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Abstract

This thesis investigates the employment of different entropic measures, including

Rényi entropy, in the context of image registration. Specifically, we focus on the

entropy estimation problem for image registration and provide theoretical and ex-

perimental comparisons of two important entropy estimators: the plug-in estimator

and minimal entropic graphs. We further develop an image registration framework

based on the graph-theoretic estimator. Within this framework, we address practical

and theoretical issues such as the incorporation of spatial information, the efficient

and fast search of the optimum alignment, and the employment of previously aligned

image pairs. These analyses yield fast, robust and accurate multi-modal affine regis-

tration algorithms applicable to different medical problems. Next, we investigate the

nonrigid registration problem and provide a novel fast entropy-based nonrigid regis-

tration algorithm. Finally, we discuss a scientific application, the normalization of

the human cerebral cortex based on patterns of functional response, and investigate

an algorithm that employs a correlation-based entropic measure.
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Chapter 1

Introduction

This thesis deals with the fundamental problem of image (signal) alignment and inves-

tigates different techniques to solve the problem using ideas that reside on the bound-

ary of image processing, computer vision and information theory. Parallel to recent

trends in computer vision, e.g. [97], in our approach, we look at the alignment prob-

lem from a stochastic viewpoint and employ rigorous results from the information,

probability and graph theory literatures to design practical and useful algorithms.

We view this thesis as a continuation of the exploration of fast, efficient, robust

and flexible algorithms intended for signal alignment. We are motivated to study

these issues since we believe that no matter how advanced our computational tech-

nology becomes, mankind will always be faced with challenging applications that are

constrained by the limitation of physical resources, such as space, time and band-

width.

In this thesis, alignment is typically performed on functions defined in a two- or

three-dimensional domain, where space is the independent variable. As commonly

done in the literature, these functions will be called images. Moreover, the alignment

problem will generally be referred to as image registration. As algorithm designers,

we are not concerned about the source of the images, which can be a physical sensor,
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or even a computer model. Also, note that most of the discussed ideas can straight-

forwardly be applied to other alignment problems in different application domains.

In image processing, often (for example, when comparing or combining the infor-

mation content of images), we are interested in the relationship between two or more

images. The analysis of this relationship usually becomes tractable once a correspon-

dence is set up between the images. Image registration is the task of setting up this

correspondence.

Image registration shows up in a rich range of application domains, such as medical

image analysis (e.g. diagnosis), neuroscience (e.g. brain mapping), computer vision

(e.g. stereo image matching for shape recovery), astrophysics (e.g. the alignment of

images from different frequencies), military applications (e.g. target recognition), etc.

For a detailed overview of these applications, see [33, 52]. The definition of corre-

spondence varies across disciplines and even across individual applications. Thus, a

proposition of a universal image registration algorithm is practically impossible. Yet,

in this thesis our goal is to keep the approach as general as possible, so that discussed

techniques can be tailored towards the specifics of a particular application.

This thesis will frequently be using medical images as examples to illustrate and

support ideas. Due to the rapid advancement of imaging technologies in recent

decades, we are enjoying a widespread availability of medical imaging devices, such as

the Magnetic Resonance (MR), Ultrasound (US), X-ray, Positron Emission Tomogra-

phy (PET), etc. The images acquired by these devices display anatomical (structural)

and/or functional information about the imaged organ or body part. Fusion and/or

comparison of the information content of different images is usually achieved based on

image registration. This information is then used for various purposes, such as detect-

ing pathological changes, treatment verification, early diagnosis, scientific research,

etc.

Image registration is particularly difficult when images are obtained through dif-
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ferent sensor types (multi-modal registration) and/or when complex (e.g. nonlinear)

geometric transformations are required to relate the images, e.g. when registering

images of different human brains (multi-subject registration). Much of this thesis in-

vestigates the idea of employing information theory to solve this difficult problem.

Most of the ideas are contributions to the school of thought inspired by the influential

papers of Collignon et al. [50] and Viola and Wells [97]. The advantage of this ap-

proach is that it provides sufficient flexibility for capturing the underlying relationship

between the images. Note that this relationship is typically complex and unknown in

a multi-modal setting. This strength of the approach has lead to the design of many

robust and accurate multi-modal registration algorithms. For a detailed survey of

these algorithms the reader is referred to [68].

Although, the information-theoretic approach has yielded many useful registration

algorithms, it has some drawbacks. Most importantly, the computation of these

similarity measures is typically slower than competing simpler measures, such as the

L2 norm or correlation. This becomes critical when time is an important constraint

of the application. An important contribution of this thesis is a detailed analysis of

this problem and several proposed approaches to design fast algorithms.

Moreover, most of the current information-theoretic registration algorithms rely

on the strong assumption that pixel intensity values are independent and identically

distributed samples of a random variable. This causes the algorithm to discard spatial

information in the images. As a result, registration accuracy may suffer. We include

a brief discussion of this issue and propose methods to alleviate the problem.

As presented in this thesis, stochastic models of the registration problem yield dif-

ferent entropic measures that quantify the quality of alignment. These measures, in

theory, are functionals of underlying probability densities. In practice, however, the

algorithm only has access to a finite number of samples. Thus, it has to estimate the

entropic measure (see [3]). A major contribution of this thesis is the analysis and com-
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parison of different entropy estimators intended for image registration. Particularly,

we focus on two techniques: plug-in estimators and minimal entropic graphs. Plug-in

estimators are more straightforward to implement and readily provide gradient in-

formation, which can be used for the efficient search of the optimum transformation.

Thus, they have been popularly employed for image registration. Entropic graphs,

on the other hand, have only recently been applied to registration [60]. We show that

despite the fact that the entropic graph estimator yields a non-differentiable measure,

it is possible to efficiently compute a descent direction which can then be used for the

fast optimization of the alignment measure.

In certain real-world applications, previously registered image pairs are available

to the algorithm. In a multi-modal application, these pre-registered images contain

valuable information about the cross-modality relationship. Another contribution

of this thesis is a proposed method to incorporate prior knowledge into the entropic

graph based framework. We show that the incorporation of prior knowledge improves

robustness against bad initialization but can reduce accuracy due to imperfect prior

knowledge. To avoid this, we suggest a simple remedy. Moreover, we propose a

method to minimize the computational overhead introduced by training that uses an

entropic graph computed off-line over the training samples.

Global transformation models, e.g. rigid-body, are in many cases (e.g. for multi-

subject registration) not sufficient to recover the misalignment. In this thesis, we use

the broad term of nonrigid registration to refer to such problems. Until recently, the

multi-modal and nonrigid (registration) literatures had evolved separately, mainly

because of the high complexity of the problem [65]. The combination of the two

approaches using a two-step algorithm was a common technique. These algorithms

typically establish cross-subject/nonrigid alignment using high resolution images of

a reference modality and mono-modal registration algorithms that employ simplistic

similarity measures, e.g. sum of squared differences of pixel intensity values, and

4



high dimensional geometric transformations. Images of other modalities are then reg-

istered with the reference modality image within each subject using low dimensional

global geometric transformations. A typical example of this approach is used for

functional MRI studies, where cross-subject registration is achieved based on hi-res

structural MRI scans (mono-modal, cross-subject, nonrigid registration using the ref-

erence modality) and the fMRI data sets are aligned with each subject’s structural

MRI volume using rigid-body transformations that correct for subject motion during

the scan. Note that, this procedure indirectly registers a subject’s fMRI data set to

another subject’s structural and functional MRI volumes.

As new imaging modalities become available, the need for having robust and ac-

curate nonrigid multi-modal registration algorithms to fuse and compare the informa-

tion content of these modalities increases. Moreover, in many of today’s applications,

e.g. perfusion studies, cardiac motion analysis, etc., the aforementioned two-stage

strategy either is not applicable due to the lack of a reference modality or does not

provide satisfactory results. Hence, the requirement for nonrigid multi-modal image

registration algorithms. Over the last several years, information-theoretic methods

have been applied to this problem. However, for most of these methods, speed is

a critical issue because of the computational complexity of the employed similarity

measure and/or high-dimensional nature of the optimization problem. In this thesis,

we investigate a fast and accurate multi-modal nonrigid registration algorithm that

relies on a one-dimensional “level set entropy” measure.

1.1 Image Registration: An Overview

In their survey papers, Brown [6] and Maintz and Viergever [52] provide excellent

overviews and categorizations of image registration techniques. Most of the ideas

presented in this section are based on these surveys.
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The variations (sometimes called distortions) across two or more images of the

same (or similar) scene can be grouped into two categories: spatial (geometric) and

intensity (valumetric) variations. For example, Figure 1.1 shows a color and an

infra-red (IR) image of the same scene taken from slightly different angles (geometric

distortion). Pixels in both images that correspond to the same structure contain

values in different ranges (valumetric distortion). Image registration attempts to

correct for (recover) some of these variations, while preserving others.

a) Color Image b) Infrared Image

Figure 1.1: A color and IR image of the Spitzer Space Telescope’s Delta II rocket
obtained from NASA’s website (http://solarsystem.nasa.gov/multimedia).

Geometric variations can be divided into two groups: Those we want to correct

for and those we don’t. A typical example for the first group is variations due to

viewpoint changes, i.e., different orientations of the imaging device. On the other

hand, we may want to preserve variations due to changes in the scene that are of

interest, for example when monitoring tumor growth.

Valumetric variations are due to three main reasons:

• Scene differences: For example, an alien object may be present in one of the

images, changing the range of intensity values in the corresponding region.

• Different sensor type: Imaging devices can measure everything from hydrogen
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density (MRI) to temperature (thermography). Thus, the same physical reality

can yield very different representations, which is the case in a multi-modal

setting. These representations usually contain correlated information along with

complementary, uncorrelated information.

• Different conditions: For example different lighting in conventional cameras,

different magnetic field properties in the MRI machine, etc.

When designing a registration algorithm, it is important to identify the variations

we want to correct for. The algorithms that this thesis deals with, do not attempt

to recover valumetric variations, i.e., changes in the intensity ranges. It is, however,

useful to have a good understanding of how intensity values in the different images

are related. This knowledge can then be employed to identify and efficiently recover

geometric variations of interest.

A typical image registration algorithm consists of three coupled components: an

alignment measure (also known as similarity measure, registration function, etc.) that

quantifies the quality of alignment; a class of admissible geometric transformations

that can be applied to the image(s), i.e., employed to spatially “warp” the image(s);

and an optimizer that seeks the transformation that maximizes the similarity as

quantified by the alignment measure. Figure 1.2 illustrates these components.

	 Alignment Measure

  e.g. Correlation of pixel values

	    Optimizer

e.g. Iterative Gradient Descent




Floating Image

Reference Image

Geometric Transformation

e.g. Rigid body

Not Converged

Converged
Terminate

Figure 1.2: A Block diagram that represents a typical image registration algorithm.

Roughly speaking, registration algorithms can be analyzed under two different
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categorizations: application-based and methodology-based. Note that there is a strong

relationship between these two types of classifications. The application defines align-

ment (i.e., what we mean by correspondence) and it determines the constraints, e.g.

on time and memory. These specify (or, more broadly speaking, narrow down) the

choices of algorithms, i.e., the methodology.

From the application’s point of view, registration algorithms can be classified

based on several criteria. The classifications presented here are partially based on

[93]. The criteria and their primary subdivisions are:

• Modality: Mono-modal refers to the case where all images are obtained from

the same imaging sensor type and there are no major differences between the in-

tensity ranges that correspond to the same physical/physiological phenomenon.

In a multi-modal setting, these ranges can differ drastically. This is typically

due to different sensor types.

• Dimensionality: This refers to the number of dimensions of the images. His-

torically, images have typically had two spatial dimensions. Today, however,

several imaging technologies provide 3D volumes. Moreover, some sensors, e.g.

functional MRI, provide a video, i.e. a sequence of images. When treating

the video as one big data set, time can be thought of as an extra dimension.

One convention is to denote time as a 0.5 dimension. This is helpful to clarify

some ambiguities, e.g. 3D (three spatial dimensions) versus 2.5D (two spatial

dimensions + time). Most of today’s applications involve 2D/2D and 3D/3D

registration.

• Speed: Offline refers to applications where time is not an important constraint.

Online denotes a heavy time constraint, typically indicating real-time applica-

tions. An important online example is intra-operative procedures performed

within the operating theater. Some scientific applications (e.g. human brain
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mapping), on the other hand, do not have a heavy time constraint.

• Subject: In a medical application, intra-subject refers to the task where all im-

ages are of the same subject (patient). Inter-subject denotes the fact that more

than one subject is involved. If an “averaged” template (atlas) is employed,

this is typically called atlas registration. Inter-subject applications are typically

more complex, since correspondence is difficult to identify.

• Nature of Misalignment: Geometric misalignment can be attributed to sev-

eral factors, including different viewpoints (orientation) of sensors, temporal

changes (e.g. Digital Subtraction Angiography: the registration of images be-

fore and after radio isotope injections to characterize functionality) and inherent

differences (e.g. brains of different subjects).

From the methodology point of view, registration algorithms can be classified

based on several criteria:

• Employed Information Content: In the registration literature, one can

identify two trends in the type of information employed. Landmark based ap-

proaches rely on the definition of landmarks. Alignment is computed based on

these landmarks (sets of points, lines or surfaces) only. These landmarks can

have a clear physical meaning (e.g. the cortical surface of the human brain [19],

fiducial markers visible in all modalities [94], etc.), or they can be of theoretical

interest only (e.g. lines, corners, points of high curvature, etc.). In landmark

based registration, the set of identified points is sparse compared to the orig-

inal image content, which allows fast optimization. However, performance of

the algorithm heavily depends on the landmark identification. Image content

based approaches, on the other hand, rely on pixel intensity information. These

typically extract features from pixels (e.g. intensity values [97], gradient vectors

[67], wavelet coefficients [59], etc.) and compute an alignment based on the set
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of feature samples. These are usually slower than landmark based algorithms,

but have the potential to produce accurate and robust results in contexts where

landmarks are difficult to define or determine.

• Locality of Alignment Measure: Alignment quality can be measured for

the whole image, using global measures, e.g. sum of squared differences of all

pixel values, or for a neighborhood of a pixel location using local measures, e.g.

local correlation.

• Transformation: Generally speaking, there are two types of geometric trans-

formations: parametric models, e.g. rigid-body, affine, spline based, etc., where

a small set of parameters determine the transformation and nonparametric mod-

els (also known as optical flow, dense matching, etc.), where each pixel is allowed

to move independently. Note that in the latter case, if there was no restriction

on the transformation, an image could be made to look similar to any other

image with the same intensity range as the first image. Thus, these methods re-

quire regularization to overcome ill-posedness and incorporate prior knowledge

about the deformation field.

• Optimization: Typically, iterative methods are employed within a multi-

resolution pyramid, to speed up convergence. Popular choices of optimizers are:

gradient-descent and its variants [97], Powell’s method [50], Downhill simplex

method and Levenberg-Marquardt optimization [51].

In this thesis, we restrict our analysis to global image content-based approaches,

which provide a general framework and require minimal knowledge about the specifics

of the application domain.
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1.2 Image Registration: Theory

In this section, we overview the theoretical aspects of an image registration problem.

1.2.1 Problem Definition

Let Uj(·) be in a family Uj of scalar valued images defined on Ω, a finite subset of

Rd, d ∈ Z+. For example, all brain MRI volumes may constitute a family, U . The

relationship between any two images U1 and U2 can be written as:

U1(·) = f(U2 ◦ Φ)(·) + N(·), (1.1)

where Φ : Rd 7→ Rd is a geometric transformation that models the misalignment

that we want to recover, f : U2 7→ U1 is a cross-image family mapping that captures

valumetric variations and N : Rd 7→ R is some noise, i.e., a scalar image. In this model

(U1, U2 ◦ Φ) is a (optimally) registered pair of images. The goal of the algorithm is

to estimate Φ, by maximizing an alignment measure (or, minimizing a misalignment

measure).

Alignment Measure

In Equation (1.1), we can model U1, U2, N , and Φ as random variables. For example,

Uj can have a uniform distribution on all images in Uj, Φ can be uniformly distributed

over some admissible set of rigid-body transformations, and N can be a Gaussian

random field.

If f is known, in a maximum likelihood framework, the registration problem can

be set up as:

arg max
Φ

p(U1, U2|Φ). (1.2)

To compute (1.2), we need to make further modelling assumptions. For example, in
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a mono-modal setting, we can assume f to be the identity function and the noise to

be i.i.d Gaussian. Then, it is easy to show that the log-likelihood function of (1.2) is

proportional to:

log p(U2, U1|Φ) ∝ −
∑

x∈Ω

(U1(x) − U2(Φ(x)))2, (1.3)

which is the sum of squared differences, SSD.

Another common alignment measure is the normalized cross-correlation (NCC)

[6]. This is based on the assumption that there is a linear relationship (up to some

noise) between corresponding pixel intensity values. NCC is defined as:

NCC(U2 ◦ Φ, U1) =

∑

x
U2(Φ(x))U1(x)

√
∑

x
U2(Φ(x))2

. (1.4)

This is related to the well-known Pearson’s correlation r between corresponding in-

tensity values of the two images:

r(U2 ◦ Φ, U1) =

∑

x
(U1(x) − µ1)(U2(Φ(x)) − µ2)

(N − 1)σ1σ2
, (1.5)

where N is the number of pixels, µi and σi are the mean and variance values of the

pixel intensity values in image Ui. Notice that, if we assume µ2 does not depend on

Φ, then minimizing (1.5) over Φ is equivalent to minimizing (1.4).

However, in most applications, we don’t know (or even have a good model for) f

and thus may have to infer it from the images. A generalized maximum likelihood

approach can then be employed, where (1.2) is replaced by:

arg max
Φ

max
f

p(U1, U2|Φ, f). (1.6)

In the following chapter, we will discuss this issue and motivate information-theoretic
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measures that can handle unknown cross-image family mappings.

1.2.2 Geometric Transformations

Different transformation models are utilized for various registration applications. Re-

call that, the geometric transformation attempts to recover the “to-be-corrected”

spatial misalignment, e.g. camera/object motion, while some spatial misalignment

may want to be preserved, e.g. due to tumor growth. For some applications, e.g.

inter-subject registration, the notion of “to-be-corrected” is difficult to define. Thus,

it is important to identify the type of misalignment we want to recover, i.e., define

the transformation space, based on the specifics of the application.

In general, there are two approaches to define a geometric transformation: using

parametric models, and using a dense deformation field, i.e., in a nonparametric

fashion. The first approach employs a small number of parameters to define the

warp, whereas the latter method uses a (deformation/motion) vector at each pixel

location.

In a parametric transformation model, typically all possible parameter values are

treated as being equally likely1. In the following, for the sake of compactness, we

assume a two-dimensional space, i.e., x = (u, v) ∈ R2 and x′ = Φ(x). Some commonly

used parametric transformation models are:

• Affine: In 2D, it is parameterized by six parameters (a0, a1, a2, b0, b1, b2):

u′ = a0u + a1v + a2

v′ = b0u + b1v + b2,

which can map a parallelogram onto a square. This model is defined by three

non-collinear corresponding points, preserves straight lines and straight line par-

1This is not true for some nonlinear registration algorithms that employ splines, see e.g. [79]
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allelism. Rigid-body (rotation and translation) and similarity (rotation, trans-

lation and global scale) are special cases.

• Projective: It uses eight parameters (a0, a1, a2, b0, b1, b2, c1, c2):

u′ =
a0u + a1v + a2

1 + c1u + c2v

v′ =
b0u + b1v + b2

1 + c1u + c2v
,

and is commonly used in the pin-hole camera model.

• Polynomial: This is a generalization of the affine model and can be expressed

as:

u′ =
m
∑

i=0

m
∑

j=0

aiju
ivj

v′ =

m
∑

i=0

m
∑

j=0

bijv
iuj,

where the order m determines the “richness” of the transformation.

• Radial-basis: This method provides a group of global transformations that

can handle local distortions. In general, they can be expressed as:

u′ = a0 + a1u + a2v +
∑

i

cig(‖x− xi‖)

v′ = a3 + a4u + a5v +
∑

i

dig(‖x− xi‖),

where x = (u, v), xi’s are called control points and g is the radial basis function.

Popular choices for g are the thin-plate spline: g(r) = r2 log r, and B-splines,

e.g. [80].

The advantage of parameterized techniques is that the dimensionality of the prob-
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lem is relatively low and thus robust optimization is possible. However, in some ap-

plications it is not clear how to select a natural parameterized transformation space.

In a nonparametric approach each image pixel is transformed independently. One

popular technique to impose some regularization on this formulation employs a global

objective function that consists of two terms: the alignment measure and an external

regularization term that reflects our expectations by penalizing unlikely transforma-

tions. Other methods employ a Bayesian approach with a prior distribution model,

e.g. Brownian warps [61]. An alternative strategy is an iterative scheme where a

“rough” warp field obtained from the gradient of the similarity measure is projected

onto a known function space. This projection is done by spatial smoothing [65] and

has yielded fast nonrigid registration algorithms [24].

1.2.3 Optimization

Given an alignment measure, S(U1, U2), and a family of geometric transformations,

W, registration is merely an optimization problem:

Φ∗ = arg max
Φ∈W

S(U1, U2 ◦ Φ). (1.7)

Some methods, e.g. Fourier based algorithms [42] that deal with simple transfor-

mation spaces (e.g. translation only) and simple alignment measures (e.g. SSD), can

solve (1.7) directly. Most methods, on the other hand, do not enjoy a well-behaved,

low dimensional objective function. Typically, registration algorithms attempt to

solve the optimization using an iterative strategy. For a detailed survey, see [51].

With a parameterized family of transformations, the goal is to search for the opti-

mum set of parameter values. Note that the similarity measure gradient (with respect

to transformation parameters) is commonly used to speed up this search.
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1.3 Overview of Thesis

The second chapter of this thesis contains a detailed derivation of information-theoretic

alignment measures and an overview of different implementations. We provide a

discussion of the main advantages and drawbacks of these algorithms from the per-

spectives of different performance criteria, such as speed, accuracy, robustness, etc.

Chapter 3 focuses on the entropy estimation problem and includes a detailed analysis

and comparison of two entropy estimators intended for image registration, namely

the plug-in estimator and minimal entropic graphs. In Chapter 4, we apply these

estimation techniques to the rigid registration problem and introduce a novel graph-

theoretic registration framework. Also, in this chapter we continue the analysis of

these entropy estimators from the perspective of image registration. The insights

provided by this analysis is intended to be a major contribution of this thesis. In

Chapter 5, we consider the problem of incorporating prior knowledge about the rela-

tionship between two images. Particularly, we focus on the case where the algorithm

has access to previously aligned image pairs. We propose a novel alignment measure

that utilizes this information to better the algorithm’s performance. Chapter 6 in-

cludes a discussion of nonrigid registration algorithms and introduces a novel, fast

entropy-based registration algorithm. In Chapter 7, we focus on an important scien-

tific application, the functional alignment of the human cerebral cortex, and discuss

the application of entropic measures to this problem. Chapter 8 concludes with a dis-

cussion of the contributions of this thesis and possible directions for future research.

Various ideas discussed in Chapters 1-6 were reported in [81, 82, 83] and [84].
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Chapter 2

Information-theoretic Alignment

Measures

In the following chapters, we will utilize information-theoretic ideas for image regis-

tration. Here, we give some background on these ideas, motivate their employment

for alignment and provide an overview of the literature.

Section 2.1 introduces and provides definitions for the notions of entropy, informa-

tion and uncertainty. Other measures based on the entropy definition, are provided

in the following section. Section 2.3 discusses the use of entropic measures to quantify

the quality of alignment in image registration. Two derivations based on a maximum

likelihood and hypothesis testing framework are included. Section 2.4 provides a dis-

cussion of practical issues and highlights the advantages and drawbacks of different

implementations.

2.1 Information Entropy and Uncertainty

Claude Shannon’s 1948 paper, entitled “A Mathematical Theory of Communication,”

[85] is widely accepted as the birth of Information Theory. For a detailed treatment of

the subject, the reader is referred to more dedicated works, such as [16]. An excellent
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historical overview is also presented in [95]. Until 1948, little progress had been

made to introduce a universal measure for the quantity of information a data source

possesses. In [85], Shannon uses probability theory to model information sources,

i.e., the data produced by a source is treated as a random variable. The information

content, namely (Shannon’s) entropy of a discrete random variable X that has a

probability distribution pX = (p1, . . . , pn) is then defined as:

H(X) = H(pX) ,

n
∑

i=1

pi log(1/pi), (2.1)

where 0 log∞ = 0 and the base of the logarithm determines the unit, e.g. if base 2 the

measure is in bits, if it’s the natural number e then it’s in nats, etc. The term log 1/pi

indicates the amount of uncertainty associated with the corresponding outcome. It

can also be viewed as the amount of information gained by observing that outcome.

Thus, entropy is merely a statistical average of uncertainty or information.

Shannon also provides an axiomatic derivation of (2.1): This is the only function

of p that is continuous with p; increases with n; and is additive, i.e., the entropy of

two random variables is the sum of the entropy of the first and the entropy of the

second given the first. Yet, this derivation is not the key reason that entropy plays

a central role in today’s information theory. Using (2.1), many information-theoretic

results can be derived concisely. For example, it is known that a uniquely decipherable

code required for X has a minimum average length bounded by H(X) and H(X)+1.

Some properties of (2.1) are:

1. H(X) ≥ 0 and is equal to zero if and only if X is deterministic.

2. Entropy is the greatest when all samples are equally likely, i.e., H((p1, . . . , pn)) ≤

log n.

3. Let X1 and X2 be two discrete random variables with joint probability pX1,X2
=

{pij}. Define H(X1, X2) =
∑

x1,x2
pij log 1/pij. Then H(X1, X2) ≤ H(X1) +
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H(X2).

4. Entropy doesn’t depend on the value of the random variable, but only depends

on the distribution. So, for a bijective mapping f : ΩX → ΩX , where ΩX is the

domain of X:

H(f(X)) = H(X). (2.2)

5. Entropy is a concave function of p, i.e.;

H(βp1 + (1 − β)p2) ≥ βH(p1) + (1 − β)H(p2), ∀β ∈ [0, 1].

For a continuous random variable Y that has a probability density pY (·), Shan-

non’s differential entropy is:

H(Y ) = H(pY ) , −
∫

pY (y) log pY (y)dy. (2.3)

An important difference between the discrete and continuous entropies is that, while

the discrete entropy is an absolute measure of randomness, the differential entropy is

a relative measure that depends on the coordinate system. The differential entropy

in general can be negative and can achieve arbitrarily small values.

In summary, entropy can be viewed in various ways: a measure of uncertainty

in a random event (i.e., a measure of the “randomness” of a random variable), a

measure of information obtained by observing a data source, and the dispersion, i.e.,

scatterdness of a probability distribution.

2.1.1 Entropy of an Image

For a high dimensional discrete random variable X = (X1, . . . , Xd) ∈ Rd that has a

probability mass function of p(x1, . . . , xd), the entropy formula (2.1) can be extended
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straightforwardly:

H(X) =
∑

x1,...,xd

p(x1, . . . , xd) log
1

p(x1, . . . , xd)
. (2.4)

Note that if Xi’s are independent and identically distributed with a p.m.f. q for all i,

it is easy to see that H(X) = d · H(q). In information theory, an information source

that produces such a random variable is usually called stationary and memoryless.

Note that, in a general stationary source, i.e., if Xi’s are identically distributed with

q; then H(X) ≤ d · H(q). That is the joint random variable cannot contain more

information than the sum of the individual information entropies of the components.

The upper bound is only achieved when all components are independent.

Similar to Shannon’s treatment of the English language in [85], we can analyze

images as realizations of random variables. A simple model would assume that each

pixel is an i.i.d. realization. Figure 2.1 shows a natural image (“house”) and a

histogram of the pixel intensity values. The normalized histogram can be an estimate

of the underlying probability of pixel intensities, i.e., p(i) = hU(i)/N , where hU(i)

denotes the histogram entry of intensity value i in image U and N is the total number

of pixels of U . Using this model, we can compute the entropy of the image as:

H(U) =
∑

i

hU (i) log N/hU(i), (2.5)

which for the image shown in Figure 2.1 is approximately 5.42 × 105 bits.

Now, let’s apply a bijective mapping to the intensity values of an image. Then,

from (2.2) it is easy to see that the entropy of the image does not change. Figure 2.2

shows a synthetic image created by applying a bijective mapping to the “house”

image. The corresponding histogram is also shown. Note that, even though the

shape of the histogram has changed, the total entropy is the same up to round-off

error.
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a) Natural Image
 b) Histogram

Figure 2.1: The “house” image (of size 240 × 316 and 256 gray levels) and its his-
togram.
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Figure 2.2: A synthetic image created by applying the intensity mapping to the
“house” image in previous figure.

Figure 2.3 shows another image created by randomly shuffling the pixel locations

of the “house” image. Note that the histogram of both images are the same. Thus,

the entropy values computed using (2.5) are the same. However, it is clear that the

“house” image contains more structure (i.e., less “uncertainty”) and treating each

pixel intensity as an independent sample is an oversimplification. In general, it is

known that natural images1 can be successfully modeled as Markov random fields,

see e.g. [46]. In this model, pixel intensity values depend on neighboring pixels. In

simpler terms, in a natural image the value of a pixel is likely to be close to the

value of some of its neighbors. As discussed earlier, this dependency reduces the total

entropy of an image, rendering (2.5) an upper bound on the actual entropy.

1including medical, scientific, computer-generated images

21



Intensity Value
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

100

200

300

400

500

600

700

800

C
o

u
n

t
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Figure 2.3: A synthetic image created by randomly shuffling the pixel locations in
the “house” image and its histogram.

2.2 Other Information-theoretic Measures

While entropy is the basic concept we’re going to build our approaches on, it is not the

only information-theoretic measure we will be using. We are also interested in relating

several random variables and information theory contains many different measures for

this purpose. These include conditional entropy, Kullback-Leibler divergence, mutual

information and Rényi entropy. In this section, we provide brief descriptions of these

measures. In the following X and Y are two discrete random variables with marginal

distributions pX and pY and a joint distribution pXY .

2.2.1 Conditional Entropy

Assuming we know the outcome of a random event, conditional entropy is a measure

of “new” information gained by observing another event. The formal definition is:

H(Y |X) = −
∑

x,y

pXY (x, y) log pY |X(y|x), (2.6)

where pY |X(y, x) = pXY (x, y)/pX(x) is the conditional distribution. It is easy to see

that H(Y |X) = H(X, Y ) − H(X).
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2.2.2 K-L Divergence

K-L Divergence is a natural distance measure from a distribution p to another dis-

tribution q and is defined as:

DKL(p||q) =
∑

i

pi log
pi

qi
. (2.7)

This definition can straightforwardly be extended to the continuous case. Note that

DKL(p||q) ≥ 0 and is zero if and only if p = q. It is not symmetric, i.e., in general

DKL(p||q) 6= DKL(q||p), and does not satisfy the triangle inequality. Thus it is not

a proper distance metric.

2.2.3 Mutual Information

Mutual Information is a measure of the statistical dependency between two (or more)

random variables. It can also be viewed as a measure of the “shared” (common,

mutual) information between information sources. A formal definition is:

I(X, Y ) =
∑

x,y

pX,Y (x, y) log
pXY (x, y)

pX(x)pY (y)
. (2.8)

Notice that mutual information is equal to the K-L divergence from the joint distri-

bution pXY to the product of the marginals pXpY , i.e., the joint distribution when X

and Y are independent. Thus I(X, Y ) ≥ 0 and achieves zero if and only if X and Y

are independent. Some other important properties of mutual information are:

I(X, Y ) = I(Y, X) and I(X, X) = H(X)

I(X, Y ) = H(X) + H(Y ) − H(X, Y ) = H(Y ) − H(Y |X) (2.9)

0 ≤ I(X, Y ) ≤ min{H(X), H(Y )} ≤ H(X, Y ).
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2.2.4 Rényi Entropy

This is a generalization of the Shannon entropy and for α ≥ 0 is defined as [73]:

Hα(X) ,
1

1 − α
log(

∑

x

pX(x)α)

=
1

1 − α
log EpX

(pα−1
X ), (2.10)

where Ep denotes expectation over p. Equation (2.10) can be used to generalize the

definition to the continuous case. Note that the limit of Hα as α goes to 1 is Shannon’s

entropy, H (for a proof, see Appendix A).

2.3 Entropy as an Alignment Measure

The investigation of information-theoretic measures for image registration started in

the 1990’s with Woods et al.’s seminal paper [98]. This also marks the beginning of

the exploration of fast and reliable automatic multi-modal registration methods. The

common trait of these approaches is that they rely on the whole image, particularly

pixel/voxel intensity values, when determining the quality of alignment. This is con-

trary to landmark-based approaches that require the definition and computation of

specific landmarks. These algorithms are constrained by the quality and speed of the

landmark detection step.

The basic idea that motivates the employment of information-theoretic measures

for quantifying the quality of alignment is simple: Corresponding features extracted

from the images should become statistically more dependent with better alignment.

This observation is illustrated with the toy example2 shown in Figure 2.4, where

the scatter-plots display pixel intensity value pairs (from both images). Notice that,

since both images are the same (up to some noise), at perfect alignment pixel samples

2Image obtained from http : //www.med.harvard.edu/JPNM/TF93 94/Oct12/CT.GIF
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cluster around the x = y line. At bad alignment, however, the samples are scattered,

i.e., the joint histogram is more dispersed.

a) Image 1
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c) Scatter Plot for "perfect alignment"

d) Scatter Plot for a 5 degree 

    rotational misalignment

e) Scatter Plot for a 10 degree 

    rotational misalignment

Figure 2.4: Image 1 is a brain CT scan. Image 2 is a synthetic image obtained by
corrupting Image 1 by additive i.i.d. Gaussian noise.

In an attempt to quantify the dispersion of the joint histogram both Collignon

et al. [13] and Studholme et al. [89] proposed to employ the entropy of the joint

histogram for determining alignment quality. These studies were mainly based on the

empirical observation that the joint distribution tends to be sharper with well-defined

peaks at good alignment, which yields a small entropy. Experiments indicated that

the approach was promising, yet no rigorous theoretical derivation was provided.

The papers of Collignon et al.’s [50] and Viola and Wells [97] formalized these
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ideas and motivated mutual information as an alignment measure. Along with the

joint entropy term, the mutual information (2.9) formula includes marginal entropy

terms. As argued by many authors, e.g. in [96], this makes mutual information a

more suitable alignment measure where there’s limited scene overlap between images.

In the following years, the basic idea of employing entropy-based measures for various

multi-modal image registration applications yielded many successful algorithms. For

a detailed overview, see [68]. In the following sections, we provide a theoretical

derivation of entropy-based alignment measures. Similar discussions can be found in

many other studies, including [96, 75, 103].

2.3.1 Maximum Likelihood and Entropy

In this section, we will provide a maximum likelihood based derivation of entropic

alignment measures. Let U∗ : Rd 7→ R and V ∗ : Rd 7→ R be spatially aligned scalar

images of the same scene, where d is a positive integer and R is a finite subset of R+.

For example, U∗ can be an ultrasound image of one subject’s brain and V ∗ can be an

magnetic resonance (MR) image of the same brain. Since, these two images represent

the same physical reality, we will model their relationship as:

U∗ = f(V ∗) + E∗, (2.11)

where f is a fixed (but typically unknown) mapping from one modality to another

and E : Ω 7→ R is some random noise that captures the uncontrollable variables of

the imaging process, e.g. magnetic field inhomogeneities in MR. In other words, we

are assuming that given f and V ∗, we can come up with a reasonable guess for U∗.

This is similar to the underlying idea of synthetic data generators, such as Brainweb

[12].

In general, any two images, U : Ω 7→ R and V : Ω 7→ R, of the same scene are
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not in spatial alignment. Thus, similar to (2.11), we can write their relationship as:

U = f(V ◦ Φ) + EΦ, (2.12)

where Φ : Rd 7→ Rd is a geometric transformation. Notice that in (2.12), EΦ is not

only the imaging noise, but also includes the misalignment error (and thus depends

on Φ). So, for any Φ, there is a unique EΦ that satisfies (2.12). If we fix U = U∗,

then the goal of a registration algorithm is to find Φ = Φ∗ such that V ◦ Φ∗ = V ∗.

Note that in (2.12) we are not restricting f to be a mapping on intensity values

only. In practice, however, to make the problem tractable we put further constraints

on this model. For example, in a mono-modal application we may fix f to be an

identity mapping and E to be i.i.d. Gaussian noise. However, the identity map-

ping assumption is not suitable for multi-modal applications. A common approach

is to treat each pixel independently, and assume f is a mapping on intensity val-

ues. Yet, as discussed in [74], in most applications, for example in an Ultrasound-

Magnetic Resonance registration application, the assumption of f being a mapping

on intensity values is too restrictive. ultrasound images mainly contain “gradient”

information, because ultrasound echoes proportional to the difference between acous-

tical impedances of neighboring tissues. MR images, on the other hand, visualize

regions based on hydrogen density. Thus, for the ultrasound-MR application, it is

more suitable to assume that f is a mapping on the intensity and gradient values of

each pixel.

In the following, we will employ a maximum likelihood approach to determine

Φ∗. In this framework, we model U , V , Φ and E as random variables and make the

following assumptions:

1. P (Φ) is a uniform distribution on all feasible transformations W. For exam-

ple, if Φ is modeled as a rigid-body transformation, all admissible rigid-body
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transformations are considered to be equally likely. This is a strong assumption

when working with a rich class of transformations, e.g. nonlinear deformations.

Thus, the alignment measure needs to be regulated. A detailed discussion of

this issue is presented in Chapter 6.

2. Since we fixed U∗ = U , P (U |Φ) = P (U), i.e., the image U does not depend

on the alignment of the two images. This is a reasonable assumption, since the

orientation of U depends only on the orientation of its sensor with respect to

the scene.

3. EΦ is i.i.d. within a finite region of interest Ω ⊂ Rd. Note that for modeling

physical noise due to the imaging process, this may not be a too restrictive

assumption. In other words, it is reasonable to assume E∗ = EΦ∗ to be i.i.d.

However, in (2.12) for an arbitrary Φ; EΦ also captures the error due to mis-

alignment. Assuming that a misalignment error at a pixel is independent of its

neighbors is a strong supposition, that will bias the likelihood function down-

wards.

4. f : R 7→ R is a bivariate function of intensity values, i.e.

U(x) = f(V (Φ(x))) + E(x) (2.13)

Recall that R is the range of image intensity values and is a finite subset of R+.

As discussed above, (2.13) in general is not a good model and the validity of

the assumption depends on the application. Yet, in some cases, e.g. [74], one

can alleviate the issue by incorporating other features, e.g. the image gradient.

We will briefly discuss this in Section 2.4.4.

Based on the above and a generalized maximum likelihood framework, we formulate
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the registration problem as:

Φ̂ = arg max
Φ∈W

max
f

P (U, V |Φ, f) (2.14)

= arg max
Φ∈W

max
f

P (V |U, Φ, f) (2.15)

= arg max
Φ∈W

max
f

∑

x∈Ω

log P (f(V (Φ(x)))|U(x)) (2.16)

≈ arg max
Φ∈W

max
f

−H(f(V (Φ(x)))|U(x)) (2.17)

= argmin
Φ∈W

H(V (Φ(x))|U(x)), (2.18)

where H(V (Φ(x))|U(x)) is the conditional entropy of P (V (Φ(x))|U(x)). Moving from

(2.14) to (2.15) relies on assumption 2. The (2.15-2.16) step employs assumptions 3

and 4; and (2.17) is the asymptotic equipartition property. The approximation relies

on |Ω|, the cardinality of the region of interest, to be sufficiently large. The (2.17-2.18)

step uses the (2.2) property of entropy. Notice that, in (2.18), the conditional entropy

H(V (Φ(x))|U(x)) is a misalignment measure (or, equivalently −H(V (Φ(x))|U(x)) is

an alignment measure).

2.3.2 Fano’s Inequality

In this section, we formulate registration as a hypothesis testing problem and pro-

vide motivation for entropy-based alignment measures. The analysis is based on the

aforementioned model (2.12) and framework presented by Butz et al. in [7]. Note

that, we do not rely on any assumptions other than the ones explicitly stated in this

section.

Now, we will use a graphical model to explain the imaging process and relate

the two images and the scene. Figure 2.5 shows a directed acyclic graph, where

blocks represent random variables, arrows indicate (statistical) dependency between

the connected r.v.’s. Note that, this graph can also be viewed as a generative process

or a first order Markov chain.
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Figure 2.5: A graphical model for relating the two images and the scene.

Let L be a discrete random variable that can take NL distinct values and represents

a physical reality captured by both images U and V . In a medical application, for

example, this can represent a tissue type at a fixed location x. In the model (1.1),

let’s assume the noise is independent of the physical context, i.e., P (E∗|L) = P (E∗).

Thus, P (V ∗|U∗, L) = P (V ∗|U∗), which is the second arrow in Figure 2.5. By Fano’s

inequality [28] and the data processing inequality [16], we have:

P (L̂ 6= L) ≥ H(L) − I(L, V ′) − 1

log NL
(2.19)

≥ H(L) − I(U, V ′) + 1

log NL
(2.20)

=
H(L) − H(U) + H(U |V ′) + 1

log NL
(2.21)

We can consider the probability of error, i.e., P (L̂ 6= L) to be a measure of alignment

quality. As discussed in [7], based on inequalities (2.20) and (2.21) we can motivate

various entropy-based alignment measures. Note that in the given form, the condi-

tional entropy of the images H(U |V ′) could be an alignment measure, since in the

last inequality (2.21), this is the only term that depends on Φ. Given two images,

and nothing else, it is, however, impossible to compute H(U |V ) without any further

assumptions. As before, in (2.12), we can assume f to be a mapping on intensity
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values and E to be i.i.d noise. Then the conditional entropy H(U(x)|V (Φ(x))) and

mutual information I(V (Φ(x)), U(x)) can be motivated as alignment measures. Due

to the relative abundance of pixel intensity values, these entropy measures are easier

to estimate.

Using a similar analysis and a generalized version of Fano’s inequality [26, 25],

one can motivate Rényi entropy as an alignment measure. This idea will be further

developed in Chapter 4.

2.4 Discussion

In previous sections, we presented ways of motivating different entropy measures

as alignment measures. The main strength of this approach is the relatively weak

assumptions about the inter-image relationship, i.e., the f mapping in the model

(2.12). This has led to the success of automatic multi-modal registration algorithms

that use information-theoretic alignment measures [68]. However, it is important

to note that these algorithms, by no means, provide a universal solution to image

registration. They have two important drawbacks:

1. Entropy-based alignment measures are typically computationally more expen-

sive than simpler measures.

2. In most implementations, entropy measures are computed based on the image

(and joint) intensity histograms. As discussed in many papers, e.g. [68, 81],

this neglect of “spatial information” may affect alignment accuracy.

At this point, we would like to identify some technical details that lead to the

drawbacks listed above and briefly discuss practical issues such as speed, accuracy

and robustness against noise and initialization. We proceed by dividing the discussion

into several categories.
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2.4.1 Entropy Estimation

Most of today’s information-theoretic registration algorithms estimate the entropic

measures, e.g. H(V (Φ(x))|U(x)), by modeling sample values, e.g. pixel intensity

values, as i.i.d. realizations of a random variable. As discussed in section 2.1.1, it

should be noted that this assumption ignores the structure in natural images and

biases the entropy estimate.

There are two nonparametric entropy estimation techniques employed for image

registration. The popular “plug-in” estimator [3] , which is based on inserting an esti-

mate of the distribution in the entropy expression and has been commonly employed

for estimating Shannon’s entropic measures [68]. A second, less-known estimation

technique, called entropic graphs [40], is based on computing minimal graphs on a set

of samples. A monotonic function of the total edge length of these graphs provides a

direct estimate of the underlying entropy. This technique has recently been employed

for image registration [49, 81]. The employed entropy estimator influences the speed

and accuracy of a registration algorithm. To date, there has not been a comprehensive

study that has discussed the advantages and disadvantages of the two aforementioned

techniques. In succeeding chapters, we attempt to provide a comparison of the two

entropy estimators.

2.4.2 Optimization

Registration is an optimization problem where the objective function is the align-

ment measure and the variables are the transformation parameters. The fact that

entropy-based alignment measures tend to have highly non-convex profiles, makes

the optimization difficult. Moreover, time may be a constraint of the application and

computation of alignment measures can be expensive.

In such cases, a multi-resolution strategy can be used, e.g. [67, 91]. This increases

the convergence speed of the optimization algorithm and prevents the algorithm from
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getting trapped in local extrema. The basic idea is to first solve the problem at a

coarse resolution and then use this solution as an initialization with higher resolution

representations of the images. An important prerequisite of this strategy is that the

optimization scheme should benefit from it. In other words, a good initialization

should help speed up the algorithm.

In [13], Collignon et al. use Powell’s method for optimization. This method

doesn’t take full advantage of the multi-resolution strategy since it searches all direc-

tions in its direction set at least once, regardless of how close the initial guess is. Hill

climbing (gradient descent) methods, on the other hand, e.g. [97], enjoy a dramatic

speed-up with good initialization.

2.4.3 Interpolation and Overlap Area

Until this point, we assumed that images are defined on Rd. Digital images, however,

have limited spatial resolution, i.e., are defined on a bounded, discrete grid and the

method used for interpolating at non-grid locations has a crucial effect on registration

accuracy.

There are several well-known techniques to interpolate image intensity values at

non-grid locations within the image boundaries. These include bi-linear, bi-cubic,

partial-volume and spline-based interpolation methods. [66] contains a detailed anal-

ysis of these methods and concludes that the interpolation method determines the

sub-pixel accuracy of the algorithm.

There are various ways of handling regions outside image boundaries. A common

approach only considers the overlap area between the two images when evaluating an

alignment measure. In this implementation, the marginal entropies of both images

vary with alignment. Moreover, if a deterministic sampling routine is used, e.g. when

using all the pixels, the sample set size is proportional to the overlap area. Thus,

entropy-based measures, e.g. conditional entropy of intensity values, can be made
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arbitrarily small by shrinking the overlap area. One method that addresses this issue

normalizes the alignment measure with the sum of the marginal entropies, e.g. as in

normalized mutual information [88].

In another implementation, a region of interest, Ω a finite subset of Rd, is fixed.

This is typically the grid of the fixed image, U in (2.12). There are two advantages

of this approach:

• The marginal entropy of the fixed image is constant with respect to the trans-

formation Φ, which reduces computational complexity.

• The number of samples can be fixed.

A crucial question is then what intensity values to assign in regions outside the bound-

aries of the floating image, V , because this has the potential of introducing superflu-

ous information. One method uses a constant value, usually called constant padding.

However, with this we have the freedom to reduce the marginal entropy to zero by

transforming the whole image to outside of Ω. Moreover, in practice, we typically

want to ensure that near-boundary sample values have a zero gradient along the

boundary normal, i.e., we impose a Neumann boundary condition. A simple way of

achieving this is to use a nearest neighbor interpolator for out-of-boundary values.

2.4.4 Spatial Information

A drawback of most of today’s implementations of entropy-based alignment measures

is that they only use pixel intensity values and can typically be computed from the

image (and joint) histograms. This is commonly referred to as the neglect of spatial

information, since pixel locations and the relationship between neighboring pixels

don’t appear in the alignment measure formula. As an ad hoc solution in [66], Pluim

et al. propose to combine mutual information with an image gradient-based term

that favors similar orientation of edges in both images. Alternatively, Rueckert et
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al. suggest to use two-dimensional samples (intensity + neighboring intensity) when

computing mutual information [78]. Note that, this results in a four-dimensional joint

histogram. These studies report that incorporation of neighboring pixel information

can increase the robustness of the algorithm, especially against imaging artifacts, such

as RF inhomogeneity in MRI, shading, etc.

We observe that the neglect of spatial information is mainly due to two factors:

1. The independence assumption on the samples. This introduces two types of

bias in the estimate of the joint entropy (or mutual information) of the two

images: one due to the inherent structure of the images. This bias, however,

can be assumed to be independent of the image pair alignment and thus is not

of our concern. The other source of bias is due to the cross-image dependency of

samples, e.g., the intensity of pixel x in the first image is, in reality, dependent

on the intensity of a neighboring pixel in the second image. Moreover, this

dependency increases with better alignment.

2. The common supposition that the inter-image mapping f in (2.12) is a function

of pixel intensity values only (see assumption 4 in Section 2.3.1). This factor can

be alleviated by incorporating knowledge about the imaging modalities and their

relationship, as described above in the US-MR example. Note that, a better

model can also help with relaxing the independence assumption mentioned in

the previous point. For example, we can assume that f is a mapping on 3 × 3

blocks, which leads us to treat these blocks, instead of pixels, as independent

realizations.

However, in general, it is not clear how to relax (2.12) to address the above issues.

Thus, we strongly believe that using knowledge about the application domain is

critical in improving the performance of an entropy-based registration algorithm and

general frameworks will always be constrained by the assumptions. Note that, this
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point is considered to be out of the scope of this thesis and will not be further

discussed.
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Chapter 3

Entropy Estimation for Image

Registration

In this chapter, we take a short détour from image registration and give a brief

overview of different entropy estimation techniques. Until this point, we have gen-

erally considered discrete random variables. This was mainly to keep the discussion

clear and intuitive. Moreover, when motivating entropy-based alignment measures,

we were not worried about issues such as differentiability and interpolated values.

For practical purposes, however, we usually model samples extracted from the images

as continuous random variables. With common interpolation methods (e.g. bilin-

ear) and most geometric transformations (e.g. rotation), image samples (e.g. pixel

intensity values) do, in fact, take on values from a continuous range. In the follow-

ing section, we (re)define information entropy for a continuous random variable and

discuss its relation with the discrete case.
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3.1 Entropy of a Continuous Random Variable

The entropy of a continuous random variable is usually called differential entropy,

and as in the discrete case we denote it by1 H(·). Let X be a continuous random

variable with pX(·) as its probability density. Shannon’s definition [85] of H is:

H(X) = H(pX) , −
∫

SX

pX(x) log pX(x)dx, (3.1)

where SX is the support set of pX . At this point, it is important to note that the

maximum likelihood derivation (Section 2.3.1) of entropic alignment measures applies

to the continuous case through the extension of the asymptotic equipartition property

[16]:

Let x1, . . . , xn be i.i.d samples from pX , then the log-likelihood function is:

−1

n
log p(x1, . . . , xn) ≈ H(X).

In other words, for a typical sequence of samples, the log-likelihood is approximately

equal to the entropy of the sequence.

Similar to (3.1), we can define Rényi entropy for the continuous case:

Hα(X) = Hα(pX) ,
1

1 − α
log

∫

SX

pX(x)αdx, (3.2)

where α > 0. Once again, it is easy to show that:

lim
α→1

Hα(pX) = H(pX).

Thus, Rényi entropy (3.2) can be viewed as a generalization of (3.1) (see Appendix A).

Note that, in general Hα(X) is not necessarily nonnegative. In fact, for any p.d.f that

1Note that, commonly, a small h is used to distinguish differential entropy from the regular
discrete entropy. In this thesis, however, we will rely on the context to make that distinction.
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contains an impulse, it will achieve −∞. Therefore, many information theorists do not

accept differential entropy as a “real” measure of information. Yet, there is a concrete

relationship (through quantization) between the discrete and continuous entropies.

Here, we will derive this for Rényi entropy. A similar argument for Shannon’s entropy

can be found in [16].

Let X be a one-dimensional random variable with a sufficiently smooth density

pX . Suppose we divide the support of X into bins of length ∆. By the mean value

theorem, there exists a xi ∈ [i∆, (i + 1)∆) such that:

pX(xi)∆ =

∫ (i+1)∆

i∆

pX(x)dx.

Define the discrete random variable X∆ = xi, if X ∈ [i∆, (i + 1)∆) with a p.m.f.

pi = pX(xi)∆. Then:

Hα(X∆) =
1

1 − α
log
∑

i

pα
i

=
1

1 − α
log
∑

i

[pX(xi)∆]α

=
1

1 − α
log
∑

i

∆pX(xi)
α − log ∆.

If p(x)α is Riemann integrable, then the first term approaches the Rényi entropy of

X, i.e.,

Hα(X∆) + log ∆ → Hα(X),

as ∆ → 0. In other words, the Rényi entropy of an n bit quantization of a continuous

random variable X is approximately equal to Hα(X) + n.

Next, we continue with the problem of estimating (3.1) and (3.2) given a finite

set of samples.
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3.2 Performance Criteria for Entropy Estimators

Although this thesis deals with the problem of image registration, it is important

to note that different entropy-based measures are useful in various other contexts,

e.g. [23, 22, 62, 27]. Recall that entropy is defined as a functional of the underlying

probability density. In practice, however, algorithms have access to a finite number

of samples from that density. Thus, the goal is to approximate, i.e., estimate, the

underlying entropy based on the finite sample set.

For a set of i.i.d samples {x1, . . . , xn} of the random variable X, let Ĥn denote an

estimate of H(X). Then, there are three main types of criteria [3] that summarize

the asymptotic behavior of Ĥ :

• Strong consistency: limn→∞ Ĥn = H(X) almost surely.

• Mean square consistency: limn→∞ EX [Ĥn − H(X)]2 = 0, where EX denotes

expectation.

• Weak consistency: limn→∞ Ĥn = H(X) in probability.

In general, we may also be interested in convergence rates, for example upper

bounds on |EXĤn −H(X)| in terms of the number of samples, e.g. [39]. It is known,

however, that in a sufficiently rich class of densities, a pdf can always be found such

that the entropy estimate converges at an arbitrarily slow rate. For example, no

universal convergence rates exist for densities with an infinite support [1]. Thus,

in the literature convergence rates are reported for different types and/or restricted

classes of distributions [3].

For the purposes of this thesis, we will not be concerned with convergence rates.

Rather, we are more interested in how an estimator “treats” data and the best estima-

tor is the one that achieves its optimum at correct alignment and is easy to optimize.

The following sections provide an overview of different entropy estimation techniques
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that fall into two groups: nonparametric and parametric estimators. The latter group

relies on the assumption that the underlying p.d.f. belongs to a parameterized family,

while the former one does not. Typically, in an image registration problem there is

no obvious choice of a parametric density family.

3.3 Nonparametric Entropy Estimation

The only accurate description we can use for nonparametric estimators is that they

do not model the underlying p.d.f. as a finitely parameterized distribution. In this

sense, they are more flexible than parametric methods and are popularly used in

settings where we have limited prior knowledge about the “shape” of the underlying

distribution. For example, in an image registration application, we usually assume

that (at least initially) the images can be arbitrarily badly misaligned. As discussed

in the previous chapter, this will cause the samples to be arbitrarily scattered in the

scatter plot, e.g. see Figure 2.4. Recall that, we are assuming that these samples are

drawn from an underlying (joint) distribution. Generally, there is no natural choice

of a parametric density family that this distribution would belong to.

In the following, we assume that X ∈ Rd is a random variable with the p.d.f

pX(x), X = {x1, . . . ,xN} is a set of independent samples of X and |.| denotes set

cardinality. Here, we include estimates of Rényi entropy Hα(X), which generally can

be used for estimating Shannon’s entropy by analyzing the limit as α goes to 1. An

equivalent measure is the α-information potential [69]:

Λα(X) = EX(pα−1
X ). (3.3)

Without loss of generality, we will consider the problem of estimating (3.3), since

Hα = 1
1−α

log Λα.
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3.3.1 Plug-in Estimators

A plug-in estimator requires a density estimate and the computation of the expecta-

tion. We employ a density estimate based on a Parzen-window estimator [21]. This

corresponds to using a “blurred” histogram as an estimate of the underlying p.d.f.

For K(·) : Rd 7→ R, a continuous density, the Parzen estimate of pX is:

p̂P (x;X ) =
1

N

N
∑

i=1

K(x − xi), ∀x ∈ Rd. (3.4)

Note that additional conditions on K determine the convergence rate of this estimate

and in practice most kernel functions are symmetric, i.e., K(x) = K(−x).

Using the Parzen window density estimation approach (3.4), there are at least

two ways to approximate the expectation in the entropy expression (3.3). The first

approximates the expectation using a sample mean and yields the estimate:

Λ̂M
α (X ) ,

1

N

N
∑

j=1

p̂α−1
P (xj ;X ) (3.5)

=
1

Nα

N
∑

j=1

(

N
∑

i=1

K(xj − xi)

)α−1

Strong consistency of this type of estimator was shown in [9] for Shannon’s entropy.

Note that, in (3.5) we are using the whole sample set to compute both the density

and expectation. This is usually called a re-substitution estimate [3]. An alternative

strategy is to divide the sample set into two mutually exclusive subsets; estimate the

density on one and compute the sample mean on the other. This technique is called

splitting data and was employed by Viola et al. in [97].

The second approach, a histogram-based method, attempts to approximate the in-

finite integral in the expectation of (3.3) using a simple numerical integration method

that approximates the density as a constant within each histogram bin [32]. This
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was applied to image registration in [91]. If we ignore the nonlinearity introduced

by “binning” (i.e., quantizing) and impose some conditions on K, the histogram-

based estimate Λ̂H
α (·) is an approximation of the sample mean estimate Λ̂M

α (·) (see

Appendix B for details):

Λ̂H
α (X ) = Λ̂M

α (q(X )),

where q(·) is a quantizer.

In the following, we focus our analysis on a sample mean estimate of the α in-

formation potential (3.5). If (3.4) is consistent, it is easy to show that the above

estimators, Λ̂M
α (·) and Λ̂H

α (·) are consistent estimators of Λα [25].

3.3.2 m-Spacings Estimate

This technique was originally developed for one-dimensional samples [3], i.e. d = 1

and makes use the order statistics: xn,1 ≤ xn,2 ≤ . . . ≤ xn,n. Based on the m-order

spacings, xn,i+m − xn,i, one can construct a density estimate:

p̂S(x;X ) =
m

n

1

xn,im − xn,(i−1)m

, for x ∈ [xn,(i−1)m,xn,im). (3.6)

As discussed in [3], consistent entropy estimates can be constructed from (3.6). Re-

cently, Miller extended this technique to higher dimensions using Voronoi regions and

Delaunay triangulations [54]. The consistency of this estimate is yet to be shown.

3.3.3 Entropic Spanning Graphs

This technique estimates entropic measures by computing minimal graphs (e.g. a

Euclidean minimum spanning tree) on independent samples from the density. In

[72], Redmond and Yukich provide a general framework to obtain convergence results

for some Euclidean length functionals of specific graphs and this approach has been

recently applied to image registration in [49, 81].
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Let G = (E,X ) be a graph with edge set E and vertex set X . Each graph edge

e = (xi,xj) ∈ E can be weighted by its Euclidean length ‖e‖ = ‖xi −xj‖. Let Gc(X )

denote a family of graphs with fixed vertex set X that conforms to a topological

constraint c which might be spanning trees, k-neighbor graphs, Hamiltonian cycles,

etc (see Appendix for definitions. For a more detailed treatment of entropic graphs

see [40, 15, 101, 72]). Normally, c is fixed and understood. Hence, it will not be

explicitly indicated. For a γ ∈ R and graph G, let Wγ(G) ,
∑

e∈E ‖e‖γ denote the

power-weighted graph weight. For a fixed G(X ), define the minimum graph weight

(MGW) to be:

W ∗
γ (X ) , min

G∈G(X )
Wγ(G), (3.7)

and let

G∗(X ) , argmin
G∈G(X )

Wγ(G) (3.8)

denote a minimal graph. Note Wγ(G
∗(X )) = W ∗

γ (X ) and G∗(X ) is not necessarily

unique.

In the following, we provide a result that allows the MGW (3.7) to be employed

for entropy estimation. Let pX be a Lebesgue density on [0, 1]d and γ = d(1 − α).

Set:

H̃α(X ) ,
1

1 − α
log

(

W ∗
d(1−α)(X )

Nα

)

. (3.9)

In [41], Hero et al. show that for all α ∈ (0, 1), H̃α(X ) + log β
1−α

is a strongly consistent

estimator of Hα(X) (as the sample size grows to infinity), where β is a (generally

unknown) constant that depends on the topological constraint c, the parameter α

and the sample dimension d, but not on pX . Correspondingly, a graph-theoretic

estimate of the α information potential is:

Λ̂G
α (X ) , β

W ∗
d(1−α)(X )

Nα
. (3.10)
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Now, we show a new result that recognizes the entropic graph estimate as a special

case of the plug-in method. To show this, let’s define A(G) as the adjacency matrix

of the graph G, where the non-diagonal (ij)’th entry A(G)(i, j) is the number of

edges joining vertex i and vertex j. As discussed in the appendix, for a TSP, MST or

nearest neighbor graph there exists a matrix L(G) such that L(G) + L(G)T = A(G),

where LT denotes transpose of L, and each row of L(G) has at most one non-zero

entry that is equal to 1. Using this fact, we can write:

W ∗
γ (X ) =

1

2

N
∑

i=1

N
∑

j=1

‖xi − xj‖γA(G∗(X ))(i, j)

=
1

2

N
∑

i=1

N
∑

j=1

‖xi − xj‖γ{L(G∗(X ))(i, j) + L(G∗(X ))T (i, j)}

=
N
∑

i=1

N
∑

j=1

‖xi − xj‖γL(G∗(X ))(i, j)

=

N
∑

i=1

[

N
∑

j=1

‖xi − xj‖βL(G∗(X ))(i, j)

]γ/β

. (3.11)

Inserting (3.11) into (3.10), we can rewrite the entropic graph estimate (for MST’s,

NN’s, or TSP’s) of the α information potential as:

Λ̂G
α (X ) = β

W ∗
d(1−α)(X )

Nα
=

1

N

N
∑

i=1

p̂G(xi; G
∗(X ))α−1, (3.12)

where p̂G(xi; G
∗(X )) ,

β′

N

∑N
j=1 ‖xi − xj‖−dL(G∗(X ))(i, j) and β ′ = β

1

α−1 .

If G is a K-NN graph (i.e., G = ∪K
k=1Gk, where Gk is the kth nearest neighbor

graph) the estimator is:

Λ̂GK
α (X ) =

β

K

W ∗
d(1−α)(X )

Nα
=

1

KN

K
∑

k=1

N
∑

i=1

p̂G(xi; G
∗
k(X ))α−1, (3.13)

where p̂G(xi; G
∗
k(X )) ,

β′

N

∑N
j=1 ‖xi − xj‖−dLk(G

∗
k(X ))(i, j). Notice that the K-NN
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estimator is an averaged version of the NN estimator.

Entropic Spanning Graphs as Plug-in Estimators

By deriving the relevant expressions in a common framework, we showed that the

entropic graph estimate (3.12) is a special case of the plug-in estimator (3.5). In the

plug-in estimator the whole sample set is employed when evaluating the underlying

probability density at a sample value. On the other hand, the entropic graph estimator

employs only one (or a subset) of the closest neighbors to evaluate the density at a

sample value. This density estimate can be viewed as uniformly distributing the

sample probability over a ball around each sample. The radius of this ball is equal

to the Euclidean distance to the relevant neighbor, ‖xi − xj‖, and the volume of the

ball is proportional to ‖xi−xj‖d. Thus, one interpretation is that the entropic graph

estimator uses a variable width kernel that locally adapts to the data, whereas the

plug-in estimator employs a global, constant-width kernel.

3.4 Parametric Entropy Estimation

In some cases, we have a good idea about the form of the underlying distribution.

For example, we may know that the samples are drawn from a Gaussian distribution.

For many distributions, including the Gaussian, closed form expressions exist for the

differential entropy (see Chapter 16 of [16] for a list). Then, inserting maximum

likelihood (ML) estimates of the distribution parameters into these expressions yields

entropy estimates.

The differential entropy of a multivariate Gaussian is:

1

2
log((2πe)d|Σ|),

where |Σ| is the determinant of the covariance matrix and e is the natural number.
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Note that the ML estimate of Σ is: Σ̂ = 1
N

∑

i(xi − x̄)(xi − x̄)T , where x̄ = 1
N

∑

i xi

is the sample mean.

Similarly, for a set of one dimensional i.i.d. samples X = {x1, . . . , xN} from an

exponential distribution:

p(x) =
1

λ
e−

x
λ , x, λ > 0,

an estimate of the differential entropy is 1 + log λ̂, where 1

λ̂
= 1

N

∑

i xi.

For a Laplace distribution:

p(x) =
1

2λ
e−

|x−θ|
λ , λ > 0,

an entropy estimate is 1 + log(2λ̂), where λ̂ = 1
N

∑

i |xi − θ̂| and θ̂ = median(X ).
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Chapter 4

Rényi Entropy-based Image

Registration

In this chapter, we return to image registration and discuss the employment of Rényi

entropy as a misalignment measure. In particular, we motivate the use of this measure

and develop an efficient graph theoretic algorithm that jointly estimates Rényi entropy

and its descent direction structure with respect to a parameterized class of spatial

transformations. We then provide both a theoretical and practical comparison of the

proposed algorithm with the popular plug-in estimator. We highlight the similarities

between their gradients (or descent directions) and discuss the practical implications

of the variations on a registration algorithm’s performance.

4.1 Rényi Entropy as a Misalignment Measure

Using a similar approach to the analysis reported in [8] and described in Section 2.3.2,

we can motivate Rényi entropy as a misalignment measure. This requires a generalized

version of Fano’s inequality, which was recently derived by Erdogmus and Principe

and is reported in [25]. Once again, let U and V be two images of the same scene. U

and V are in general not in spatial alignment. Without loss of generality, we build
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the following Markov Chain:

U → V → Û ,

where the first link represents the valumetric and geometric variations between the

two images (see Chapter 1 for a qualitative description of this idea) and Û = f̂(V ),

where f̂ is an estimate of f in Equation (2.12). Then, the probability of error, i.e.,

P (Û 6= U) can be considered as an indicator of how well the images are spatially

aligned.

A generalized version of Fano’s inequality provides upper and lower bounds on the

error probability. Assuming each pixel value is an i.i.d. sample of a discrete random

variable:

Hβ(V (x), U(x)) − H(V (x)) − 1

log(Nq − 1)
≤ P (Û 6= U) (4.1)

≤ Hα(V (x), U(x)) − H(V (x))

mink H(U(x)|Û 6= U, V (x) = k)
(4.2)

≤ Hα(V (x), U(x))

mink H(U(x)|Û 6= U, V (x) = k)
,

∀α ∈ (0, 1), ∀β ≥ 1, and where Hα and Hβ are Rényi entropies, H is Shannon’s

entropy and Nq is the number of possible intensity values for U . In [27], the author

indicates that the bounds are tighter for α and β close to 1. Moreover, the denomi-

nator in the upper bound is maximum (and thus the bound is the tightest) when the

probability on U(x) is uniformly distributed over the wrong values.

Inspired by the upper bound in (4.2), in the remainder of this chapter, we in-

vestigate the joint Rényi entropy, Hα(U(x), V (x)), for α ∈ (0, 1], as a misalignment

measure. However, before moving on, it is important to identify some potential prob-

lems with this approach. Ignoring the denominator in the upper bound makes the

alignment measure sensitive to the overlap area and initial alignment, because the de-

nominator term can be made as small as possible in non-overlapping areas. Consider
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the following example: The set Ak = {x : Φ(x) ∈ ΩV and U(x)) = k} is empty for

some k ∈ {1, . . . , Nq}. If we assign a constant value to V (Φ(x)) in out-of-boundary

regions, i.e., outside of ΩV , then the denominator becomes equal to zero. This ren-

ders the upper bound redundant and the entropy measure is not a useful alignment

measure.

To handle this issue, Studholme et al. propose to normalize joint entropy with the

sum of the marginal entropies, H(U)+H(V ) and compute the measures in the overlap

area [88]. The normalization makes the alignment measure invariant to overlap area.

Alternatively, as discussed in Section 2.4.3, we can compute the alignment measure

on a fixed region of interest, making the marginal entropy of the fixed image U

constant, and use an appropriate interpolator (e.g. nearest neighbor) for out-of-

bound values. Note that, this method addresses the limited overlap problem and

is suitable for volume-preserving transformations, e.g. rigid body. However, it fails

when there’s scaling in the transformation. For example, consider the extreme case of

blowing up V such that the whole region of interest falls into one pixel/voxel. Then

Hα(U, V ◦ Φ) is minimized and is equal to Hα(U). As discussed in various studies,

e.g. [96, 102], the marginal entropy terms in mutual information handle this issue.

Similarly, based on the numerator in the upper bound of (4.2), one can use:

Hα(U(x), V (Φ(x))) − H(V (Φ(x))), (4.3)

as a misalignment measure with scaling transformations, where Hα is Rényi’s entropy,

α ∈ (0, 1] and H is Shannon’s entropy.

4.2 Rigid Registration

Here, we consider a 3D to 3D registration problem, i.e., Φ : R3 7→ R3. In a rigid-

body registration algorithm, the transformation has six parameters: three for rotation
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(α, β, γ) and three for translation (tx, ty, tz). Let r = [tx, ty, tz, α, β, γ]. The transfor-

mation can be expressed as:

Φ(x; r) = R × (x − c) + t + c, (4.4)

where

R =













cos α cos γ + sin α sin β sin γ cos β sin γ − sin α cos γ + cos α sin β sin γ

− cos α sin γ + sin α sin β cos γ cos β cos γ sin α sin γ + cos α sin β cos γ

sin α cos β − sin β cos α cos β













,

t =













tx

ty

tz













,

and c ∈ R3 is an arbitrary fixed center of rotation. We formulate rigid registration

as:

r∗ = argmin
r

Λ̂α(U(x), V (Φ(x; r))), (4.5)

where Λ̂α is an estimate of the α information potential (3.3).

4.3 Gradient Descent Optimization

In (4.5), we expressed image registration as an optimization problem. In practice, we

can put constraints on the transformation parameters, e.g. they cannot be too large.

Today, most fast algorithms that employ information-theoretic alignment measures

are variants of gradient descent or ascent, e.g. [91, 68, 51].

Let ∇r denote the gradient w.r.t. r. In the following, let:

Sr = {si} = {(U(x), V (Φ(x; r))), ∀x ∈ Ω}, (4.6)
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and N = |Ω|. Using the chain rule, the gradient of Λ̂ can be written in the following

form:

∇rΛ̂α(Sr) =
N
∑

i=1

∇rsi∇̇si
Λ̂α(Sr). (4.7)

The second term in the summation is a 2-dimensional gradient vector of the mis-

alignment measure with respect to sample values. The first term is the Jacobian of

the sample value with respect to the transformation parameters and depends on the

images, the interpolation method and geometric transformation, but not the misalign-

ment measure. Hence, only the second term is of interest when comparing different

misalignment measures.

In the following sections, we derive and compare “gradient” expressions for two

estimates of Λα, namely the entropic spanning graph and the plug-in estimator.

4.3.1 Plug-in Estimator

An advantage of sample mean plug-in estimators is that they are readily differentiated.

The gradient of (3.5) can be written as:

∇sj
Λ̂M

α (S) = (α − 1)
∑

k 6=j

nM(S, α, j, k)fM(sj , sk), (4.8)

where

nM(S, α, j, k) ,
1

Nα

[

(

N
∑

l=1

K(sj − sl))
α−2 + (

N
∑

l=1

K(sk − sl))
α−2

]

= N2(p̂(sj)
α−2 + p̂(sk)

α−2), (4.9)

and

fM(sj , sk) , ∇K(sj − sk). (4.10)
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As will be seen in Section 4.3.3, (4.8) can be viewed as a sum of pairwise attraction

terms fM weighted by the network terms nM .

4.3.2 Entropic Spanning Graphs

The entropic graph estimate (see Section 3.3.3 and [40] for definition) is not always

differentiable (see Lemma E.0.4 in Appendix E for details). We illustrate this with

the following toy example, where G is the family of spanning trees.

Example 4.3.1. Consider the vertex set V = {v1, v2, v3} with edges and parameter-

ized lengths (for −0.3 ≤ t ≤ 0.3): ‖e12‖ =
√

(0.3 + t)2 + 0.36, ‖e23‖ =
√

(0.3 − t)2 + 0.36

and ‖e13‖ = 0.6 (see Figure 4.1). It’s easy to show that at t = 0−, the MST

consists of e12 and e13, whereas at t = 0+, e23 and e13 belong to the MST. Thus

dW (0−)/dt = 0.6/e0 and dW (0+)/dt = −0.6/e0, where e0 =
√

0.45. Since the left

and right derivatives are not equal, the derivative of the MST weight does not exist

at t = 0.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

t = 0
-

t = 0
+

v1

v2

v3 v1 v3

v2

(0.2, 0.2) (0.8, 0.2)

(0.5+t, 0.8) (0.5+t, 0.8)

(0.2, 0.2) (0.8, 0.2)

Figure 4.1: A toy example that illustrates the non-differentiability of the EMST
weight.

We observe that the non-differentiability of the entropic graph estimate is due to

the fact that the topology of the minimal graph is not constant as the transformation
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parameters are continuously varied. Originally, this was thought to be an important

disadvantage of entropic graph estimators. However, the following result shows that

a descent direction of the total weight of any of the minimal graphs, Wγ(G
∗) is also

a descent direction for the MGW, W ∗
γ (3.7), and equivalently the misalignment mea-

sure. We short-hand W ∗
γ (Sr) with W ∗

γ (r). Note that, r is a vector of transformation

parameters and in general, can be of any size, i.e., r ∈ Rn for n ∈ Z+. Recall that for

a 3D rigid body transformation n = 6.

Theorem 4.3.2. Let G∗(E∗
r ,Sr) be a minimal graph over Sr and u ∈ Rn be a unit

vector. Then, if
∑

e∈E∗
r0

∇r‖e(r0)‖γ · u (4.11)

exists and is negative, then ∃ǫ > 0 such that W ∗
γ (r0 +hu) ≤ W ∗

γ (r0) for all 0 ≤ h ≤ ǫ.

Proof: If (4.11) exists and is negative, by vector calculus ∃ǫ > 0 such that:

∑

e∈E∗
r0

‖e(r0 + hu)‖γ ≤
∑

e∈E∗
r0

‖e(r0)‖γ = W ∗
γ (r0), (4.12)

for all 0 ≤ h ≤ ǫ. By definition, we have:

W ∗
γ (r0 + hu) ≤

∑

e∈E∗
r0

‖e(r0 + hu)‖γ. (4.13)

Hence combining (4.12) and (4.13), we get W ∗
γ (r0 + hu) ≤ W ∗

γ (r0).2

Choose a minimal graph G∗(Sr0
). Define:

dγ(G
∗(Sr0

)) , −∇rWγ(G
∗(Sr0

)) = −
∑

e∈E∗
r0

∇r‖e(r0)‖γ, (4.14)

the steepest descent direction for the chosen Wγ(G
∗). It is easy to see that, when

nonzero and finite, dγ/‖dγ‖ satisfies the condition in (4.11) and therefore is a descent

direction for W ∗
γ . Note that, if zero length edges exist, i.e., some sample values
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coincide, and γ < 1, then (4.14) does not exist and (4.11) is never satisfied. In

practice, the direction we choose for this problematic case is:

d̄γ(G
∗(Sr0

)) , −
∑

e∈E∗
r0

,‖e‖6=0

∇r‖e(r0)‖γ, (4.15)

which is the steepest descent direction for the graph that excludes the zero-length

edges, i.e., the minimal graph on unique samples. Note that d̄γ = dγ, when dγ exists

and is finite.

More complex schemes for finding a descent direction are also possible, e.g. se-

lecting several G∗’s and averaging the corresponding descent directions. However,

we focus our analysis on the descent direction obtained from one of the minimal en-

tropic graphs G∗. Correspondingly, for a fixed G∗(S), we define the pseudo-gradient,

gj(G
∗(S)), of the entropic graph estimate of the α-information potential, Λ̂G

α (S) (3.10)

w.r.t. sj as:

gj(G
∗(S)) , (α − 1)

∑

sk∈S
nG(S, α, j, k)fG(sj, sk); (4.16)

where

nG(S, α, j, k) =
d(a − α)β

2Nα
A(G∗(S))(j, k) (4.17)

is the network weight and

fG(sj, sk) =











‖sj − sk‖d−2−dα(sj − sk) if ‖sj − sk‖ > 0,

0 else,
(4.18)

is the sample pair attraction. Recall, A(G) is the adjacency matrix of the graph G.

Note, we have put both the gradient of the sample mean plug-in estimator (4.8, 4.9,

4.10) and descent direction (pseudo-gradient)1 for the entropic graph estimator (4.16,

4.17, 4.18) into a common comparative form involving a pairwise attraction and a

1Note that we are assuming a constant topology of the minimal graph
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corresponding network weight.

4.3.3 Comparison of the Two Estimators

In this section, we compare the “gradient” expressions for the two entropy estimators.

This analysis provides some useful insights on the performance of registration algo-

rithms employing these entropy estimators and their “gradients”. In the remainder

we make the following common simplifying assumptions:

• The kernel used for the plug-in estimator is a two-dimensional separable Gaus-

sian, Gσ(x, y) = gσ(x)gσ(y), where gσ(·) is a zero mean Gaussian with variance

σ2.

• The family of spanning tree graphs is used to compute a minimal entropic

graph. A minimum spanning tree (MST) has a 0-1 adjacency matrix, i.e.,

A(G∗)(i, j) ∈ {0, 1} for all i, j.

• The optimization is an iterative descent scheme and the transformation parame-

ter update can be written in the form: rm+1 = rm +λm ∗∑j(
∑

k njkfjk) ·∇rs
m
j ,

where λm is a step size, fjk is the sample pair attraction, njk is the network

weight, ∇rs
m
j is the gradient of the jth sample w.r.t the transformation param-

eters and rm is the value of r at the mth iteration. njk and fjk are summarized

(ignoring constants) for the two entropy estimators in Table 4.1. Their product

represents the influence of this sample pair interaction on the total gradient,

and hence their effect on the gradient.

Plug-in Entropic Graph

fjk e−c‖sj−sk‖2‖sj − sk‖ujk ‖sj − sk‖1−2αujk

njk [p̂(sj)
α−2 + p̂(sk)

α−2] A(G∗)(j, k) = 1 or 0

Table 4.1: Comparison of the influence of sample pair (sj and sk) interactions on the
update equation. Note c = 1/2σ2 and ujk is the unit vector pointing from sj to sk.
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Plug-in Estimator

First, let’s consider the sample mean plug-in estimator. The computation time

of the estimator and its gradient is O(N2), where N is the total number of sam-

ples2. Figure 4.2a, shows the attraction field to a sample located at the origin, i.e.,

fM(0, .)(4.10). With the plug-in estimator, the attraction field does not depend on α,

but the network weight does. Also, the attractive force between two samples is zero

when they coincide, achieves a maximum value at a close distance σ and becomes

negligible when they are far apart.

To analyze the network effect consider a cluster of points, where a cluster can be

thought of as a set of points with a relatively small diameter ρc. Let sc and Nc denote

the mean value and number of samples within the cluster, respectively. The total net

force3 generated by this cluster and acting on a sample sj is approximately:

Nc ∗ N2
[

p̂(sc)
α−2 + p̂(sj)

α−2
]

∗ e−c‖sj−sc‖2‖sj − sc‖ujc,

where ujc is the unit vector pointing from sj to sc. Assuming all s ∈ S are independent

samples of a sufficiently smooth density p(·), by the law of large numbers Nc ∝ Np(sc)

and the total net force is approximately proportional to:

Nα+1 ∗ nc
M (p(sc); p(sk)) ∗ e−c‖sj−sc‖2‖sj − sc‖ujc, (4.19)

where nc
M(p(sc); p(sk)) = p(sc)

α−1 +p(sc)p(sj)
α−2 is the total network weight between

a cluster and a point. Note that nc
M is a monotonically increasing function of p(sc)

when p(sc) > p(sj), and a monotonically decreasing function of p(sj). Thus, we ob-

serve that low probability samples are attracted to high probability, i.e., more crowded,

2Today, most practical entropy-based registration algorithms employ histogram-based fast ap-
proximations of the plug-in estimate. Assuming the number of histograms is O(N1/3), this entropy
estimate has a computational complexity of O(N4/3)

3net force equals attraction force times network weight
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clusters with a greater force.

Entropic Graphs

The computation time of the entropic graph estimator is O(N log N). One advantage

of this estimator is that once a minimum entropic graph is computed, the computation

of the gradient for any α value is O(N) and negligible in practice4. As inter-sample

distance ‖sj − sk‖ approaches zero, the sample pair attraction fG(sj , sk) does not

converge for α > 0.5, but converges to 0 for α ≤ 0.5. Figure 4.2 shows the attraction

field fG(0, .) for the entropic graph estimator with three different α values. When

α > 0.5, the attraction field achieves arbitrarily large magnitudes around the origin

and monotonically decreases at a much slower pace than the plug-in estimator as one

moves away from the origin. When α < 0.5, however, it is zero at the origin and

monotonically increases as one moves away. The network effect, on the other hand, is

either 1, if the two samples are connected in the minimal graph; or 0, otherwise. Thus,

only a small subset of the sample pair interactions actually influence the gradient.

Samples, Gradients and Image Registration

When digital images are uniformly sampled, coarse structures typically have a large

representation, whereas fine detail structures are weakly represented. Thus, with a

pair of images, sample clusters typically correspond to partially overlapping coarse

image structures. Outliers, i.e., isolated samples that don’t belong to a cluster, are

usually due to a misaligned region, a point that has no correspondence, or noise. The

goal of a registration algorithm can be viewed as “to pull in” outliers toward reliable

clusters. Lacking any other useful information, it is natural to trust clusters rather

than outliers when driving the registration algorithm.

At bad image alignment, we expect samples from fine detail structures to have

4This is true for MST and kNN, not TSP
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Figure 4.2: Attraction field for a sample at the origin with different entropy estimators
and different α values.

arbitrarily scattered values. In an entropic graph estimator, by weighting shorter

edges more heavily (with α > 0.5), clusters of points drive the algorithm. For a

given sample, the entropic graph estimator relies on a small subset of its neighbors,

ignoring other samples. This is potentially too aggressive at bad image alignment.

On the other hand, in the plug-in estimator, all sample pair attractions are taken

into account, and for a given sample the attractions to different clusters are weighted

averaged (4.19), where the weights are proportional to the number of samples within

the cluster and the inverse of the distance to that cluster. This leads to the following

interpretation: the number of samples within a cluster is used as a measure of con-

fidence about these samples being from a correctly aligned region and samples are

“pulled into” local high probability regions. Based on this interpretation, we expect

the plug-in estimator to be more robust against bad initialization and noise.

At good image alignment, however, relying heavily on the number of samples
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within a cluster may generate a superfluous attraction to that cluster, merely be-

cause it corresponds to a large image structure. Entropic graph estimators avoid

this by constraining the attraction generated by a sample to a small number of its

neighbors. This allows all clusters, independent of the number of samples, to partici-

pate in the fine tuning of the registration result. Thus, we expect the entropic graph

estimator to achieve better registration accuracy, especially with high signal-to-noise

ratio. This observation is supported by simulations, plotted in Figure 4.3, where the

plug-in estimate has a wider basin of attraction and the entropic graph measure has

a sharper optimum. Moreover, the lower computational complexity of the entropic

graph estimator makes this approach attractive for applications where speed is of

concern.

This “sample attractions” interpretation of the registration algorithm provides a

justification for the incorporation of the marginal entropy term H(V ) (as in mutual

information and suggested in (4.3)) with a rich class of transformations, such as the

ones that include a zoom component. If the transformation space is rich enough so

that the samples can take on any value in the second image, a trivial solution to

the registration problem of (4.5) exists. It is when all samples lie on a horizontal

line, i.e., when all samples have the same value in the floating image. In the gradient

descent optimization scheme described in Section 4.3, there is no way to explicitly

avoid this solution. With rigid-body transformations5, however, this trivial solution

does not exist. This is only a problem with richer transformations, e.g. nonrigid.

5constrained by suitable upper and lower limits on the translation and rotation parameters
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Figure 4.3: Typical profiles of the two entropy estimators with respect to rotation
angle. Images shown in Figure 4.5 were used to generate these results.

4.4 Implementation:

An EMST-based Rigid Registration Algorithm

In our implementation, we employ spanning trees as the entropic graph family G.

The minimal graph is thus the EMST and the misalignment measure is the EMST

weight function: W MST
γ (r) , W MST

γ (Sr). We employ Kruskal’s algorithm preceded

by a Delaunay triangulation to compute the EMST. The computational complexity

of this implementation is O(N log N), where N is the number of samples. For details,

see Appendix F. Also, note that extension of these ideas to other entropic graphs,

e.g. TSP, Steiner tree, nearest neighbor graphs, etc., is also possible.

Figures 4.4 and 4.5 show an image pair and the corresponding EMST of the pixel

intensity samples. The profile of the EMST weight for this image pair with respect

to rotation angle is also illustrated in Figure 4.3.

In the entropic graph estimator, only with α ≥ 0.5 is the attractive field’s magni-

tude decreasing as one moves away from the origin (see Figure 4.2). Thus, consistent

with our decision to trust clusters, we choose α ≥ 0.5 in our implementation. How-

ever, for α ≥ 0.5, very close samples undesirably dominate the computation of the

function gradient (4.16). Hence, we apply a hard-threshold on fG (4.18) and assign a

zero value when ‖sj − sk‖ is smaller than some small tolerance value.
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T1-weighted MRI T2-weighted MRI

Figure 4.4: Simulated multi-modal images obtained from Brainweb [12].
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Figure 4.5: The EMST of the intensity sample set.

Simulations suggest that averaging descent directions for different α values yields

a smoother profile, making the alignment measure easier to optimize. Recall that,

once an EMST is calculated, obtaining descent directions for any α value takes a

negligible amount of time, O(N). Moreover, experimental evidence suggests that α

values closer to 1 yield better registration accuracy, whereas smaller α values, i.e.,

closer to 0.5, yield a wider capture range, making the algorithm more robust against

bad initialization. Thus, in our implementation we start the algorithm with α ≈ 0.6

and gradually increase to ∼ 0.9. To minimize the chance of getting trapped in local

optima, we employ a multi-resolution pyramid scheme, where the algorithm starts at

a coarse resolution and works its way up to the finest resolution. At each level, the
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initial alignment is obtained from the result of the previous level. In addition, we use

quantization within each level to aggregate information. Image intensity values are

quantized, initially using a small number of quantization levels. The number of levels

is gradually increased. An advantage of this approach is the speed-up of the EMST

computation. Moreover, our experiments suggest that the scheme also increases the

capture range of the EMST alignment measure.

4.5 Empirical Results

4.5.1 2D Simulations

Figure 4.6 shows a sample pair from the set of 2-D images employed to obtain the

registration results summarized in Table 4.2. The second images were artificially

created using an intensity mapping, adding i.i.d Gaussian noise and applying a rigid-

body geometric transformation consisting of a rotation around the image center and

translation along both axes. Thus, ground truth for the alignment was known. The

results were obtained by averaging over 100 trials and are the mean square error values

with respect to the correct alignment. This experiment compares the multi-modal

registration accuracy of four algorithms:

• A1: Plug-in based Renyi entropy estimator with gradient descent optimization

• A2: EMST-based Renyi entropy estimator with descent-based optimization.

• A3: Histogram based normalized mutual information [88] with an implementa-

tion of the Nelder-Mead Simplex optimization method [44].

A3 serves as a benchmark, since it is widely accepted as a good entropy-based reg-

istration algorithm with acceptable speed and accuracy and reasonable robustness

against noise and bad initialization. Note that results for three different cases have

been provided:
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• Case 1: Good initialization and bad noise: Initial misalignment is a 0-5 pixel

translation along each dimension and a 0-5 degrees of rotation. Noise variance

is 0.05 times the maximum signal strength.

• Case 2: Moderate initialization and moderate noise: Initial misalignment is a

10-20 pixel translation along each dimension and a 10-15 degrees of rotation.

Noise variance is 0.01 times the maximum signal strength.

• Case 3: Bad initialization and small noise: Initial misalignment is a 20-30 pixel

translation along each dimension and a 15-20 degrees of rotation. Noise variance

is 0.005 times the maximum signal strength.

These results confirm our expectation that the plug-in estimator is more robust

against bad initialization than the EMST estimator. Note that it is difficult to com-

pare the MSE values of A1 and A2 to the MSE values of A3 since the gradient-descent

algorithm employed in the first two algorithms terminated once sub-pixel registration

was achieved. The experiments indicate that, once in the basin of attraction, all

three algorithms achieve sub-pixel accuracy (see the “Case 1” columns in Table 4.2).

Thus, the convergence frequency (CF) values are intended to serve as a measure of

the width of the basin of attraction of the corresponding alignment measure. The

results suggest that the Rényi based registration algorithms (A1 and A2) have the

potential to achieve satisfactory accuracy, and the entropic graph methods yield the

fastest run-times.

4.5.2 3D Simulations

In this section, we present results from a 3D rigid-body registration problem. We

employ the Brainweb [12] database that consists of simulated MRI volumes (181 ×

217×181) of a normal brain at a slice thickness of 1 mm, 3% noise level and 20% RF

non-uniformity. Table 4.3 summarizes the registration results using 3D implementa-
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Case 1 Case 2 Case 3
Algo. A1 A2 A3 A1 A2 A3 A1 A2 A3

tx 0.68 0.51 0.17 1.12 2.47 0.03 5.34 12.41 0.34
ty 1.85 0.58 0.11 1.54 4.19 0.73 5.78 18.64 0.28
θ 0.70 0.53 0.13 0.87 1.52 0.47 3.82 7.94 0.17

C.F. 100% 100% 100% 72% 55% 99% 41% 32% 100%

Table 4.2: Translation (tx and ty) MSE in pixels, angle (θ) MSE in degrees. Con-
vergence frequency (C.F.) is the percentage of trials where the algorithm achieved
sub-pixel accuracy. Average run times (in seconds): 43.1 for A1, 6.3 for A2, 18.5
for A3. Run-times are for Matlab-Mex implementations running on a Pentium IV
machine with 512MB RAM.

a) Original Image b) Synthetic second Image

Figure 4.6: A sample image pair used for the multi-modal registration simulation.

tions of A1 and A2 that employ a stochastic gradient descent optimizer [97], which is

a straightforward gradient-descent method performed on a randomly selected subset

of the pixels. The stochastic sub-sampling strategy improves run-times and helps

avoiding getting trapped in local optima. In both implementations, the number of

iterations, number of levels in the multi-resolution pyramid, stopping criterion, step

sizes and number of samples were the same. Results show mean square error values

(over 100 trials) and suggest that with these data sets, the EMST based algorithm

(A2) achieves slightly better accuracy than the plug-in estimator (A1) in a much

shorter run-time.
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Modality/
Algorithm x-Trans y-Trans z-Trans Theta Phi Omega Time (sec)

T1 - T2:
Ground Truth 20 -10 5 5 -2 7 -

A1: MSE 0.55 0.77 0.70 0.45 0.26 0.36 84.9
A2: MSE 0.36 0.35 0.58 0.22 0.37 0.42 5.96

T1 - PD:
Ground Truth 5 -7 3 2 -2 4

A1: MSE 0.40 0.51 0.40 0.41 0.37 0.39 84.76
A2: MSE 0.46 0.38 0.43 0.24 0.25 0.34 5.81

T2 - PD:
Ground Truth 45 5 0 -10 0 5 -

A1: MSE 0.83 0.75 0.55 0.40 0.17 0.30 84.68
A2: MSE 0.26 0.35 0.21 0.17 0.17 0.28 5.96

Table 4.3: 3D registration results using the Brainweb [12] simulated MR volumes.
Translation in pixels, angle in degrees. Run-times are for Matlab-Mex implementa-
tions running on a Pentium IV machine with 512MB RAM.

4.5.3 3D PET-MR Registration

Here, we present results from a real world application: 3D intra-patient MR-PET

rigid registration. Figure 4.7 displays sagittal slices of the two data sets, which were

of 128 × 128 × 128 spatial resolution. Figures 4.8 and 4.9 show the volumes before

and after registration. Figure 4.10 shows the EMST’s computed on pixel intensity

values before and after rigid-body registration. The final result was obtained using a

MEX/Matlab implementation of the EMST algorithm discussed in Section 4.4. The

run-time was approximately 3.5 seconds on a typical Intel machine.

4.5.4 3D MRNeuro Registration

In this section, we present results from a 3D MR Neuro experiment. Figure 4.11

displays sagittal slices of two data sets: a high resolution (256×256×60) MR volume

and a lower quality MR volume (128×128×60) that displays functional information.

which were of 128 × 128 × 128 spatial resolution. Figures 4.12 and 4.13 show the

volumes before and after EMST-based registration. The run-time was approximately
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MR Slice PET Slice

Figure 4.7: Transverse slices of the MR and PET volumes of “patient 17”.

2.5 seconds on a typical Intel machine.
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Figure 4.8: Checkerboard representations of the patient 17 MR and PET data sets
at initial alignment (before registration): Transverse, sagittal and coronal views.
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Figure 4.9: Checkerboard representations of the patient 17 MR and PET data sets
after EMST-based rigid-body registration: Transverse, sagittal and coronal views.
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Figure 4.10: Scatter plots and EMST’s for before (left) and after (right) EMST-based
rigid-body registration of the patient 17 MR and PET data sets. The average edge
length in the EMST’s are 0.2145 before registration and 0.1363 after registration.

Hi-res Anatomical MRI Low-res Lowb MRI

Figure 4.11: Transverse slices of the two different MR “Neuro” volumes.
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Before Rigid-body Registration

Figure 4.12: Checkerboard representations of the MR “Neuro” data sets at initial
alignment (before registration).
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After EMST-based

Rigid-body Registration

Figure 4.13: Checkerboard representations of the MR “Neuro” data sets after EMST-
based rigid-body registration.
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Chapter 5

Incorporating Prior Knowledge

from Pre-aligned Images

In this chapter, we are interested in the problem of incorporating prior knowledge

about the multi-modal relationship from pre-aligned image pairs. In this scenario, we

assume that previously aligned images (from the modalities of interest) (also called

training images) are available to the algorithm that attempts to align a new (test)

image pair. These pre-aligned images can be manually provided by experts or can be

a part of an image sequence the algorithm has already registered. In the following,

we examine how we can use this prior knowledge with the entropic graph estimator

of entropy. Our main contribution is a method for incorporating prior information in

a natural way and with minimal computational overhead into a registration measure

based on the Euclidean minimal spanning tree estimate of entropy.

5.1 Introduction and Background

As discussed in previous chapters, images of the same physical structure obtained

through different sensing modalities are often assumed to be well modelled through

some unknown, yet fixed dependency of the image intensities. For a registered image
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pair, we can usually assume that geometric variations have been corrected for, and

that the differences between the two images are mainly due to modality-varying rep-

resentations of the same structures. The main idea of this chapter is the following: if

aligned pairs of images are available, then it should be useful to extract the informa-

tion about the latter type of (cross-modality) variations between the images and use

this information to better the registration algorithm’s performance on a new (test)

pair of images. In other words, we would like to “learn” the underlying modality

relationship.

Consider a situation where we need to register a sequence of multi-modal image

pairs (Uk, V k), k = 0, 1, 2, . . . , K. At time k− 1 we can assume to have correctly reg-

istered the image pairs (U j , V j ◦Φ∗
j ) for j = 0, . . . , k−1. Note that, these alignments

may convey information about what to expect for the spatial alignment of Uk and V k,

i.e., we may build a prior probability distribution on the geometric transformation

space, pΦ(Φk), and compute the posterior probability q(Φk|Uk, V k, Φ∗
1, . . . , Φ

∗
k−1) to

define a similarity measure between U and V . This approach is useful for classifica-

tion (in a mono-modal setting) and was successfully employed by Miller et al. in [55].

This method typically employs a rich class of transformations with many degrees of

freedom. Learning in a high dimensional space requires K to be large.

In the applications we consider in this chapter, however, K is typically small

and the problem is multi-modal. In fact, in a lot of cases, we are lucky if we are

provided with one or two pairs of correctly aligned images. Moreover the applications

typically entail a restricted class of transformations, e.g. rigid-body, affine, etc.,

and the transformation parameters are considered to be uniformly distributed over a

constrained set. In this setting, the modality relationship can be assumed invariant

along the sequence and hence information about the modality relationship gained

from the prior alignments is potentially useful in the registration of the image pair

(Uk, V k).
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An image registration method that does not use prior information gained from

previous alignments will be called a blind method. If pre-aligned images exist, this

case will be referred to as supervised. Our goal is to study how prior information

obtained from previous registration of multi-modal images can be used to help in the

registration problem.

The problem of using prior information to improve multi-modal registration per-

formance was first investigated by Leventon et al. [45]. They propose estimating

the prior joint intensity distribution of registered image pairs using training data and

then employing a maximum likelihood (ML) approach to define the registration mea-

sure for new image pairs. Subsequently, Chung et al. [11], proposed an alternative

approach in which the quality of registration is determined by the Kullback-Leibler

divergence between the estimated joint intensity distribution of pre-aligned data and

the joint intensity distribution of the new images. Registration is then accomplished

by minimizing this K-L divergence. As discussed by Zöllei in [102], the main differ-

ence between the ML and K-L divergence approaches is the way they employ the

prior distribution to approximate the likelihood function. Moreover, it can theoret-

ically be argued that the divergence method [11] yields a monotonic profile of the

alignment measure, when close to the global optimum, which is not achieved with

the ML method [45]. This suggests that the divergence method is less likely to suffer

from getting stuck in local extrema. Both of these studies indicate experimentally

that using prior information produces an alignment measure with a wider basin of at-

traction, making the algorithm more robust to bad initializations, and a registration

algorithm that is faster compared to competing methods. Moreover, in [17], Cremers

et al. indicate that the employment of prior knowledge improves the robustness and

accuracy of the algorithm in nonrigid registration applications.

The main contribution of this chapter is to explore a method to incorporate prior

information, as explored in [45] and [11], into the entropic graph based, rigid-body
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image registration framework, described in the previous chapter.

5.2 Information Divergence Measures

Information divergence measures have been applied to many different domains, in-

cluding pattern recognition, image and speech processing, machine learning, quantum

information theory, graph theory, etc. For a technical treatment of different diver-

gence measures, see [48].

Amongst these, the most popular measure is the Kullback-Leibler divergence1.

First introduced in [43], K-L divergence, denoted by D, uses Shannon’s entropy to

define a non-symmetric (i.e., directed) distance between two probability distributions,

p and q:

D(p||q) , Ep(log p/q),

where Ep denotes expectation over p. K-L divergence was employed for image indexing

and retrieval in [87]. A generalization of the K-L divergence using Rényi’s entropy

[73] is the so-called α divergence and was employed in [40].

An alternative approach to define divergence measures, namely the Jensen-Shannon

(J-S) and Jensen-Rényi (J-R) divergences, relies on the concept of mixing distribu-

tions and Jensen’s inequality. An advantage of these definitions is that the measures

can be defined over multiple distributions and are symmetric.

Definition 5.2.1. Let p1, . . . , pk be k probability distributions and w = (w1, . . . , wk)

be mixing coefficients, such that wj > 0, ∀j = 1, . . . , k and
∑k

j=1 wj = 1. Then, for

α ∈ (0, 1) the J-R divergence is defined as:

Jw
α (p1, · · · , pk) , Hα(

k
∑

j=1

wjpj) −
k
∑

j=1

wjHα(pj),

1K-L divergence is sometimes called cross-entropy, directed divergence, relative entropy, etc.
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Figure 5.1: J-R Divergence (α = 0.5 and w = 0.5) between two Bernoulli random
variables: p and q.

where Hα is the Rényi entropy.

Using Jensen’s inequality, it can be shown that Jw
α is non-negative and achieves

zero if and only if all pj ’s are equal. Also, the limit of Jw
α as α goes to 1, is equal to

the J-S divergence and Jw
α is a convex function of the probability distributions [87].

For example, Figure 5.1 shows the divergence between two Bernoulli distributions

with parameters p and q.

5.3 J-R Divergence for Image Registration

Similar to the employment of the K-L divergence in [11], the J-R divergence can be

used as a distance between a “correct” distribution and an observed distribution.

For example, in [49], Jw
α is simply used to measure the distance between the pixel

value distributions of the two images in the overlap region. This alignment measure

is suitable for mono-modal applications, where one expects that, at good alignment,

the probability of a specific intensity value at a specific location to be similar in the

two images. In [100], He et al. provide a thorough analysis of the J-R divergence

and show that the divergence measure is maximized for a so-called degenerate set of

probability distributions. Inspired by this result, they propose to maximize the J-R

divergence between the marginal pixel intensity distributions of the floating image
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within level sets of the reference image. This approach has been demonstrated to

yield accurate results in mono-modal applications.

In this thesis, we take a different approach and use the J-R divergence to define

a supervised misalignment measure for a multi-modal application. This approach is

inspired by the employment of the K-L divergence in [11]. For mathematical motiva-

tion, we employ the following result, reported in [34], that links the J-R divergence

and Bayes decision error:

Let C = {c1, . . . , ck} be a set of k classes, Y = {X, C} denote a random variable

that takes values on X ×C and f : X 7→ C be a classifier. The Bayes’ classifier has the

minimum misclassification error, LB = minf :X 7→C P (f(X) 6= C). Let wi = P (C = ci)

be the class probabilities, w = (w1, . . . , wk), pij = P (X = xj | = ci) be the class-

conditional probabilities, and pj = (pij), ∀j = 1 . . . k. Based on the original framework

presented in [37], Hamza and Krim show that:

LB ≤ Hα(w) − Jw
α (p1, p2, . . . , pk)

2
,

for α ∈ (0, 1]. In other words, when classifying samples from different distributions,

the best performance is achieved when the distributions are maximally distant (as

measured by the J-R divergence) to each other.

In a trained image registration application, we can assume that there are two

“classes” of samples: the ones from the pre-aligned (training) image pair(s) and the

ones from the test image pair. Now, consider a scenario where we observed these

samples without knowing which image pair they came from. We would expect that

the samples would become less distinguishable with better alignment. In other words,

the distance (J-R divergence) between the underlying probability distributions should

decrease with the quality of alignment. Now, let’s make these ideas more formal.

Let U∗
t (x) and V ∗

t (x) denote two aligned training images from different modalities;
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U(x) and V (x) be two observed images (that are not necessarily aligned) from the

same respective modalities. Fix a geometric transformation Φ : Rd 7→ Rd. As in

previous chapters, assume that each pixel intensity value pair from (U∗
t , V ∗

t ) and

(U, V ◦ Φ) is an independent sample from the distributions p∗ and pΦ, respectively.

Then the distance between these distributions is a useful measure to determine the

quality of the current alignment. In particular, for w = (w, 1 − w) and α, w ∈ (0, 1):

Jw
α (pΦ, p∗) = Hα(wpΦ + (1 − w)p∗) − wHα(pΦ) − (1 − w)Hα(p∗) (5.1)

can be employed as a supervised misalignment measure.

In practice, however, relying heavily on the prior distribution to determine the

quality of alignment makes the algorithm’s performance sensitive to noise. Also,

note the negative marginal entropy term, Hα(pΦ), in (5.1). This suggests that in

some cases decreasing Jw
α (pΦ, p∗) may increase the marginal entropy. Recall that in

previous chapters we employed the marginal entropy Hα(pΦ) as a blind misalignment

measure, i.e., to evaluate the quality of alignment based only on the test images. In

that framework, the goal of the algorithm was to minimize Hα(pΦ).

Based on these observations, we investigate the following hybrid measure that

combines the blind and supervised misalignment measures:

Qα(U, V ◦ Φ) = (1 − λ)Jw
α (pΦ, p∗) + λHα(pΦ), (5.2)

where w, λ ∈ (0, 1] are free parameters. In practice, we choose w = |SΦ|/(|S∗|+ |SΦ|),

where SΦ = {(U(x), V ◦ Φ(x))} and S∗ = {(U∗
t (x), V ∗

t (x)}; and λ = w
1+w

, where |.|

denotes set cardinality. Note that, with these values the weight on the J-R divergence

(i.e., the supervised misalignment measure) is proportional to the amount of available

prior samples. In other words, if |S∗| ≫ |SΦ|, then λ ≈ 0, letting the supervised

measure drive the algorithm. On the other hand, if |S∗| ≪ |SΦ|, then λ ≈ 1 allowing
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Figure 5.2: EMST’s of the test sample set and the training sample set (from pre-
aligned images).

the blind measure to drive the algorithm.

Since Hα(p∗) does not depend on the current alignment, it can be removed from

the objective function. With the chosen weights, the marginal entropy term cancels

and the expression simplifies to:

Rα(U, V ◦ Φ) = Hα((1 − w)p∗ + wpΦ). (5.3)

5.4 EMST-based Estimate of the Misalignment Mea-

sure

Let S = S∗ ∪ SΦ. Note that we can assume that the samples in S are drawn from a

mixture distribution equal to (1−w)p∗ + wpΦ, where w = |SΦ|/(|S∗| + |SΦ|). In the

remainder, let’s fix γ = 2(1 − α). Using the entropic spanning graph estimator from

Section 3.3.3, W ∗
γ (S), as defined in (3.7), yields a consistent estimate of (5.3)(e.g., see

Figures 5.2 and 5.3, where the pre-aligned images are a simulated t1-t2 MR image

pair [12]. For the test (observed) case, the second image was artificially rotated by

10 degrees.). We propose to use W ∗
γ (S) as a misalignment measure.
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Figure 5.3: EMST and approximate EMST (with k = 1, see Section 5.5 for a descrip-
tion) of the union sample set (from observed+pre-aligned images).

Recall that, in Section 4.3.3, we viewed the gradient of the alignment measure as

sample pair interactions and in an iterative gradient descent optimization framework,

the registration algorithm evolved based on the attractions between samples. In the

EMST computed over the union sample set S, the training samples are “stationary,”

i.e., are independent of the alignment. Thus, they behave like anchors, pulling in the

observed samples. This “anchoring effect” makes the algorithm more robust to bad

initializations. Figure 5.4 shows the effect on the registration function profile (To

produce this figure, we used the Brainweb [12] data sets. Training and test images

were obtained from different slices of the volume and the test image pair was corrupted

by i.i.d Gaussian noise.). It can be seen that the capture range of the misalignment

measure has increased when samples from pre-aligned images were used.

Moreover, the proposed supervised misalignment measure, W ∗
γ (S) is a natural

extension of the blind measure investigated in the previous chapter, i.e., W ∗
γ (SΦ),

since S = SΦ in the absence of training data, i.e., when S∗ = ∅.

Adding training samples naturally introduces a computational overhead and slows

down the algorithm. This overhead can be minimized using an EMST of the training

samples, which can be computed off-line. This idea is discussed in the following

section.
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5.5 Computational Issues

The additional computational load of introducing a large set of training samples is

important. The following lemma and theorem indicate that an EMST of the training

samples, computed off-line, can be used to decrease the computational overhead.

Define a minimum spanning forest (MSF) of a graph G as a union of the MST’s of

the connected components. Note that if G is a complete graph, by Kruskal’s algorithm

a MSF of G is a MST.

Lemma 5.5.1. For a graph G(E, V ), let E = E1 ∪ . . . ∪ Ej form a partitioning of

its edge set. Let Fj denote the edge set of a MSF of Gj(Ej , V ). Then there exists a

MSF of E (MST if G is complete) such that its edge set F ⊂ ∪iFi.

Proof: Let e12 ∈ Ej denote an edge that connects two vertices v1 and v2. If

e12 /∈ Fj , then this is the longest edge in a cycle that contains e12 and other edges

from Ej . Thus, by Kruskal’s algorithm this edge cannot be in F .

2

Let T ∗ and TΦ be the edges in the EMST’s of S∗ and SΦ, respectively. Let F L
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be the MSF of the edges that connect samples from S∗ to SΦ.

Theorem 5.5.2. The edges in an EMST of SΦ ∪ S∗ are a subset of T ∗ ∪ TΦ ∪ F L.

Proof follows from Lemma 5.5.1. 2

In our implementation, for large training sets we replace F L by the set of edges

(ENN) that connect each sample in SΦ to its k-nearest neighbors in S∗. This yields

a fast approximate EMST algorithm that uses edges in T ∗ ∪ TΦ ∪ ENN . If |S∗| >>

|SΦ|, the output tree is usually a good approximation of the complete EMST (see

Figure 5.3). Note that, for a fixed observed sample set size |SΦ|, a naive computation

of the complete EMST is O(|S∗| log |S∗|) as the training set size grows to infinity. The

proposed approximate EMST algorithm that employs a pre-computed EMST reduces

this cost to O(log |S∗|).

Lemma 5.5.3. For a fixed |SΦ|, the online computation time of the described ap-

proximate EMST is O(log(|S∗|)).

Proof: Computation of TΦ is O(|SΦ| log |SΦ|). Computation of ENN is O(|SΦ| log |S∗|).

Given the sorted EMST edge sets TΦ and T ∗, the computation of the final EMST is

O(|SΦ|). The total algorithm is thus O(|SΦ| log |SΦ|) + O(|SΦ| log |S∗|) + O(|SΦ|).

2

5.6 Empirical Results

In this section, we provide empirical results for the comparison of the blind and su-

pervised EMST algorithms. Our intention is to illustrate the effect of incorporating

prior knowledge into the EMST-based registration framework introduced in this the-

sis. Thus, we do not benchmark the proposed algorithm against other learning-based

registration algorithms, such as [11, 45]. Also, note that our implementation of the

EMST-based supervised algorithm gradually omits training samples (ending up with
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no training samples and only test samples) as the algorithm progresses. This improves

the final registration accuracy, while taking advantage of the improved capture range

gained through training.

5.6.1 2D Simulations

In our first experiment, we use the simulated natural images and different misalign-

ment scenarios used to produce the results in Section 4.5.1. Since, the second images

were synthesized from the original images by applying a (fixed) intensity mapping and

corrupting with Gaussian noise, ground truth for alignment was known. Pre-aligned

images were obtained with another noise realization. Also, to simulate errors in pre-

alignment, we introduced random geometric transformations that did not exceed a

one pixel translation (along both axes) and a one degree global rotation.

• Let A2 designate the registration algorithm that uses an EMST-based Renyi

entropy estimator with descent-based optimization and no training samples.

This is the same algorithm as A2 in 4.5.1.

• Let A4 designate the same algorithm as above where the input includes training

samples obtained from a pre-aligned image pair.

Results summarized in Table 5.1 provide a confirmation of our expectation that incor-

porating prior knowledge from pre-aligned images should improve robustness against

bad initialization (Recall that Case 3 corresponds to bad initial alignment).

In a different simulation, we wanted to illustrate the effect of incorporating prior

knowledge on the final alignment quality under different misalignment conditions.

Here, we used the “Bogart” images shown in Figure 5.5. Again, the second image was

synthesized from the original first image. This time, the intensity transformation was

not one-to-one and was a function of image gradients and intensity values, i.e., violated

the common assumption of being a function of pixel intensity values. Figure 5.6
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Case 1 Case 2 Case 3
Algo. A2 A4 A2 A4 A2 A4

tx 0.51 0.38 2.47 0.30 12.41 0.33
ty 0.58 0.44 4.19 0.34 18.64 0.38
θ 0.53 0.37 1.52 0.39 7.94 0.44

C.F. 100% 100% 55% 100% 32% 100%

Table 5.1: Translation (tx and ty) MSE in pixels, angle (θ) MSE in degrees. Con-
vergence frequency (C.F.) is the percentage of trials where the algorithm achieved
sub-pixel accuracy. Average run times (in seconds): 3.1 for A2, 4.2 for A4. Run-
times are for Matlab-Mex implementations running on a Pentium IV machine with
512MB RAM.

Figure 5.5: The “Bogart” images.

shows the scatter plot for the aligned image pair. Figure 5.7 shows the mean square

alignment errors (averaged over 100 trials) versus initial misalignment (translational

and rotational). It can be seen that using samples from pre-aligned images yields a

better performance with bad initial alignment.

5.6.2 3D Registration

In this section, we present results using the synthetic 3D Brainweb data sets [12],

that includes t1, t2 and pd weighted MRI volumes. Figure 5.8 show the sagittal

planes of these volumes. To compare the two approaches (blind and supervised),

we introduced an initial misalignment by translating or rotating one of the volumes

by a relatively large amount. The two algorithms are exactly the same except for
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Figure 5.6: Scatter plot of pixel intensity value pairs for correct alignment of the
“Bogart” images.
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Figure 5.7: Translational and rotational alignment errors (MSE) versus initial mis-
alignment.
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t1 weighted MRI t2 weighted MRI pd weighted MRI

Figure 5.8: Sagittal views of the Brainweb volumes.

their misalignment measures, which are the blind EMST measure (described in the

previous chapter) and supervised EMST measure. The pre-aligned images are the

original data sets misaligned by some random, yet small rigid body motion (less than

one pixel translation and less than one degree rotation in each direction). Table 5.2

displays the “convergence rates” for different cases of initial alignment. The algorithm

was declared converged if the final alignment was closer (in absolute difference) than

one unit (pixel or degree) to the correct values of all transformation parameters.

These results were obtained by averaging over 100 trials for each case.

Based on experiments (e.g. see Section 4.5), we know that the EMST-based reg-

istration achieves sub-pixel accuracy when transformation parameters are initialized

within the capture range of the alignment measure. Thus, the presented convergence

rates are intended to serve as a measure of the width of the algorithm’s basin of attrac-

tion. In all cases, we observe that the supervised algorithm has a higher convergence

rate. This supports the claim that the proposed approach improves the capture range

of the EMST based registration algorithm.
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Initial alignment No training data With training data
tx ty tz α β γ

pd-t1 registration
65 0 0 0 0 0 55% 65%
0 65 0 0 0 0 40% 70%
0 0 65 0 0 0 15% 95%
0 0 0 30 0 0 55% 65%
0 0 0 0 25 0 61% 92%
0 0 0 0 0 25 49% 93%

pd-t2 registration
65 0 0 0 0 0 52% 69%
0 65 0 0 0 0 30% 65%
0 0 65 0 0 0 10% 85%
0 0 0 30 0 0 35% 70%
0 0 0 0 25 0 41% 90%
0 0 0 0 0 25 53% 85%

Table 5.2: Convergence rates of the EMST-based registration algorithm. The employ-
ment of training data (i.e., pre-aligned image pairs) as discussed in the text improves
robustness against bad initialization.
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Chapter 6

Level Set Entropy for Nonrigid

Registration

In this chapter, we consider multi-modal applications where global transformation

models, e.g. rigid body, are insufficient to capture the geometric variations of inter-

est. In general, we refer to this class of transformations as nonrigid. Specifically,

we focus on transformation models that yield a dense deformation field, such as in

optical flow techniques. Entropy-based approaches have been investigated for non-

rigid registration, but due the computational complexity of the similarity measure

and high-dimensional nature of the optimization problem, speed can become a crit-

ical issue. In this chapter, we present a linear time nonrigid registration technique

that employs a one-dimensional “level set entropy” as a similarity measure within

a dense deformation framework regularized by Gaussian smoothing. Similar to the

analysis provided in Chapter 2, the proposed measure can be motivated using a max-

imum likelihood approach. Its main advantage is its flexibility to employ fast and

simple entropy estimation techniques. For determining a regularized geometric warp,

we show that the Gaussian smoothing technique corresponds to a gradient-descent

optimization strategy in a class of smooth and invertible geometric transformations.
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Simulations and experimental evidence indicates that level set entropy yields fast and

accurate nonrigid registration.

6.1 Nonrigid Registration

In previous chapters, we used entropy-based measures for multi-modal rigid-body

registration. We also discussed the straightforward extension of these ideas to other

parametric global transformation models, e.g. affine, that include a zooming com-

ponent. However, in many of today’s applications (e.g. multi-subject registration,

cardiac motion correction, etc.) the geometric variations across the images can not

be adequately described by such global models. Thus, one may desire that the reg-

istration algorithm accounts for local deformations in the images. We shall use the

term nonrigid transformation to refer to any geometric transformation that cannot

be captured using a global rigid-body model.

Nonrigid registration is an ill-posed problem: given a sufficiently rich transforma-

tion class any image can usually be transformed to be similar to another, a problem

analogous to over-fitting in machine learning. On the other hand, a conservative

transformation class may not achieve the desired alignment accuracy (under-fitting).

One approach to circumvent this problem is to employ a restricted class of transfor-

mations that provides sufficient flexibility, yet avoids over-fitting, e.g. affine trans-

formations, spline-based parameterized transformations, etc. However, the success of

this approach heavily relies on a detailed understanding of the physics of the appli-

cation. An alternative method is to employ a fairly rich class of transformations, e.g.

allowing each pixel to be displaced independently (also known as free-form deforma-

tion), but employ an explicit regularization term that reflects our expectations by

penalizing “unlikely” transformations.

Speed is an important factor in image registration. Statistical algorithms, e.g.
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ones based on entropic alignment measures, can be computationally expensive and

the search for the optimum geometric transformation in a rich class of transformations

adds an additional computational burden.

The contribution of this chapter is multi-fold: we formulate the registration prob-

lem as a joint minimization of a sum of one-dimensional entropies. This formulation

provides the flexibility to make stronger, yet realistic, assumptions about the underly-

ing data and yields fast (linear-time) and accurate multi-modal nonrigid registration

algorithms. In addition, we examine a fast optical-flow-like method originally derived

using an explicit regularizer based on a viscous fluid model [24], and show that this

deformation model corresponds to a particular class of smooth transformations.

Section 6.2 motivates the entropy-based misalignment measure. In Sections 6.2,

6.3 and 6.4, we outline our formulation of nonrigid image registration. Details of our

implementation and empirical results are provided in Sections 6.5 and 6.6, respec-

tively.

6.1.1 Entropy-based Nonrigid Registration

Motivated by various studies cited in [68], we have employed entropy-based measures

to quantify the quality of alignment. The underlying intuition of this approach is that

corresponding feature samples (e.g. pixel intensity values, wavelet coefficients, image

gradients, etc.) extracted from different images of the same scene become statistically

more dependent with better alignment. In the sample space, this dependency leads

to the clustering of samples, as can be seen in the scatter plots of Figure 2.4.

In registering two images, one image (the reference image) is typically held fixed

and the second (floating) image is transformed (“warped”) so that it is aligned with

the reference. In this setting1, for each feature sample only the component that cor-

responds to the floating image value varies as the floating image is warped. When the

1Assuming we use a fixed set of sampling locations
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Figure 6.1: Scatter plot of pixel intensity samples from a pair (reference and floating)
of images before (tx = 0) and after (tx = 1) the floating image is translated by one
pixel. Notice that for the two cases the sample values vary in their second coordinate
values only.

extracted features are pixel intensities, this manifests itself as the vertical movement

of the samples in the intensity scatter plot. See for example Figure 6.1, where a small

number of samples are shown before and after a 1-pixel translation of the floating

image.

To our knowledge, this constraint on the sample value change has not been explic-

itly exploited in prior entropy-based registration algorithms. One method to exploit

it is to estimate the one-dimensional entropy of samples that have a fixed intensity

value in the reference image. This approach is similar to the so-called “congealing”

technique [53, 104] on level sets of the reference image. This gives us the flexibil-

ity to make strong assumptions about the samples within each level set and in turn

yields faster and possibly more accurate algorithms. For instance, if we know that

the cross-modality intensity relationship is one-to-one at alignment, i.e., we expect
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samples from a level set of the reference image to cluster around one value at good

alignment, then a unimodal distribution, e.g. a Gaussian, can model the underlying

distribution in each level set. Moreover, by treating each level set independently,

we are relaxing the assumption, implicit in most algorithms, that the underlying

cross-modality relationship is continuous.

Nonrigid image transformations can be parametric or nonparametric. Parametric

transformations employ a parameterized transformation space, e.g. affine transforma-

tion, thin-plate splines, B-splines, etc. The goal is to determine the set of parameter

values that optimize a fixed alignment measure. This technique has been used with

entropy-based measures in [80, 76, 47, 64]. The advantage of parameterized tech-

niques is that the dimensionality of the problem is relatively low and hence a robust

optimization is possible. However, in some applications it is not clear how to select

a natural parameterized transformation space. Moreover, these approaches often re-

quire quite a few major design decisions, e.g. number of control points in the B-spline,

that have an important influence on the final result and thus have to be fine-tuned

for each application.

In a nonparametric approach (also referred to as optical-flow-like deformation,

dense deformation, etc.), each image pixel is transformed independently. To circum-

vent the ill-posedness of the problem and to incorporate prior knowledge about the

transformation, one can employ a gradient-descent-like time marching scheme to min-

imize a global functional of the geometric transformation. This functional consists of

two terms: the alignment measure and an external regularization term that reflects

our expectations by penalizing unlikely transformations. Depending on the applica-

tion, various energy functionals have been proposed in the literature. While most

of these are inspired by physical models, e.g. elasticity, viscous fluid and diffusion

models [56], others employ a Bayesian approach with a prior distribution model, e.g.

Brownian warps [61]. An alternative strategy, also motivated by physical models, is
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an iterative scheme where a “rough” warp field obtained from the gradient of the

alignment measure is projected onto a known function space. This projection is done

by spatial smoothing [65, 18, 38]. This approach has yielded fast nonrigid registration

algorithms [24].

In the following, we investigate a fast smoothing-based optical-flow-like method

with the proposed “one-dimensional” entropy-based alignment measure. As discussed

in Section 6.4, this can be motivated using a gradient descent optimization strategy

in a family of smooth transformations.

6.2 Level Set Entropy as a Misalignment Measure

Let U(x) and V (x) be images, where x ∈ Rd and d = 2 or 3. Let Ω ⊂ Zd be a finite

region of interest. Write the warp function in the form Φ(x) = (Id+h)(x) = x+h(x),

where Id is the identity transformation and h : Rd 7→ Rd. We assume that the warp

is applied to the second image to produce V (Φ(x)).

Assuming that pixel intensity values U(x) and V (Φ(x)) are independent samples

from pU and pV and using a maximum likelihood approach, as in Section 2.3.1, we

derived the conditional entropy H(V (Φ(x))|U(x)) as a misalignment measure. Now,

let’s define the level set entropy of the image V ◦ Φ for U = u as:

H(V ◦Φ(x)|U(x) = u) , −
∫

log(pV (V ◦Φ(x)|U(x) = u))pV (V ◦Φ(x)|U(x) = u)dV.

(6.1)

Note that H(V ◦ Φ(x)|U(x)) = E(H(V ◦ Φ(x)|U(x) = U)), where the expectation E

is over the distribution pU . Given an estimator Ĥ(V ◦ Φ(x)|U(x) = u) for (6.1), a

sample mean estimate of H(V ◦ Φ(x)|U(x)) is:

Ĥ(V ◦ Φ(x)|U(x)) =
1

N

∑

u

NuĤ(V ◦ Φ(x)|U(x) = u), (6.2)

94



where N = |Ω| and Nu = |Ωu| = |{x : x ∈ Ω, U(x) = u}|. Also, by the law of

large numbers pU(u) ≈ Nu/N . In the following, we explore (6.2) as a misalignment

measure. This entails the estimation of the one dimensional entropic measure (6.1).

At this point, it is important to emphasize that the trivial solution discussed in

Section 4.3.3, is not of immediate concern, since in the proposed level set entropy

framework, inter-sample attractions are only effective within each level set. In other

words, samples that have the same fixed image value attract each other. Thus, even if

all samples were allowed to move independently, it is highly unlikely that they would

line up horizontally and take on the same value in the second image.

6.3 Entropy Estimation

To estimate the one-dimensional level set entropy, we will employ “plug-in” entropy

estimators (see Chapter 3 for a more detailed overview). In this approach, a density

estimate is inserted into the entropy formula yielding an entropy estimate. Paramet-

ric density estimators employ a family of parameterized densities (e.g. a Gaussian

density, mixture densities, etc.) and estimate the parameter values based on obser-

vations. Nonparametric methods, on the other hand, let the data (e.g. histogram)

determine the “shape” of estimated density.

Let S = {s1, . . . , sM} be M independent one-dimensional samples of a continuous

density pS. If we assume pS is a Gaussian density, a parametric plug-in estimate of

the corresponding entropy is:

ĤG(S) =
1

2
ln(2πeσ̂2), (6.3)

where σ̂2 =
∑

si∈S(si − s̄)2/M and s̄ =
∑

si∈S si/M are the maximum likelihood

estimates of the variance and mean, respectively. Note that, parametric estimators

for other types of distributions can also be employed. See, for example, Section 3.4.
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A nonparametric estimate of the density, given by the Parzen window method, is:

p̂S(x) =
1

M

∑

s∈S
gσ(x − s), (6.4)

where gσ(·) is the one-dimensional zero-mean Gaussian with a variance σ2. Plugging

(6.4) into the entropy formula yields a nonparametric plug-in estimate of the entropy:

ĤP (S) = −
∫

R

p̂S(x) log p̂S(x)dx. (6.5)

6.4 Warp Field

As in [61], we assume that the geometric mapping Φ(x) is a concatenation of “smooth”

invertible mappings. Let Φσ
j (x) be an invertible function that can be expressed as:

Φσ
j (x0) , x0 +

∑

x∈Ω

rj(x)Ḡσ(x0 − x),

for some vector field rj : Ω 7→ Rd and normalized discrete Gaussian filter

Ḡσ(·) = Gσ(·)/
∑

x∈Zd

Gσ(x),

where Gσ(·) is the d-dimensional zero-mean Gaussian with covariance matrix Σ = σ2I.

Gaussian smoothing can be theoretically motivated by a viscous fluid model, as shown

in [24]. Now, for a L ∈ Z+ we assume that the geometric mapping Φ belongs to a

family W(L, σ) consisting of functions in the following form:

Φ(x) = Φσ
1 (x) ◦ . . . ◦ Φσ

L(x). (6.6)

By the Inverse Function Theorem and assuming the mapping is orientation-preserving,
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i.e., the image is not flipped, Φ(·) is invertible if it has a positive Jacobian determi-

nant, i.e., det(JΦ) > 0 at every point x ∈ Rd, where JΦ(i, j) = ∂Φj/∂xi. By the chain

rule and (6.6):

JΦ =
L
∏

j=1

JΦj
.

It is easy to see that if each Φj has a positive Jacobian, then each Φj is invertible and

thus Φ is invertible with:

Φ−1 = Φ−1
L ◦ . . . ◦ Φ−1

1 . (6.7)

Note:

JΦj
(x0) = I +

∑

x∈Ω

∇Ḡσ(x0 − x)T rj(x), (6.8)

where I is the identity matrix, ∇Ḡσ is the gradient of Ḡ and MT denotes the transpose

of M .

Using the level set entropy misalignment measure, we formulate image registration

as:

Φ∗ = argmin
Φ∈W(L,σ)

Ĥ(V ◦ Φ|U), (6.9)

where Ĥ(V ◦ Φ|U) is defined in (6.2). A suboptimal solution to (6.9) is Φ∗∗ =

Φ∗
1 ◦ . . . ◦ Φ∗

L, where

Φ∗
j = argmin

Φj∈W(1,σ)

Ĥ(V ◦ Φ∗
1 ◦ . . . ◦ Φ∗

j−1 ◦ Φj) (6.10)

and Φ∗
0 = Id. This is similar to the re-gridding approach used in [10]. Let R(σ) =

{r : Ω 7→ Rd s.t Φσ
r is invertible in Ω}. Define V j = V ◦ Φ∗

1 ◦ . . . ◦ Φ∗
j for j = 1, . . . , L

and:

r∗j , argmin
rj∈Rσ

Ĥ(V j−1 ◦ Φj |U). (6.11)
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Then, by definition:

Φ∗
j (x0) = x0 +

∑

x∈Ω

r∗j(x)Ḡσ(x0 − x).

As in [38], employing the first variation of Ĥ within a “gradient descent-like” opti-

mization strategy to solve (6.11) yields the following iterative algorithm:

r0
j = 0, Φ0

j = Id

rt+1
j (x0) = rt

j(x0) − λ
∑

x∈Ω

F (x)Ḡσ(x0 − x), (6.12)

Φt+1
j (x0) = x0 +

∑

x∈Ω

rt+1
j (x)Ḡσ(x0 − x), (6.13)

where

F (x) ,
∂Ĥ(V j−1 ◦ Φrt

j
|U)

∂V j−1(Φrt
j
(x))

∇V j−1(Φrt
j
(x)) (6.14)

is the gradient field of the entropy estimate, λ > 0 is a step size and ∇I is the gradient

image of I. Combining Equations (6.12) and (6.13), an equivalent algorithm is:

Φ0
j = Id

Φt+1
j (x0) = Φt

j(x0) − λ
∑

x∈Ω

F (x) (6.15)

∗Ḡ√
2σ(x0 − x)Wσ/

√
2((x0 + x)/2),

where Wσ(x) ,
∑

y∈Ω Ḡσ(y − x). Note Wσ(x) ≤ 1, and Wσ(x) = 1, ∀x ∈ Zd, when

Ω = Zd. In practice, we use this upper bound to speed up the algorithm. For small

σ, this is a good approximation away from the boundary of Ω.
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6.5 Algorithm

6.5.1 Gradient Field of Entropy Estimate

To compute the gradient field of the entropy estimates (6.3) and (6.5), we need to

compute the derivative of the entropy estimates with respect to a sample value. For

the Gaussian parametric estimate, the derivative is:

∂ĤG(S)

∂sj
=

1

M

sj − s̄

σ̂2
, (6.16)

and for the Parzen-window based estimate the derivative is:

∂ĤP (S)

∂sj

= − 1

M

∫

R

g′
σ(sj − x) log p̂S(x)dx, (6.17)

where g′ is the derivative of the Gaussian. Using these, we can easily compute the

gradient field expressions (6.14) for the corresponding entropy estimates.

6.5.2 Implementation

The proposed algorithm combines all three components described in the previous

sections. The conditional entropy of the pixel intensity values is estimated using

(6.2). We employ two different entropy estimators, parametric (6.3) (Algorithm 1 )

and nonparametric (6.5) (Algorithm 2 ), to estimate the one-dimensional level set

entropy (6.1). The level sets are computed once at the beginning of the algorithm

by determining regions (pixel locations) with the same quantized reference image

value. We used 10-50 quantization levels. Note that the computation of the entropy

gradients are linear time, i.e., O(N), where N is the total number of pixels. We employ

a blurred histogram (typically with 20-30 bins) to quickly compute a density estimate

(6.4). Also, the integral of Equation (6.17) is approximated using a finite sum over

the histogram bins. One trick we employed to speed-up the algorithm (especially
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with high-resolution 3D data sets) is to use a subset of the pixels to compute the

sample means s̄ and variances σ̂2 in Algorithm 1 or the density estimate p̂S (6.4) in

Algorithm 2.

The optimization component is an iterative scheme, where at each iteration the

floating image is warped by smoothing the gradient field of the entropy estimate

with a finite length normalized Gaussian filter, as in Equation (6.15). In practice,

for 2D images of size 128 × 128 we used a 10 × 10 Gaussian filter, and a step size

satisfying λ‖F‖ < 0.3, where ‖F‖ , maxx∈Ω |F (x)| is the maximum gradient field

magnitude, and σ = 5. To avoid singularities in the warp, one can perform a re-

gridding whenever the Jacobian (6.8) comes too close to zero, i.e. minx∈Ω JΦ(x) < 0.1.

In practice, we found that re-gridding after each iteration with the given step size

sped up the algorithm dramatically, while producing good results. As widely done

in image registration, we constructed a standard Gaussian multi-resolution pyramid

(with 3-4 levels) to improve the accuracy and speed of the algorithm. At non-integer

locations we used bilinear interpolation to compute intensity values.

6.6 Empirical Results

Validating a nonrigid image registration algorithm is a difficult task. An important

indicator of the quality is its performance with simulated examples. Yet, we believe

that the real value of an algorithm can only be revealed within an application. The

following results will thus serve only as a preliminary evaluation of our proposed

algorithm and a confirmation of our expectations. Quantitative results are presented

using simulated data, i.e., with ground truth available. Qualitative evidence is also

given based on visual inspection of a real-world application.
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6.6.1 Simulations

We employ the Brainweb images [12]. In each simulation, the floating image is gener-

ated by applying a known warp field to one of the images. The goal of the registration

algorithm is to recover this warp, which was created using a thin-plate spline model

[5] (different than the proposed algorithms’ deformation model), and is invertible and

smooth.

Here, we present two cases: 1) t1-t2, and 2) t2-pd registration. In the first case,

the two modalities have a one-to-one relationship at perfect alignment, as can be seen

in Figure 6.2-a. Thus, we expect the parameterized entropy estimator (based on a

Gaussian model), i.e., Algorithm 1, to perform well. In the second case (Figure 6.2-

b), the cross-modality relationship is not one-to-one, hence the Gaussian model is

too restrictive and accuracy suffers. Difference images are provided in Figures 6.4

and 6.5 for pre-registration and post-registration. Figure 6.3 displays the original

and recovered warp fields for the t1-t2 experiment using deformed grids. Table 6.1

summarizes the quantitative results. Run times are for a Matlab implementation

running on a Pentium 4 machine with a 512MB RAM.

intensity MSE grid MSE time (sec.)
t1-t2 Registration

Artificial warp 0.0156 15.11 -
Algorithm 1 0.0029 2.81 9.09
Algorithm 2 0.0037 3.09 10.17

pd-t2 Registration
Artificial warp 0.0181 16.32 -
Algorithm 1 0.0079 4.98 9.01
Algorithm 2 0.0041 3.33 10.2

Table 6.1: Simulation results for t1-t2 and pd-t2 MR registration. Intensity MSE:
Mean square difference between the intensity values (in [0,1]) of original and warped
floating image. Grid MSE: Mean square difference between deformed grid and ground
truth (in pixel coordinates).

In Table 6.1, the first column (intensity MSE) attempts to evaluate the result

based on pixel intensity values, i.e., how similar the recovered floating image is com-
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pared with its original. The values suggest that both algorithms do a good job in

making the images look similar, but this measure ignores the actual warp. The second

column, on other hand, measures the discrepancy between the grid warped consec-

utively using the synthetic and recovered warps, and a uniform grid. Under perfect

conditions, the consecutively warped grid should be uniform. Thus, these values indi-

cate the algorithm’s success in recovering a warp. Note that, after the synthetic warp

is applied, the average distortion between the original (uniform) grid and deformed

grid is about 15-16 pixels. Both algorithms bring down these values to 2-4 pixels. As

expected, Algorithm 1 performs better in the first case. Algorithm 2 achieves better

results in the second case, where there is no one-to-one relationship between pixel

intensity values in the two images at perfect alignment.

6.6.2 3D Experiment

In this section, we present results from a mono-modal multi-subject application. Fig-

ures 6.7 and 6.6 show the MR volumes (of resolution 128×128×128) of two subjects.

Here, ground truth and an objective measure of alignment quality is not available.

One approach to determine registration accuracy is through visual inspection.

To achieve the final alignment results, we employed a three step strategy. As com-

monly done in brain imaging, in the first step we pre-processed the images to extract

“non-brain” regions (e.g. the skull). For this, we utilized a “Brain Extraction Toolkit”

developed by Smith [86] within the MRIcro environment [77]. Figure 6.8 displays the

“stripped” brains at initial alignment. In step 2, we brought the two brains into

rigid alignment using the EMST algorithm described in Chapter 4. A MEX/Matlab

implementation running on 512MB Intel machine took about 7 seconds to complete

this step. Figure 6.9 shows the volumes after rigid registration. Finally, in step 3, we

employed the level set entropy-based nonrigid registration algorithm investigated in

this chapter and described as Algorithm 1 in Section 6.5.2. A MEX/Matlab imple-
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Figure 6.2: Pixel intensity samples from perfectly aligned image airs
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Figure 6.3: Grids deformed based on the original artificial warp and warps recovered
using proposed algorithms.

mentation running on 512MB Intel machine took about 44 seconds to complete the

nonrigid alignment step. Figure 6.10 shows the two brains after nonrigid registration.

Figure 6.3 illustrates the warp field obtained in the third step.

After inspecting the alignment of the edges in the images, e.g. the sulci and gyri,

we conclude that both algorithms (EMST-based rigid body and level set nonrigid)

yield promising results.
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a) Pre-registration b) Post-Algorithm 1 c) Post-Algorithm 2

Figure 6.4: Difference images, i.e., absolute value of warped image - original image,
before and after registration for Case 1, t1-t2 registration.

a) Pre-registration
 b) Post-Algorithm 1
 c) Post-Algorithm 2


Figure 6.5: Difference images, i.e., absolute value of warped image - original image,
before and after registration for Case 2, pd-t2 registration.

Figure 6.6: Subject 1: Transverse, sagittal and coronal views of the MR volume.
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Figure 6.7: Subject 2: Transverse, sagittal and coronal views of the MR Volume
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Figure 6.8: Checkerboard representations of the two subjects’ brains at initial align-
ment: Transverse, sagittal and coronal views.
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Figure 6.9: Checkerboard representations of the two subjects’ brains after rigid align-
ment using the EMST-based algorithm described in Chapter 4: Transverse, sagittal
and coronal views. Red circles indicate regions where local, nonrigid deformations
are required to improve alignment.
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Figure 6.10: Checkerboard representations of the two subjects’ brains after nonrigid
alignment using Algorithm 1 described in Section 6.5.2: Transverse, sagittal and
coronal views. The effect of the nonrigid alignment can easily be seen by comparing
the alignment of the edges in regions within the red circles.
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Figure 6.11: Warped grids from the nonrigid alignment step: Transverse, sagittal
and coronal views. Red circles highlight regions where nonrigid alignment had an
important role in lining up edges.
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Chapter 7

Functional Registration of the

Human Cerebral Cortex using

fMRI

In this chapter, we depart from the theoretical aspects of entropy-based image regis-

tration and start the exploration of an application-driven problem: the inter-subject

functional registration of the human cerebral cortex. To our knowledge, this is the

first attempt at this problem.

The cerebral cortex is a large, continuous, 2-4 mm thick, folded sheet of tissue lo-

cated right below the skull. An increasingly important part of today’s neuroscientific

research concerns the structural and functional organization of the cerebral cortex.

However, a major challenge in the field is to set up correspondence between different

subjects’ brains, so that population-based conclusions can be drawn. This chap-

ter is intended to serve as a summary of some preliminary work that addresses this

challenge. We include a description of a proposed method that attempts to function-

ally align the cerebral cortices of different subjects using structural and functional

MRI data gathered from multiple subjects during the viewing of a movie (Steven
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Spielberg’s “The Raiders of the Lost Ark”). Preliminary experiments indicate that

the alignment results generalize well to other cognitive experiments, supporting the

plausibility of functional normalization based on both structural and functional MRI.

7.1 Introduction

The cerebral cortex is a sheet-like, grey colored brain structure that is folded with

deep involutions. These foldings create grooves (called sulci) and bumps (called gyri)

that can be identified on the surface. The cerebral cortex is involved in many complex

brain functions including memory, attention, perceptual awareness, language and con-

sciousness. Based on scientific evidence (e.g. the columnar and laminar organization

[58, 63, 71]), we believe that the functional organization of the cortex is intrinsically

two-dimensional. In other words, most of the (functional or anatomical) features that

distinguish different cortical areas can only be understood by viewing these regions

on the folded manifold of the cerebral cortex. Moreover, in an unlabelled 3D volume,

that is without the knowledge of functional and/or structural areas, there is no obvi-

ous way of explaining these phenomena. This characteristic of the cerebral cortex has

inspired the design of tools that efficiently extract and represent this two-dimensional

surface [30, 29, 2].

Setting up (functional or anatomical) correspondence across multiple subjects is

a crucial precursor to most neuroscientific studies that try to understand how the

brain functions and come up with useful models that can describe brain responses

within a significantly large population. Most of today’s studies that compare the

functionalities of brains across multiple subjects rely on anatomical normalization,

i.e., the registration of all subjects to an atlas (template) or average brain based on

anatomical landmarks, such as major gyri and sulci, and/or high resolution structural

MRI scans. The most common technique is the so-called Talairach normalization
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[90], which is a 3D piecewise affine registration technique based on a small number of

anatomical landmarks that include the posterior commissure (PC) and the anterior

commissure (AC).

This chapter will heavily rely on the distinction between functional and structural

neuroanatomy. Functional neuroanatomy reflects the organization and orientation

of event-related and task-specific neural activity, whereas structural neuroanatomy

refers to physical organization, such as the loci and orientations of sulci and gyri.

There is significant evidence that suggests that functionally-defined regions are not

consistently located relative to anatomical landmarks on the cerebral cortex. For

example, the location of the visual motion area, MT, can vary across individuals by

more than 2cm after Talairach normalization and can either be in the inferior temporal

sulcus or the lateral occipital sulcus [92]. Moreover, the cortical area responsible for

low-level visual processing, namely V1, can vary in size by as much as two-fold across

different subjects’ brains [70].

In this study, we investigate the use of patterns of neural activity evoked by cog-

nitive and perceptual tasks as the basis for inter-subject registration of the functional

cortical neuroanatomy. Our hope is that this research will lead to a general method for

functional registration and the definition of a functional atlas of the human cerebral

cortex. Our initial investigations have focused on employing the fMRI time series

as indices of local functional response profile to perform non-linear registration on

the convoluted two-dimensional manifold of the cortex surface. The following section

contains a brief overview of functional MRI.

7.2 Functional MRI

Functional Magnetic Resonance Imaging (fMRI) produces videos (with today’s tech-

nology, typically of 2-4 mm spatial resolution and 1-4 second temporal resolution)
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that represent the hemodynamic response related to neural activity in the brain.

It is mainly based on the principle commonly known as Blood Oxygenation Level

Dependent (BOLD) contrast. Neural activity leads to a temporary increase in the

concentration of deoxygenated hemoglobin in the vicinity of the activity, which in

turn intensifies the detectable BOLD signal due to the change in the blood mag-

netic susceptibility. This phenomenon has been extensively investigated. For further

reading, the interested reader is referred to more dedicated works such as [57].

7.3 Pre-processing of the Data

We used tools from FreeSurfer1 [30, 29] to obtain a tesselated representation of the cor-

tical surface using high-resolution, T-1 weighted (structural) three-dimensional MRI

volumes. This is a complex procedure (details of which can be found in [30]). In sum-

mary this procedure is broken into the following sub-tasks: Intensity-variances due to

magnetic field inhomogeneities are corrected, “non-brain” regions are removed using a

simple “skull-stripping” procedure, a segmentation procedure based on the geometric

structure of the grey-white interface is performed, and a topologically correct segmen-

tation of the white-matter is completed, resulting in a single filled volume for each

cortical hemisphere. Finally, this volume is covered with a triangulation. This trian-

gulation is then inflated and projected to a standard sphere using a procedure that

preserves inter-node distances and the original topology [29]. Note that, at the end

of this procedure, we obtain an irregular triangulation on a standard sphere, where

each node’s correspondence in the original 3D volume is known. To fix the irregular-

ity of the triangular tessellation, the mesh regularization [2] tool in AFNI’s SUMA2

package was employed. At full spatial resolution, the regular mesh contained 144,002

nodes spaced 1mm apart. This regularization procedure uses a standard icosahedral

1FreeSurfer is a software package for the reconstruction of the cerebral cortical surface from
structural MRI data, and the overlay of fMRI data on to the reconstructed surface

2AFNI is a software package for processing, analyzing, and displaying fMRI data
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tessellation that is projected on to the standard sphere. Finally, after aligning the

fMRI volumes with the structural MRI volume (using a multi-modal rigid-body reg-

istration algorithms, e.g. the EMST-based algorithm described in Chapter 4), each

node of the regular mesh is assigned to a functional time-series, which is correlated

with the neurological activity in the corresponding region in the brain.

7.4 Motivating Experiment

We have collected fMRI data from several subjects while they viewed an adventure

movie (Steven Spielberg’s “Raiders of the Lost Ark”), similar to the study by Hasson

et al. [35]. Inter-subject correlations of voxel time activity curves have been calculated

after Talairach normalization in the original 3D image space and after (structural)

cortical surface normalization with FreeSurfer. The locations and strengths of inter-

subject correlations were remarkably consistent with those reported in [35], in that

with no spatial smoothing, the mean correlation for brain voxels was 0.05. Note that

this correlation value is averaged over 144,002 nodes and is surprisingly high given

the unconstrained nature of the experiment. There are also a small number of nodes

that have a significantly large correlation value, e.g. grater than 0.3.

To obtain an initial estimate of how much more shared high spatial frequency

signal might be recoverable with better methods of inter-subject alignment, we further

analyzed data for two subjects on cortical surface models, dividing the data in halves.

The cortical surfaces were structurally normalized based on cortical folding [30, 29].

Correlations between surface nodes with no spatial smoothing were similar to those

for the Talairach normalized data in 3D space. To estimate the maximum between

subject correlation that might be achievable with function-based alignment, for each

node in subject A we found the nearby node (within a 3 cm radius) in subject B

that was most strongly correlated with the subject A node. These “optimal node
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Figure 7.1: Correlations between responses in two subjects recorded during viewing
a movie displayed on the inflated representation (FreeSurfer) of subject A. The cor-
relations in both images are for node pairs in the second quarter of the data set (550
time points). The correlations in the left image were for cortical nodes with the same
location after FreeSurfer-based structural registration. The correlations in the right
image are for “optimal node matches” (obtained from the first quarter of the movie)
that lay within 3 cm of each other.

matches” were determined from data acquired while subjects viewed the first quarter

of the movie. This represents the upper boundary of shared variance that could

be recovered with function-based alignment. For cross-validation of these “optimal

node matches”, we calculated the correlations of these “optimal node matches” in the

second quarter of the movie. The mean correlation between “optimal node matches”

in the second quarter of the data was twice the mean correlation from structurally-

determined correspondences, i.e. after (structural) cortical surface normalization with

FreeSurfer (see Figure 7.1). These results suggest that, with better methods of inter-

subject alignment, we may be able to recover significantly more shared signal in an

experimental paradigm.

7.5 Functional Registration using fMRI Data:

Methodology

The basic idea of our proposed approach is to employ the whole fMRI time series data

(that corresponds to some standard experiment, e.g. the viewing of an adventure
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movie) as a feature vector that represents the functionality of the corresponding

point on the cortical surface. Anatomical alignment is used to initialize the algorithm.

Thus, we view the functional registration algorithm as a fine-tuning of the anatomical

alignment. In regions, where there is negligible activity detected by the fMRI scan, the

algorithm will have no incentive to apply a warp, resulting in the preservation of the

anatomical alignment. Moreover, instead of basing alignment on functionally-defined

areas, whose location is usually defined as the center of mass or the local maximum

response, the alignment is based on patterns of response as they are distributed

spatially both within and across cortical areas [36]. In other words, the alignment is

based on a complete correspondence code [4] that relates every cortical point in an

individual’s brain to a corresponding cortical point in the brains of other individuals.

The proposed method is implemented on a standard two-dimensional representation

(inflated and projected onto a standard spherical surface, as described in the previous

section) of the cortical surface.

7.5.1 Correlation of the Time-series

As discussed in previous chapters, a crucial component of a registration algorithm

is the alignment measure. This thesis has mainly investigated entropy-based align-

ment measures employed for different applications that can be classified as: rigid,

nonrigid and trained registration. Inter-subject applications almost always require

nonrigid registration. Here, we will employ a dense deformation approach, where

each voxel/node is allowed to “move” independently. Note that this is slightly differ-

ent than the approach detailed in Chapter 6, since an explicit penalty term is used

to regularize the raw warp field, rather than Gaussian smoothing. Also, registration

is performed on a spherical surface, not a Euclidean grid.

The dense deformation approach typically requires a local (point) alignment mea-

sure, the gradient of which determines the direction of the “move” (warp) of the
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corresponding point. When dealing with scalar images, all we have at a given point

(voxel) is a scalar value. Thus, to compute the point-wise similarity between two

images, we usually make use of the rest of the images (either locally, or as in Chap-

ter 6, globally). In the case of fMRI, however, we have much richer information at

each point: long time-series (of length 100-2000). We propose to make use of this

information to compute a local (point-wise) alignment measure, the gradient of which

can be used to drive the warp locally. Since computation time and memory are very

valuable resources, and the data sets we are dealing with are extremely large, as an

initial attempt, we investigated the correlation ρ between the two time-series as an

alignment measure:

ρ(X, Y ) =
EXY ((X − µX)(Y − µY ))

σXσY
, (7.1)

where X and Y are random variables and µ and σ are the corresponding means and

variances. In practice, we use sample mean estimates of µ and σ to compute an

estimate of ρ. Note that, employing (7.1) as an alignment measure is equivalent to

employing the conditional (Shannon) entropy H(X|Y ), under the assumption that

X = aY + N , where a is an arbitrary, yet fixed scalar and N is i.i.d Gaussian noise.

This is consistent with the General Linear Model (GLM) commonly used for fMRI

time series analysis [99]. For a more detailed discussion of the link between correlation

and entropy-based measures, the reader is referred to Section 4.1.2 of Viola’s thesis

[96].

7.5.2 Regularizing the Warp

Using correlation (7.1) as an alignment measure, one can compute the “optimal

matches” for all nodes (through an exhaustive search), as presented in Section 7.4.

The resulting correspondence can be considered as a non-regularized functional align-
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ment of two subjects’ cerebral cortices, since no regularization is imposed on the node

matches3.

As discussed in previous chapters, an algorithm that imposes no regularization on

the warp field (e.g. exhaustive search), however, has the potential problem of over-

fitting to the data, and thus not generalizing well to new experiments. This is also the

case in the functional registration of the cerebral cortex. For a registration result to be

useful, we would like it to generalize well to new (test) experiments. That way, we can

functionally register (normalize) subjects based on one standard experiment and use

these results with other experiments. The hope is that this (functional normalization)

procedure will yield improved results for studies that investigate the functionality of

the human cerebral cortex within a group of subjects.

To illustrate the effect and importance of regularization (or in this case, the lack of

it), we conducted a simple experiment. An exhaustive search algorithm determined

the “optimal node matches” for two subjects. Note that, each optimal match has

a corresponding match score: the correlation value between the time-series in the

two subjects. Next, the algorithm sorted these matches w.r.t their match scores in

descending order. Thus, the first optimal match in this list is a pair of node indices

(from each subject), that indicate a functional correspondence (determined by the

exhaustive search), and has the highest correlation value. This can be viewed as

the point of best functional correspondence between the two subjects. Next, for

the generalization test, we used these optimal matches on a new experiment (visual

category [36]) data set. Figure 7.2 shows the variation of the average, per node

correlation between the left hemispheres of two subjects with respect to the number

of optimal matches (determined using the “movie” experiment) used from the sorted

list. The shape of this curve supports the idea that node matches with high correlation

values generalize to a new experiment, whereas weaker correspondences do not.

3Strictly speaking, there was minimal regularization: the exhaustive search was conducted over
all nodes (in the second subject) within a 3 cm distance of the seed node.
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Figure 7.2: The variation in the average per-node correlation between the two subjects
for the test (“category recognition”) experiment with respect to the number of optimal
matches (from the “movie part 1”) used to set up functional correspondence. Zero
matches is equivalent to the anatomical alignment.
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There are many approaches to regularize a non-linear spatial warp. Section 6.1

contains a brief overview of these approaches. The main goal is to avoid over-fitting

by incorporating our expectations about the warp. This is usually achieved by pe-

nalizing unexpected warps. Typically, invertibility and smoothness are the two main

characteristics imposed on a spatial warp. In the triangulated (mesh-like) represen-

tation of the cortical surface, smoothness is related to the preservation of inter-node

distances. Invertibility, on the other hand, can be achieved by avoiding “foldings” of

the mesh.

To avoid over-fitting in the context of functional registration of the human cerebral

cortex, we propose to use one of the weakest constraints on the warp, specifically

avoiding the folding of the mesh. This choice is partly due to the lack of strong

scientific evidence that would justify any other regularization. For instance, as we

discussed in Section 7.1, the areas of some well-defined functional regions can vary

significantly across individuals. This suggests that imposing the preservation of inter-

node distances may be too strict for this specific application. However, Figure 7.2

indicates that employing all optimal node matches is not the optimum functional

alignment. Moreover, the mesh obtained by applying all the optimal matches contains

many foldings and the resulting warp is not invertible. Similar to [29], as a method

of mild regularization, we investigated the employment of an aerial distortion penalty

term in our alignment measure. This term effectively prevents folding in the warped

mesh, but puts no constraints on inter-node distances.

7.6 Implementation

The cortical surface is represented with a regularized triangulation, which is stored as

a list of mesh-nodes. For each subject i, each mesh-node v contains a spatial position

xi
v, experimental time-series ti

v, a list of neighboring nodes Nv, and belongs to a list
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of mesh triangles Tv. In the regularized mesh, all inter-neighbor distances are the

same, and all triangles have the same area A0.

The functional registration algorithm modifies the time-series and spatial positions

of the floating subject mesh-nodes only. This is stored as a warp-field4, which can be

added to the original spatial positions to interpolate the new time-series.

The algorithm attempts to maximize E = Ec − λEa, where Ec is the total node-

wise inter-subject correlations (i.e., the alignment measure), Ea is the areal penalty

term (i.e., the regularization) and λ is a scalar weight that determines the influence

of the regularization term. Each node is allowed to move independently and the

optimization is done using gradient-ascent.

Let si
v , ti

v− t̄i
v, where t̄i

v is the mean value of the time-series. Then the alignment

measure (between subjects i and j) can be written as:

Ec(i, j) =
∑

v

ρ̂(ti
v, t

j
v) =

∑

v

si
v · sj

v

|si
v||sj

v|
, (7.2)

where ρ̂ is the sample correlation and |.| denotes the magnitude of a vector. The

gradient of Ec(i, j) with respect to the spatial position xj
v is:

∂Ec(i, j)

∂x
j
v

= ρ̂(ti
v,

∂tj
v

∂x
j
v

). (7.3)

Let Auvw denote the oriented area of the mesh triangle ∆ that consists of mesh

nodes u, v and w (u > v > w); xj
uv = xj

v − xj
u and nj

u = x
j
u

|xj
u|

is the surface normal at

node u. Define:

Aj
∆ = Aj

uvw = xj
uv × xj

uw · n
j
u

2
. (7.4)

Let Aj0
∆ denote the oriented area of triangle ∆ in subject j’s regularized mesh. Similar

4The warp field is in spherical coordinates, since the mesh-nodes are only allowed to move on the
spherical surface, conforming to the two-dimensional topology of the cortex
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to [29], we define the areal penalty term as:

Ea =
1

3

∑

v

∑

∆∈Tv

(Aj
∆ − Aj0

∆ )2I(Aj
∆, Aj0

∆ ), (7.5)

I(Aj
∆, Aj0

∆ ) =















1 if Aj
∆Aj0

∆ < 0,

0 else.

In other words, if a mesh triangle is folded, the penalty is proportional to the difference

between the current area and original area. Otherwise, it is zero. The gradient of Ea

with respect to the spatial position xj
u is:

∂Ea

∂x
j
v

= 2
∑

∆∈Tv

(Aj
∆ − Aj0

∆ )I(Aj
∆, Aj0

∆ )
∂Aj

∆

∂x
j
v

(7.6)

Based on a gradient ascent framework, the algorithm can be summarized with the

following update equation:

xj
v(t) = xj

v(t − 1) + ς(t)(
∂Ec(i, j)

∂x
j
v

− λ
∂Ea

∂x
j
v

)|t−1,

where ς(t) is a step size.

Note that gradient-ascent finds the local optimum, and thus to find the global

optimum, it is important to have a good guess for the initial values xj
v(0). In our

implementation, we employ exhaustive search results (i.e., the optimal node matches)

to initialize the warp. The search is conducted within a 3 cm radius of the anatomical

correspondence. We, then, compute a raw warp field using the node matches that

have a score (correlation value) greater than some threshold value (typically 0.1 −

0.3). Finally, this warp field is smoothed with an approximately Gaussian filter using

AFNI’s surfsmooth tool. The smoothed warp field is used to initialize the iterative

gradient ascent.
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7.7 Empirical Results

In this section, we include preliminary results obtained from four subject pairs: rb-kd,

cb-kl, dm-mh and ph-se. The second subjects in each pair were functionally aligned

to the respective first subjects using the procedure described in previous sections.

The fMRI data gathered while subjects were viewing the first half of Steven Spiel-

berg’s “Raiders of the Lost Ark” (movie P1) was used for alignment. Generalization

tests were performed using the second half of the viewing (movie P2) and a visual

category (vis. cat.) experiment. Table 7.1 lists the correlation values between the

anatomically and functionally aligned pairs in the whole brains (both hemispheres:

lh, rh). Table 7.2 contains correlation scores for an anatomically defined region of

interest (specifically the ventral temporal cortex, which is active in face and object

recognition). The generalization results seem to be fairly consistent and indicate that

using fMRI data from movies part 1, we can improve the correlation values for other

test experiments by 5− 20%. Our C++ implementation took an average run-time of

20-25 minutes for the functional registration of two subjects.

Subjects/Hemisphere Movie P1 Movie P2 vis. cat.

anat. func. anat. func. anat. func.

rb-kd/lh 0.0419 0.0790 0.0489 0.0557 0.0101 0.01098

rb-kd/rh 0.047 0.084 0.049 0.055 0.0118 0.0125

cb-kl/lh 0.053 0.0897 0.0461 0.0569 0.0156 0.0174

cb-kl/rh 0.0582 0.0932 0.0513 0.0586 0.0159 0.0173

dm-mh/lh 0.0494 0.0807 0.0490 0.0552 0.0128 0.0144

dm-mh/rh 0.0565 0.0876 0.056 0.0628 0.0158 0.0175

ph-se/lh 0.035 0.0703 0.0395 0.043 0.0048 0.0052

ph-se/rh 0.0417 0.0786 0.0478 0.053 0.0069 0.0075

mean 0.04784 0.08288 0.04846 0.05506 0.011771 0.01284

Table 7.1: Per node, averaged (within whole hemispheres) correlation values between
fMRI time-series of subject pairs. anat.: FreeSurfer based anatomical alignment;
func.: Functional alignment. For a detailed description, see text.

Figure 7.3 shows the node correlations between subjects rb and kd before func-

tional registration (i.e., at anatomical registration) and after functional registration
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Subjects/Hemisphere Movie P1 Movie P2 vis. cat.

anat. func. anat. func. anat. func.

rb-kd/lh 0.083 0.1149 0.076 0.0872 0.022 0.244

rb-kd/rh 0.0953 0.124 0.0722 0.0792 0.0252 0.0267

cb-kl/lh 0.1051 0.1464 0.0917 0.1156 0.0399 0.0457

cb-kl/rh 0.111 0.1443 0.0968 0.1095 0.0428 0.0452

dm-mh/lh 0.0782 0.1077 0.0715 0.0812 0.0402 0.0444

dm-mh/rh 0.0971 0.1273 0.0848 0.0957 0.0437 0.0484

ph-se/lh 0.0557 0.0844 0.0515 0.0572 0.0134 0.0148

ph-se/rh 0.0621 0.0918 0.0655 0.0729 0.0151 0.0166

mean 0.0859 0.1176 0.0762 0.0873 0.0303 0.0333

Table 7.2: Per node, averaged (within the Ventral Temporal Cortex) correlation val-
ues between fMRI time-series of subject pairs. anat.: FreeSurfer based anatomical
alignment; func.: Functional alignment. For a detailed description, see text.

for the three experiments: movie part 1 (the experiment used to functionally register

the data sets), movie part 2 and the visual category experiment.
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- 0.4

 0.6

Experiment:  Movie Part 1

- 0.4

 0.6

Experiment:  Movie Part 2

-0.2

0.3

Correlations at anatomical alignment Correlations at functional alignment

Experiment: Visual Category

Figure 7.3: Correlations between responses in two subjects recorded during viewing
a movie displayed on the inflated representation (FreeSurfer) of subject rb. The
(color-coded) values are correlations between rb and kd’s corresponding time-series
for three experiments: movie part 1 and 2, and visual category. The correlations in
the left images are for cortical nodes with the same location after FreeSurfer-based
anatomical registration. The correlations in the right images are after functional
alignment (based on the first half of the movie experiment). The first two rows of
images is a sagittal view of the whole left hemisphere. The last row is a ventral view
of the VT cortex.
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Chapter 8

Conclusions

In this thesis, we investigated algorithms to spatially align two, three or four di-

mensional digital images. This problem is particularly difficult when the images are

obtained through different sensor types (multi-modal registration) and/or when com-

plex nonlinear geometric transformations are required to relate the images, e.g. when

registering different human brains (inter-subject registration).

In Chapter 2, we provided theoretical motivation for the employment of information-

theoretic measures for multi-modal image registration. Chapter 3 focused on the

entropy estimation problem and included a novel comparison of different entropy

estimators from the perspective of image registration. This comparison provided

valuable insight on how these techniques weight data which lead to predictions of

likely performance when applied to image registration. These interpretations were

confirmed by simulation results.

The comparison of entropy estimators and a thorough analysis of the differentia-

bility problem of the entropic graph based estimator lead to a novel Rényi entropy-

based registration framework detailed in Chapter 4. This framework, which is the

main contribution of the first half of the thesis, yields fast and accurate multi-modal

rigid registration algorithms.
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In certain real-world applications, previously registered image pairs are available

to the algorithm. In a multi-modal setting, these pre-registered images contain valu-

able information about cross-modality relationship. In Chapter 5, we included an

overview of this problem and proposed a method for incorporating prior information

about the modality relationship from pre-aligned image pairs into the entropic graph-

based registration framework. Experimental results suggest that this improves the

capture range of the alignment measure and makes it more robust against bad initial

alignment.

In Chapter 6, we presented a fast (linear time in the number of pixels) entropy-

based nonrigid image registration algorithm. The proposed method employs a “level

set entropy” similarity measure, which can be derived using a maximum likelihood

approach. The level set entropy formulation has two major advantages: since it is

a one-dimensional entropy, fast entropy estimators, e.g. histogram-based methods,

that suffer in high dimensional spaces can easily be used. Moreover, it is easier to

make stronger assumptions within each level set, which allows the use of parametric

models that yield faster and/or more accurate registration algorithms. One example,

suitable for applications where the cross-modality relationship is one-to-one, is a

Gaussian density model. We also demonstrated that the method of smoothing the

gradient field is equivalent to employing a gradient-descent optimization strategy with

a particular class of smooth transformations. The relationship with re-gridding and

invertibility conditions were briefly discussed.

Finally, in Chapter 7 we included a discussion of a preliminary investigation of an

interesting scientific problem: the functional alignment of the human cerebral cortex.

We explored a simple algorithm to functionally register brains based on the structural

and functional MRI data gathered while subjects were viewing an adventure movie.

Experimental validation performed to data is promising, since it indicates that the

proposed tool produces results that generalize to other cognitive experiments.
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8.1 Future Research

In the Rényi Entropy-based registration framework, we mainly focused on rigid-body

problems. Extension of these ideas to richer transformations, e.g. affine and spline

based models, is crucial for many real-world applications and should be pursued. Note

that we included a brief discussion of this issue is Section 4.1.

A major challenge in the current literature is to perform population registra-

tion on large collections of data sets. Currently available tools typically attack this

problem by pre-selecting a reference data set (template) and registering in a pair-

wise fashion. The computational cost and potential inaccuracy of this approach can

be eliminated by performing a simultaneous registration on the whole population.

Moreover, population registration could help determine sub-groups of data sets, e.g.

normal and abnormal brains, and make inferences by observing the variability within

and between these sub-groups. The methods, we have explored in this thesis, such

as descent-based registration using entropic graphs, seem to have the desirable theo-

retical properties and computational speed for achieving population registration. An

immediate next step would be to investigate this open problem that may lead to a

significant contribution.

In Chapter 6, we proposed a level set entropy measure as a similarity metric

for nonrigid registration. We employed a simple technique that smoothed the raw

gradient field to iteratively warp the image. Other regularization techniques can also

be investigated with the level set entropy measure.

The functional alignment of the human cerebral cortex is a very promising project

that is still at a preliminary stage. More experiments need to be conducted to validate

and evaluate the proposed tool. Moreover, other types of data, e.g. diffusion tensor

images, might be employed to achieve functional alignment. We consider this area as

an important direction for future research.
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Appendix A

Limit of Rényi Entropy

Here, we include a simple proof for the statement that Shannon’s entropy is the limit

of the Rényi entropy:

lim
α→1

Hα(X) = lim
α→1

1

1 − α
log(

∑

x

pX(x)α) (A.1)

= −
∑

x pX(x)α log pX(x)
∑

x px(x)α
(A.2)

= −
∑

x

pX(x) log pX(x) (A.3)

= H(X). (A.4)

The second equation is the application of L’Hopital’s rule. Note that, for the contin-

uous case, we can replace the sums with integrals.
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Appendix B

Histogram-based Entropy

Estimator

A histogram-based entropy estimator employs a finite sum to approximate the expec-

tation in the entropy formula. Let Q be a countable subset of Rd that includes the

origin and is closed under addition and subtraction, q(x) ∈ Q denote the quantized

(“binned”) value of x ∈ X , K(·) : Rd 7→ R be a symmetric density, h(k;X ) denote

the number of samples x ∈ X that satisfy q(x) = k and the total number of samples

be N . Define the discrete kernel:

K̄(z) ,
K(z)

∑

m∈Q K(m)
, ∀z ∈ Q.

A Parzen-window estimate (3.4) of the p.m.f. of the quantized random variable q(X)

is:

p̂H(z;X ) =
1

N

N
∑

i=1

K̄(z− q(xi))

=
1

N

∑

m∈Q

h(m;X )K̄(z− m) =
1

N

∑

m∈Q

h(z − m;X )K̄(m).
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A histogram-based estimate of the α information potential using a finite sum expec-

tation is:

V̂H(X , α) = EQ(p̂α−1
H (.;X )) ,

∑

m∈Q

p̂H(m)p̂α−1
H (m)

=
∑

m∈Q

1

N

∑

n∈Q

h(m − n)K̄(n)p̂α−1
H (m)

=
1

N

∑

m′∈Q

∑

n∈Q

h(m′)K̄(n)p̂α−1
H (m′ + n)

=
1

N

∑

m′∈Q

∑

n′∈Q

h(m′)K̄(n′)p̂α−1
H (m′ − n′)

=
∑

m∈Q

K̄(m)
1

N

∑

n∈Q

h(n)p̂α−1
H (n− m)

=
∑

m∈Q

K̄(m)Eq(X )(p̂
α−1
H (. − m;X ))

=
∑

m∈Q

K̄(m)Eq(X )−m(p̂α−1
H (.;X )),

where EX is the sample mean on X , q(X ) + m , {q(xi) + m : xi ∈ X}, and p̂(·)

and h(·) are short-hand notations for p̂(.;X ) and h(.;X ), respectively. Note that if

K(m) = 1 iff m = 0 and zero otherwise, then V̂H(X , α) = V̂M(q(X ), α).
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Appendix C

Families of Graphs

In this section, we provide brief definitions of three different families of graphs. The

minimal graphs (3.8) that correspond to these families have continuous and quasi-

additive weights [40] and thus can be used to estimate the underlying entropy, as

discussed in Section 3.3.3. See Figure C.1 for examples.

• Spanning Tree: A spanning tree of a vertex set V is a connected, acyclic,

undirected graph that spans all vertices in V . Without the connectivity re-

quirement, the graph is called a spanning forrest. The graph that has the

minimum total weight amongst all spanning trees is called a Minimum Span-

ning Tree (MST). If the edge weights are defined as Euclidean distances, then

the MST is a Euclidean MST (EMST).

• Hamiltonian Cycle: A Hamiltonian cycle of a vertex set V is an undirected

graph that visits each vertex only once and also returns to the starting vertex.

If it doesn’t return to the starting vertex, it is called a Hamiltonian path. Also,

a graph that contains a Hamiltonian cycle is called a Hamiltonian graph. The

problem of searching for the Hamiltonian graph with minimum total weight is

called the travelling salesman problem (TSP).

• k-Neighbor Graph: We define a k-Neighbor graph as a directed graph, where
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each vertex is the tail of k edges directed to other vertices. The corresponding

minimal graph is called the k-nearest neighbor graph (kNN), or simply nearest

neighbor graph if k = 1.

A Spanning Tree A Minimum Spanning Tree

A Hamiltonian Path A “Travelling Salesman Problem” Graph

One neighbor Graph Nearest neighbor Graph

Figure C.1: Examples for various types of graphs and corresponding (Euclidean) minimal graphs.
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Appendix D

Decomposing the Adjacency

Matrix

An adjacency matrix A(G) contains the topology information of a graph G. The

(i, j)th entry A(G)(i, j) is the number of edges connecting vertices i and j. Note if G

is an undirected graph, A(G) is symmetric. The following result allows us to derive

(3.11) and hence recognize the entropic graph method as a special case of the plug-in

estimator.

Theorem D.0.1. Let G be a graph that contains at most one cycle in each of its

connected components. There exists a matrix L such that L+LT = A(G) and in each

of its rows is either a standard basis or a zero vector.

Proof. First, let’s assume G is a connected graph. Let’s use mathematical induc-

tion to prove the existence of L.

1. For 2 vertices: If G contains no cycles, define

L =







0 0

1 0






.
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If G contains a cycle, define:

L =







0 1

1 0






.

It is easy to see that these L’s satisfy the necessary conditions.

2. Assume the result holds for N − 1 vertices with LN−1.

3. Let GN be a graph with N vertices.

• If GN contains no leaf vertices, i.e., is one circular path, define LN using

the following algorithm (A1): Starting from the N ’th vertex, traverse the

circular path in the direction of the neighbor with the largest index. Let

the i’th row of LN be the j’th standard basis, where j is the vertex that

follows the i’th vertex in the path.

• If GN contains at least one leaf vertex, define LN using the following al-

gorithm (A2): Let i be the index of the leaf vertex connected with the

longest edge (if there are more than one of these, pick the one with the

largest index amongst the candidates). Let GN−1(i) be the graph gen-

erated by pruning the i’th vertex (and its edge) in GN . Let LN−1(i) be

the matrix computed from GN−1(i) using A1, A2 and/or Step 1. Define

LN by inserting an i’th row (the j’th standard basis, where j is the ver-

tex connected to the i’th vertex in GN) and i’th column (zero vector) to

LN−1(i).

It can be seen that this LN satisfies the desired properties.

If G is not a connected matrix, we can define a block-diagonal matrix L, where each

of the diagonal blocks Li correspond to the connected subgraph Gi and satisfy the

desired properties. 2
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Corollary D.0.2. If G is a spanning forest, a nearest-neighbor graph, a Hamiltonian

cycle or a TSP, there exists a matrix L such that L+LT = A(G) and each of its rows

is either a standard basis or a zero vector.

Proof trivially follows from Theorem D.0.1.
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Appendix E

Differentiability of the Entropic

Graph Estimate

Let S0 = {s0
1, . . . , s

0
N} be a set of N samples in [0, 1]d and ud be a unit vector in Rd.

Define G∗(S0) , {G∗(S0)}, the set of all minimal graphs on S0. The following lemma

states that after a slight perturbation of the value of a sample (within a certain limit)

in S0, some of the current minimal graphs remain as minimal graphs and no other

graph can become a minimal graph.

Lemma E.0.3. For any k ∈ {0, . . . , m}, there exists an ǫ > 0 such that G∗({s0
1, . . . , s

0
k+

hud, . . . , s
0
N}) ⊂ G∗(S0), for all |h| ≤ ǫ.

Proof. Let δ , minG∈G/G∗(Wγ(G(S0)) − W ∗
γ (S0)). Note γ > 0. If |h| ≤ (‖e‖γ +

δ/2N)1/γ − ‖e‖ for all ‖e‖ in G, then using the triangle inequality on each edge, it

is easy to show that the change in Wγ(G) is upper bounded by δ/2. Recall that

‖e‖ <
√

d, since all s ∈ [0, 1]d. Set ǫ = max((δ/2N)1/γ , (dγ/2 + δ/2N)1/γ −
√

d). Then

for |h| < ǫ and all G1, G2 ∈ G(S0), the change in Wγ(G1) − Wγ(G2) will be upper

bounded by δ. Thus if G /∈ G∗(S0), G will not achieve a Wγ(G) smaller than W ∗
γ (S0).

2

Now, let’s look at the partial derivative of a power weighted edge length, ‖eij‖ ,
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‖si − sj‖:

∂(‖eij‖γ)

∂sic
=























γ‖eij‖γ−2(sic − sjc) if si 6= sj ,

0 if si = sj and γ ≥ 1,

±∞ if si = sj and γ < 1,

for i, j = 1 . . .N and c = 1 . . . d. Note that, the derivative does not exist if the

samples are coinciding and γ < 1. Elsewhere, it is well-defined.

The following lemma states the necessary and sufficient condition for W ∗
γ to be

differentiable.

Lemma E.0.4. For a sk ∈ S, ∇sk
W ∗

γ (S) exists if and only if ∇sk
Wγ(G

∗(S)) exists

and is equal for all G∗(S).

Proof. Using the formal definition of the right derivative:

∂W ∗
γ (S)/∂skc|skc=s0+

kc
= lim

h→0+

W ∗
γ ({s0

1, . . . , s
0
k + hudc, . . . , s

0
N}) − W ∗

γ (S0)

h

= min
G∈G∗(S0)

∂Wγ(G)/∂skc|skc=s0+

kc
. (E.1)

Similarly the left derivative is equal to the maximum of the left derivatives among all

the G∗(S0)’s. Now, consider the two cases:

1. sk has a unique value s0
k. Then, ∇sk

Wγ(G
∗(S0)) exists for all G∗(S0). Here,

∂W ∗
γ (S)/∂skc exists if and only if the maximum and minimum derivatives are

equal for all c ∈ {1, . . . , d}.

2. sk is not unique, i.e., there are other samples with the same value. Then it

is easy to see that all minimal spanning graphs G∗(S0)’s contain at least one

zero length edge with sk as an endpoint. If 0 < γ < 1, then the right and left

derivatives of this edge length are +∞ and −∞, respectively. Thus ∇sk
W ∗

γ (S)
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does not exist. If γ > 1, the edge length derivatives exist and the argument

from 1 holds.

2

139



Appendix F

Computing the EMST in 2D

In our implementation, to compute the EMST of a set of planar points V , we use

Kruskal’s algorithm preceded by a Delaunay triangulation.

Delaunay triangulation [20] of V , denoted by DT (V ), is the triangulation of V

such that no vertex lies in the circumcircle of any of the triangles. It is known that

the Delaunay triangulation is the geometric dual of the Voronoi tessellation. In 2D,

a divide and conquer strategy yields a fast algorithm of O(N log N) computational

complexity, where N is the number of vertices [31].

Note that, like the MST, DT (V ) is not unique. However, an important (circle)

property of the Delaunay triangulation is the following: If one can draw a circle with

two vertices v1, v2 ∈ V on its boundary, that contains no other vertices, then the edge

e(v1, v2) that connects v1 and v2 is in all DT (V )’s.

Kruskal’s algorithm is a greedy, general purpose MST algorithm that computes the

minimum spanning forrest (MSF) of an input graph [14]. If the graph is connected,

the MSF is a MST. The pseudo-code for the algorithm is:

1. Create an empty set tree T that will hold the edges of the output forrest.

2. Create a sorted (by edge weight) edge set K that contains all edges of the input

graph.
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3. While K is not empty:

(a) Remove the edge e with minimum weight from K,

(b) If e creates no cycles in T , i.e., connects two disconnected trees, then add

e to T .

The computational complexity of this algorithm is O(M log N), where M and N are

the number of edges and vertices in the input graph. If the input graph is complete,

then the worst case complexity is O(N2 log N).

From Kruskal’s algorithm, it is trivial to show the following (cycle) property of

the MST: Within a set of edges that constitute a cycle, the edge with the most weight

(if it exists) is not in any of the MST’s.

The following, widely used result leads to an efficient 2D EMST algorithm.

Lemma F.0.5. The edges in an EMST of a vertex set V is a subset of DT (V ).

Proof. The proof trivially follows from the circle property of the Delaunay trian-

gulation and cycle property of the EMST: Consider an edge e in the EMST of V ,

that connects v1 and v2. Assume e is not in any of the DT (V )’s. Draw the circle

C, that has e as its diameter. Then, by the circle property, there exists at least one

point v3 in C. However, since e is the largest edge in the (v1, v2, v3) cycle, by the cycle

property, it cannot be in any of the EMST’s of V . Thus, we have a contradiction. 2

Hence, we can run Kruskal’s algorithm on the Delaunay triangulation, which yields

a computational complexity of O(N log N) in 2D. In higher dimensions, the Delaunay

triangulation (and thus the EMST algorithm) has worst case O(N2) complexity.
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