	regions	and	thus	can	be	more	powerful	than	analyzing	each	ROI	

independently.	

	

Potential	Limitations	and	Drawbacks	of	Morphometricity.	Morphometricity	is	a	statistical	metric	and	

assumes	a	particular,	linear	model	of	the	relationship	between	variables.	One	critical	component	of	

the	model	is	the	Anatomical	Similarity	Matrix	(ASM),	which	captures	the	covariance	structure	of	the	

random	effect	that	accounts	for	the	morphological	variation	in	the	sample.	In	this	work,	we	

considered	a	linear	metric	and	a	nonlinear	Gaussian-type	metric	to	quantify	the	similarity	of	

volumetric/thickness	measurements	between	pairs	of	subjects,	and	employed	a	model	selection	

technique	to	find	the	metric	that	better	describes	the	data.	Our	analyses	suggest	that	the	Gaussian	

metric	is	consistently	better	than	the	linear	metric	across	the	traits	we	studied,	and	captures	a	

significant	portion	of	relevant	inter-subject	variation	under	different	conditions.	However,	we	have	

not	attempted	to	exhaustively	explore	other	types	of	similarity	metrics,	which	may	emphasize	

different	aspects	of	the	data	and	produce	different	results.	Alternatively,	the	ASM	can	be	built	using	a	

bottom-up	approach	and	expressed	as	a	combination	of	elementary	matrices,	and	the	parameters	of	

this	combination	can	be	treated	as	unknown	variables.	By	increasing	the	unknowns	in	the	model,	

however,	this	approach	will	likely	reduce	statistical	power.		

	

Another	important	point	to	consider	is	that	ASM	should	reflect	brain-wide	global	morphology	and	

cannot	be	optimized	for	a	specific	trait.	This	latter	observation	is	critical	to	be	able	to	objectively	

compare	morphometricity	estimates	across	different	traits.	Our	global	definition	of	ASM	and	

morphometricity,	however,	constrains	the	interpretation	of	the	results.	Certain	traits	with	very	

dramatic	yet	focal	effects,	might	not	yield	large	morphometricity	estimates,	since	the	proposed	

model	is	insensitive	to	localized	effects.			
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Finally,	as	in	any	association	testing	framework,	the	interpretation	of	morphometricity	analysis	

results	should	be	done	very	carefully	and	consider	confounding	mechanisms.	This	is	well	understood	

in	the	context	of	heritability,	where	non-genetic	(e.g.,	dietary,	cultural,	socioeconomic)	influences	

that	vary	across	racial	groups	or	families	can	confound	genetic	analyses.	Similar	drawbacks	apply	to	

morphometricity.	For	example,	siblings	might	have	similar	brain	morphologies	and	phenotypic	

expressions,	yet	there	might	not	be	any	causal	link	between	brain	morphology	and	the	phenotype.	

Therefore,	we	recommend	running	morphometricity	analyses	on	a	set	of	unrelated	subjects.	

Furthermore,	we	advise	constraining	the	analysis	(if	possible)	to	a	homogeneous	sample	of	uniform	

ancestry,	and	explicitly	controlling	for	other	potential	confounding	factors,	such	as	age,	sex,	and	scan	

site.					

	

Potential	Uses	and	Extensions	of	Morphometricity.	Morphometricity	analysis	can	be	used	to	

prioritize	imaging	modalities,	acquisition	parameters,	and	processing	pipelines.	For	example,	there	

are	a	growing	number	of	software	packages	that	allow	us	to	automatically	extract	numerous	

structural	measurements	from	brain	images.	Different	constructions	of	feature	vectors	and	different	

metrics	that	quantify	the	similarity	of	imaging	features	between	individuals	will	result	in	distinct	

ASM’s,	which	can	be	compared	with	the	model	selection	framework	employed	in	this	study.	

Therefore,	morphometricity	analysis	offers	a	way	to	quantitatively	and	objectively	identify	the	

imaging	features	and	inter-subject	similarity	metric	that	best	describe	the	trait-relevant	aspects	of	

whole-brain	morphology.		

	

Alternatively,	one	can	imagine	estimating	the	functional,	structural,	connectomic,	and	molecular	

signatures	of	a	trait	within	a	single	statistical	model,	where	each	of	these	components	is	represented	

with	a	random	effect	and	the	corresponding	similarity	matrix	computed	from	a	relevant	modality.	

Similarly,	one	can	partition	the	phenotypic	variation	into	contributions	from,	for	instance,	cortical	and	

subcortical	features,	or	different	large-scale	brain	networks.	This	strategy	might	offer	novel	insights	

about	the	neural	correlates	of	certain	phenotypes	by	integrating	multiple	modalities	and/or	modeling	

spatial	heterogeneity	in	a	unified	analytic	framework.	This	novel	perspective	might	also	allow	us	to	

quantify	the	complementary	information	contained	in	different	imaging	modalities	and	spatial	

locations.		
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As	longitudinal	imaging	studies	continue	to	grow,	it	will	be	interesting	to	extend	morphometricity	to	

examine	the	relationships	between	temporal	dynamics	in	brain	morphology	(e.g.,	global	atrophy	

rates)	and	clinical	or	behavioral	traits.	We	envision	employing	the	linear	mixed	effects	strategy	to	

model	longitudinal	data	[48,49],	and	we	will	define	the	morphometricity	of	longitudinal	changes	in	

phenotypes	within	this	framework.		

	

Finally,	the	proposed	framework	can	also	offer	a	novel	perspective	on	examining	relationships	

between	different	phenotypes.	We	plan	to	extend	morphometricity,	which	is	essentially	the	degree	

of	association	between	global	brain	morphology	and	a	phenotype,	to	quantify	the	“morphological	

correlation”	between	phenotypes.	This	will	be	analogous	to	genetic	correlation	analysis	[50],	which	

quantifies	the	genetic	overlap	between	traits.	We	believe	that	morphological	correlation	will	be	an	

invaluable	tool	to	examine	the	complex	biological	relationships	between	the	various	dimensions	of	

human	behavior	and	will	inform	basic	and	translational	research	into	exploring	and	redefining	the	

landscape	of	brain	diseases.		
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Methods	

The	Imaging	Measurements.	In	this	study,	we	used	the	extensively	studied	FreeSurfer-derived	

measurements	to	describe	the	whole-brain	morphology.	The	imaging	measurements	included	

volumes	of	non-cortical	structures	[51]	(left	and	right	cerebral	white	matter,	lateral	ventricle,	inferior	

lateral	ventricle,	cerebellum	white	matter,	cerebellum	cortex,	thalamus	proper,	caudate,	putamen,	

pallidum,	hippocampus,	amygdala,	and	the	3rd	and	4th	ventricles)	and	thickness	measurements	of	

cortical	regions	[52]	(left	and	right	superior	frontal,	rostral	middle	frontal,	caudal	middle	frontal,	pars	

opercularis,	pars	triangularis,	pars	orbitalis,	lateral	orbitofrontal,	medial	orbitofrontal,	precentral,	

paracentral,	frontal	pole,	superior	parietal,	inferior	parietal,	supra	marginal,	post	central,	precuneus,	

superior	temporal,	middle	temporal,	inferior	temporal,	banks	of	the	superior	temporal	sulcus,	

fusiform,	transverse	temporal,	entorhinal,	temporal	pole,	parahippocampal,	lateral	occipital,	lingual,	

cuneus,	pericalcarine,	rostral	anterior	frontal,	caudal	anterior	frontal,	posterior	parietal,	isthmus	

parietal,	and	insula).	

	

The	Anatomical	Similarity	Matrix.	The	anatomical	similarity	matrix	(ASM)	plays	a	central	role	in	the	

proposed	morphometricity	analysis.	The	ASM	is	an	𝑁×𝑁	symmetric	matrix,	where	𝑁	is	the	number	of	

subjects	in	the	analyzed	sample.	Entries	in	the	ASM	quantify	the	pairwise	global	similarity	between	

the	brain	morphologies	of	two	individuals.	In	principle,	the	ASM	can	be	any	non-negative	definite	

matrix	with	its	diagonal	elements	constrained	to	be	equal	to	1	on	average.	In	this	study,	we	

considered	two	widely	used	similarity	metrics	(linear	and	Gaussian)	to	construct	the	ASM.		

Assume	that	𝑣FG	denotes	the	𝑘-th	imaging	measurements	from	subject	𝑖,	𝑀	is	the	total	number	of	

measurements,	and	𝑠G	is	the	sample	standard	deviation	of	the	𝑘-th	measurement.	The	first	ASM	we	

considered	uses	a	linear	kernel.	Thus,	the	similarity	is	measured	as	the	linear	correlation	between	

pairs	of	imaging	vectors	and	the	(𝑖, 𝑗)-th	entry	is	computed	as:	

1
𝑀

𝑣FG𝑣MG
𝑠G0G

.					(4)	

This	is	equivalent	to	modeling	the	random	effect	𝒂	in	Equation	(1)	as	a	linear	combination	of	the	

imaging	features:	𝒂 = 𝒁𝒖,	where	𝒁	is	an	𝑁×𝑀	matrix	comprising	the	standardized	imaging	

measurements	(i.e.,	the	(𝑖, 𝑘)-th	entry	of	𝒁	is	𝑣FG/𝑠G),	and	𝒖	is	an	𝑀×1	random	vector	distributed	as	

𝒖 ∼ N 𝟎, ST
U

V
𝑰 ,	i.e.,	each	imaging	measurement	is	associated	with	an	independent	and	normally	
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distributed	effect	size.	The	covariance	of	𝒂	can	then	be	computed	as	𝜎/0 ∙ 𝒁𝒁Y/𝑀,	i.e.,	𝒁𝒁Y/𝑀	is	the	

ASM	with	its	entries	explicitly	stated	in	Equation	(4).	

	

The	second	ASM	we	considered	was	computed	using	a	Gaussian	kernel	on	standardized	imaging	

features,	with	the	(𝑖, 𝑗)-th	entry	defined	as:		

exp −
(𝑣FG − 𝑣MG)0

𝑀𝑠G0G

.					(5)	

Note	that	each	ASM	definition	corresponds	to	different	models	of	trait-relevant	variation.	For	

example,	the	Gaussian	kernel	can	capture	nonlinear	and	multivariate	associations	between	brain	

morphology	and	traits.	One	can	further	decide	to	weigh	different	features	differently,	based	on	for	

example,	some	a	priori	information	about	trait	relevance.	Each	of	these	ASM	choices	will	correspond	

to	a	particular	semi-parametric	regression	model,	where	the	morphological	association	is	captured	

with	a	function	that	belongs	to	a	specific	space	of	functions	induced	by	the	utilized	kernel	[53].	Below,	

we	describe	an	empirical	strategy	to	choose	the	most	appropriate	ASM	model	from	a	selection	of	

candidates.	

	

In	the	presented	study,	for	a	given	similarity	metric,	we	computed	an	ASM	for	the	cortical	thickness	

measurements	and	an	ASM	for	the	head-size-normalized	volumes	of	non-cortical	structures	(i.e.,	

divided	by	total	intracranial	volume	estimates).	The	global	ASM	was	then	computed	as	the	average	of	

the	cortical	and	non-cortical	ASM’s.		

	

Model	Selection.	To	select	the	ASM	that	can	best	describe	the	data,	we	used	a	model	selection	

technique	derived	for	LME	models	and	proposed	in	[53].	Specifically,	for	a	given	ASM	𝑲/,	if	we	

denote	𝑽 = 𝜎/0𝑲/ + 𝜎30𝑰	as	the	ReML	estimate	of	the	covariance	of	𝒚,	𝑷 = 𝑽B𝟏 −

𝑽B𝟏𝑿(𝑿𝑽B𝟏𝑿)B𝟏𝑿𝑽B𝟏,	and	define	𝑺 = 𝑰 − 𝜎30𝑷,	it	can	be	shown	that	tr(𝑺),	i.e.,	the	trace	of	the	

matrix	𝑺,	is	a	measure	of	model	complexity.	Liu	et	al.	[53]	thus	proposed	the	following	Akaike	

Information	Criterion	(AIC)	and	Bayesian	Information	Criterion	(BIC)	in	the	LME	modeling	framework:	

AIC = 𝑁log 𝑅𝑆𝑆 + 2tr 𝑺 ,					BIC = 𝑁log 𝑅𝑆𝑆 + log 𝑁 ∙ tr 𝑺 ,					(6)	

where	𝑅𝑆𝑆 = (𝒚 − 𝒚)Y 𝒚 − 𝒚 =	𝜎30(𝑁 − tr 𝑺 )	is	the	residual	sum	of	squares	(RSS)	of	the	LME	

model.	Both	AIC	and	BIC	reward	the	goodness-of-fit	(the	first	term)	of	the	model	and	penalize	
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complex	models	(the	second	term)	to	avoid	overfitting.	BIC	has	a	larger	penalty	term	than	AIC	for	

large	𝑁	and	thus	favors	simpler	models.	We	selected	the	ASM	that	gave	smaller	AIC/BIC	values.	

	

The	Analysis	Pipeline.	We	first	ran	FreeSurfer	on	all	structural	brain	MRI	scans	available	in	each	of	the	

analyzed	studies,	and	dropped	the	subjects	that	FreeSurfer	failed	to	complete	successfully.	Next,	we	

conducted	automatic	quality	control	on	the	measurements	computed	by	FreeSurfer	by	identifying	

outliers	–	if	>	25%	of	the	utilized	morphometric	variables	exhibited	values	that	were	more	than	2	

standard	deviations	away	from	the	population	mean,	we	deemed	that	subject	an	outlier	and	

discarded	it.	For	the	remaining	subjects,	we	computed	pairwise	similarity	measures	based	on	the	

linear	or	Gaussian	kernel	described	above.	If	there	were	two	subjects	that	exhibited	a	cortical	and	

non-cortical	similarity	measure	greater	than	0.95,	we	dropped	one	of	those	subjects,	accounting	for	

the	possibility	that	this	was	a	duplicate	case	or	a	closely	related	individual.	Finally,	we	included	sex	

and	age	as	covariates	in	all	our	analyses	(unless	sex	or	age	was	the	trait	of	interest,	in	which	case	that	

variable	was	not	included).	We	further	introduced	dummy	variables	that	indicated	site	IDs	when	

analyzing	multi-site	data	(except	for	ADNI,	where	there	were	a	large	number	of	sites,	yet	the	imaging	

parameters	were	carefully	calibrated	across	sites	[28]).	

	

Given	individual-level	data	and	the	ASM,	we	fit	the	model	of	Equation	(1)	to	estimate	the	variance	

component	parameters	via	the	Restricted	Maximum	Likelihood	(ReML)	algorithm	[21,22].	In	Matlab,	

we	implemented	an	efficient	Fisher	scoring	method	to	iteratively	maximize	the	restricted	likelihood	

of	the	model.	The	standard	error	of	the	variance	component	estimates	can	be	derived	using	the	

inverse	of	the	Fisher	information	matrix	when	the	algorithm	converges.	Empirically	we	confirmed	the	

parametric	estimates	using	jackknife	resampling	(see	Supplementary	Table	S2).	Significance	of	the	

morphometricity	estimate	was	obtained	via	a	likelihood	ratio	test,	comparing	LME	models	with	and	

without	the	random	effects.	Because	the	null	hypothesis	(𝜎/0 = 0)	lies	on	the	boundary	of	the	

parameter	space,	the	likelihood	ratio	test	statistic	follows	a	half-half	mixture	of	𝜒p0	(a	chi-square	

distribution	with	all	probability	mass	at	zero)	and	𝜒C0	(a	chi-square	distribution	with	one	degree	of	

freedom)	[54].	Implementations	of	the	developed	morphometricity	tools	are	available	at:	

http://people.csail.mit.edu/msabuncu/morphometricity.	

	



	 18	

ROI-based	Morphometricity	Analysis.	In	order	to	compare	the	proposed	whole-brain	

morphometricity	analysis	to	more	conventional	ROI-based	analyses,	we	implemented	an	ROI-based	

adaptation	of	Equation	(1).	Here,	instead	of	computing	the	ASM	using	an	array	of	variables	that	span	

the	brain,	we	computed	ROI-based	ASMs	only	using	a	single	ROI	biomarker	–	the	variable	that	had	

the	strongest	association	with	the	trait	of	interest.	To	identify	the	ROI	biomarker	of	each	trait,	we	

conducted	an	independent	discovery	analysis	on	a	non-overlapping	sample,	examining	the	

association	between	each	of	the	candidate	imaging	variables	and	the	trait	in	a	regression	analysis,	

while	appropriately	controlling	for	age,	sex,	and	site.	The	imaging	variable	that	exhibited	the	smallest	

p-value	was	then	identified	as	the	ROI	biomarker	for	the	trait	of	interest	and	used	in	the	

morphometricity	analysis.	We	note	that	for	the	ROI-discovery	analyses	we	utilized	the	replication	

(secondary)	samples	of	the	whole-brain	morphometricity	analyses.	This	way,	we	computed	the	ROI-

based	morphometricity	results	using	the	primary	samples.		

	

The	Data.	We	employed	baseline	brain	MRI	scans	(T1-weighted	acquired	on	1.5T	machines),	clinical	

diagnosis,	and	demographic	variables	from	phase	1	of	the	ADNI	[28].	In	the	ADHD	200	sample	[29],	

cases	were	defined	as	those	with	evidence	of	non-typical	development	and	an	ADHD-Combined	

diagnosis,	as	per	the	published	phenotypic	key	

[http://fcon_1000.projects.nitrc.org/indi/adhd200/general/ADHD	200_PhenotypicKey.pdf].	In	the	

cross-sectional	OASIS	sample	[30],	subjects	(of	60	years	or	older)	with	a	clinical	dementia	rating	(CDR)	

greater	than	0	were	classified	as	having	dementia.	Elderly	subjects	with	a	0	CDR	were	classified	as	

healthy	controls.	For	the	20	control	subjects	with	repeat	scans,	we	only	used	the	data	from	the	first	

imaging	session.	In	the	COBRE	sample	[31],	schizophrenia	subjects	were	identified	according	to	the	

phenotype	file	[http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html].	The	MCIC	data	was	

compiled	from	a	shared	repository	of	multi-site	brain	imaging	data	collected	for	the	clinical	

investigation	of	schizophrenia	[32].	The	ABIDE	analyses	[33]	were	conducted	on	subjects	who	were	

older	than	10	years,	and	cases	were	defined	as	those	having	a	non-zero	diagnostic	group	entry	in	the	

phenotype	table	[http://fcon_1000.projects.nitrc.org/indi/abide/].	In	the	PPMI	analyses	[34],	cases	

were	determined	to	be	those	diagnosed	with	Parkinson’s	Disease	at	baseline	and	controls	were	those	

who	were	clinically	healthy	and	not	prodromal,	again	at	baseline	[http://www.ppmi-info.org/access-

data-specimens/download-data/].	
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All	general	trait	analyses	were	conducted	on	healthy	control	samples	(see	criteria	of	relevant	study).	

Both	the	OASIS	and	GSP	samples	cover	a	substantial	portion	of	the	adult	life	span	and	thus	were	used	

to	estimate	the	morphometricity	of	age.	All	GSP	analyses	were	constrained	to	unrelated,	healthy	

controls	of	non-Hispanic	European	ancestry,	with	high-quality	structural	brain	MRI	scans	acquired	on	

a	12-channel	coil	[26].	In	the	general	intelligence	(IQ)	analyses,	we	utilized	the	Wechsler	Abbreviated	

Scale	of	Intelligence	as	the	phenotype	(both	in	the	ADHD	200	and	ABIDE	samples).	For	the	

morphometricity	analysis	of	sex,	we	created	subsamples	that	were	gender-balanced	(50%	female)	

and	age-matched	between	sexes.	In	the	PPMI	data,	education	was	measured	in	years	(minimum	9	

and	maximum	24),	whereas	in	the	OASIS	sample,	education	levels	were	encoded	as;	1:	less	than	high	

school	graduate,	2:	high	school	graduate,	3:	some	college,	4:	college	graduate,	and	5:	beyond	college.		

	

In	the	cognitive	measure	analyses,	we	employed	the	demographic	and	behavioral	measures	reported	

in	the	‘open	access’	and	‘restricted’	subject	information	spreadsheets	available	from	the	HCP	

database	website	[http://www.humanconnectome.org/data].	The	HCP	collected	a	range	of	well-

validated	and	reliable	behavioral	measures,	including	those	from	the	NIH	Toolbox	Assessment	of	

Neurological	and	Behavioral	Function,	and	several	additional	measures	to	assess	domains	not	

covered	by	the	NIH	Toolbox.	For	more	information	on	the	rationale	behind	the	development	of	the	

behavioral	batteries	used	in	HCP,	see	[55].	

	

All	MRI	scans	from	ADNI,	OASIS,	ADHD	200,	MCIC,	COBRE,	PPMI,	and	HCP	were	processed	with	

FreeSurfer	version	5.3.	The	GSP	MRI	scans	were	processed	with	FreeSurfer	version	4.5.		
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Tables	and	Figures

	

Figure	1:	Morphometricity	estimates	of	various	diseases	(on	the	liability	scale)	computed	using	the	

Gaussian	anatomical	similarity	matrix	(ASM)	of	Equation	(5).	Each	bar	is	annotated	with	study	

names	used	to	compute	these	estimates.	For	Alzheimer’s	disease	and	schizophrenia,	we	had	

independent	samples	used	to	compute	replication	estimates	(purple	bars).	Error	bars	indicate	

standard	error	of	the	estimates.	
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Figure	2:	Morphometricity	estimates	of	general	nonclinical	traits	computed	using	the	Gaussian	

anatomical	similarity	matrix	(ASM)	of	Equation	(5).	IQ	denotes	general	intelligence.	Each	bar	is	

annotated	with	study	names	used	to	compute	these	estimates.	Blue	bars	correspond	to	results	from	

the	primary	analyses,	whereas	purple	bars	correspond	to	independent	replication	analyses.	Error	bars	

indicate	standard	error	of	the	estimates.	
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Figure	3:	ROI-based	morphometricity	estimates	of	general	nonclinical	traits	(age,	intelligence,	sex,	

and	education),	Alzheimer’s	disease	(AD),	and	schizophrenia	(SCZ).	For	AD	and	SCZ,	morphometricity	

estimates	have	been	transformed	to	the	liability	scale.	Red	circles	denote	whole-brain	

morphometricity	estimates	for	each	trait.	Error	bars	indicate	standard	error	of	the	estimates.	 	
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Figure	4:	Morphometricity	estimates	of	various	measures	of	cognition	computed	on	data	from	the	

Human	Connectome	Project	(HCP)	and	using	the	Gaussian	anatomical	similarity	matrix	(ASM).	Blue	

and	purple	bars	correspond	to	primary	and	secondary	analyses,	respectively.	Error	bars	indicate	

standard	error	of	the	estimates.		 	
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Table	1:	Sample	characteristics	and	morphometricity	estimates	for	analyzed	disease	traits.	

*P	<	5e-3,	**P	<	5e-4,	***P	<	5e-5	

Disease  Case N
 Case Age 
(mean±std)

 Case 
Fem%  Control N

 Control Age 
(mean±std)

 Control 
Fem %

 Study 
Name

Alzheimer's 154  74.6±7.6 46.8 219  75.9±5 48.4  ADNI
ADHD 122  11.6±3.2 75.4 384  11.8±2.9 62.2  ADHD
Schizophrenia 92  33±11.2 75.0 85  32.8±11.7 67.1  MCIC
Autism 209  17.6±7.9 14.4 305  17.3±7.2 18.4  ABIDE
Parkinson's 376 61.4±9.7 35.1 152 60.4±11.4 47.8 PPMI

Assumed 
Prevalance

Morphometricity 
(liability scale)

Standard 
Error

13% 1.00*** 0.03
1% 0.55** 0.16
1% 0.50*** 0.03
1% 0.38*** 0.06
0.2% 0.20* 0.06

	

	

Table	2:	Sample	characteristics	and	morphometricity	estimates	for	the	analyzed	general	nonclinical	traits.	

Trait Name
 Sample 

Size
 Age (mean±std) 

[min-max] 
 Female 

%
 Study 
Name

Age 1073  22±5.8 [18-81] 56  GSP
IQ 155  11.3±2.8 [7.2-17.7] 60  ADHD
Sex 1074  25.3±13.7 [18-84] 50  GSP
Education 152  60.4±11.4 [30-82] 34.8 PPMI

Morhopmetricity 
Estimate

Standard 
Error

1.00 0.01
0.95 0.05
0.93 0.02
0.81 0.08
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Supplementary	Table	S1:	Akaike	Information	Criterion	(AIC)	and	Bayesian	Information	Criterion	(BIC)	

values	(Equation	6)	for	the	primary	morphometricity	analyses	conducted	with	the	Linear	(Equation	4)	

and	Gaussian	(Equation	5)	kernels.	

	
AIC	(x104)	 BIC	(x104)	

Disease/Trait	 Gaussian	 Linear	 Gaussian	 Linear	
Alzheimer's	(ADNI)	 -1.508	 -0.309	 -1.362	 -0.163	
ADHD  -2.040	 -0.655	 -1.826	 -0.441	
Schizophrenia (MCIC) -0.772	 -0.216	 -0.716	 -0.160	
Autism (ABIDE) -2.022	 -0.637	 -1.804	 -0.419	
Parkinson's -0.522	 -0.194	 -0.491	 -0.163	
Age (GSP) -2.967	 -0.276	 -2.433	 0.258	
IQ (ADHD 200) -0.521	 -0.107	 -0.474	 -0.059	
Sex (GSP) -3.559	 -0.992	 -3.024	 -0.457	
Education (PPMI) -0.512	 -0.188	 -0.477	 -0.153	
	

	

	

	

	

	 	



Supplementary	Table	S2:	Parametric	and	jackknife	estimates	of	morphometricity	and	standard	
errors.	Morphometricity	estimates	for	disease	traits	are	on	the	liability	scale.		
	

 
Morphometricity	 Standard	Error	

Disease/Trait	 Parametric	 Jackknife	 Parametric	 Jackknife	
Alzheimer's	(ADNI)	 1.00 1.00 0.03 0.03 
ADHD (ADHD 200) 0.55 0.55 0.16 0.17 
Schizophrenia (MCIC) 0.50 0.50 0.03 0.03 
Autism (ABIDE) 0.38 0.38 0.06 0.06 

Parkinson's 0.20 0.20 0.06 0.06 

Age (GSP) 1.00 1.00 0.01 0.01 
IQ (ADHD 200) 0.95 0.95 0.05 0.06 
Sex (GSP) 0.93 0.93 0.02 0.02 

Education (PPMI) 0.81 0.81 0.08 0.07 
	 	



Supplementary	Table	S3:	Independent	replication	on	non-overlapping	data:	sample	characteristics	

and	morphometricity	estimates	for	analyzed	disease	traits.	

Disease  Case N
 Case Age 
(mean±std)

 Case 
Fem%  Control N

 Control Age 
(mean±std)

 Control 
Fem %

 Study 
Name

Assumed 
Prevalance

Morphometricity 
(liability scale)

Standard 
Error

Alzheimer's 100  76.8±7.1 59.0 98  75.9±9.0 73.4 OASIS 13% 1.00 0.06
Schizophrenia 56  35.8±12.4 16.1 73  35.7±11.6 31.5 COBRE 1% 0.45 0.08

	

	 	



Supplementary	Table	S4:	Independent	replication	on	non-overlapping	data:	sample	characteristics	

and	morphometricity	estimates	for	analyzed	general	nonclinical	traits.	

Trait Name
 Sample 

Size
 Age (mean±std) 

[min-max]  Female %
 Study 
Name

Trait (mean±std) [min-
max] 

Morhopmet
ricity 
Estimate

Standard 
Error

Age 124  68.0±13.7 [33-94] 72.6 OASIS N/A 1.00 0.03
IQ 108  17.5±8.0 [10.5-56.2] 14.8 ABIDE 109.33±11.0[84-133] 0.95 0.06
Sex 298  11.3±2.9 [7.17-21.74] 50 ADHD N/A 0.90 0.05
Education 124  68.0±13.7 [33-94] 72.6 OASIS 3.5±1.2 [1-5] 0.79 0.13 	
	

	

	

	

	 	



Supplementary	Table	S5:	ROI-based	morphometricity	estimates	for	the	traits	with	two	independent	

samples.	Most	associated	ROIs	were	identified	on	independent	sample.	*For	disease	traits	we	list	

morphometricity	estimates	on	the	liability	scale.		

Trait Name ROI-based	Morphometricity Standard	Error P-value Most	associated	ROI
Age 0.82 0.03 <1e-15 3rd	Ventricle
IQ 0.87 0.05 <1e-15 Right	Lateral	Ventricle
Sex 0.44 0.07 1.9e-9 Right	Thalamus
Education 0.00 0.06 1.00 Right	Hippocampus
Alzheimer's* 0.66 0.16 2.6e-5 Right	Hippocampus
Schizophrenia* 0.06 0.05 0.22 Right	Inferior	Lateral	Ventricle 	
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