
Databasket: Coherent Shared Data for the Web

Michael Bernstein Max Goldman

December 14, 2007

Introduction

Web applications have put significant effort into personalization services
to improve the user experience. The current personalization model suffers
from two major drawbacks: each site has access to a very limited subset
of information about the user, and the users themselves have little or no
control about what data is maintained and how it is kept private. Users
thus repeat personalizing rituals across a number of sites, specifying their
names, email and shipping addresses, and interests; and web sites often make
poor predictions, recommending items when inappropriate or the wrong
items altogether. Web sites occasionally see privacy gaffes such as America
Online’s in 2006, sharing personal data on the Web and exposing their users
to fraud and identity theft.

In this paper we propose a user-controlled central database of personal
information called Databasket (Figure 1) as a potential reinvention of web
personalization. We place the data locally on the user’s computer, ensuring
that the user him- or herself has primary control over how the data is shared.
We provide a Javascript API for web sites to query over a range of this
data once the user has granted permission, thus allowing web sites access
to customize using broader, more up-to-date data. To control data access,
we have designed an interface drawing on research in usable privacy and
security to keep the user (arguably the most vulnerable link) aware and in
control.

To follow, we introduce the Databasket system and its design. We fo-
cus first on related work in centralized personal data repositories for the
web. Then we describe a typical Databasket use scenario, the system’s user
interface and developer API, and back-end implementation. We report on
a first-use study of the interface using two web sites developed using the
Databasket API, and finally focus on challenges and future work for the
system.

1



Figure 1: Databasket running in Mozilla Firefox. The user is currently
granting permission for the Random Friend Generator web site to access his
or her friend information.

Related Work

Web personalization has achieved a large amount of commercial and research
attention in recent years. Original research in web customization focused
mainly on adapting site navigation (e.g., [9]). Commercial web sites like
Amazon and Netflix have found success with collaborative filtering tech-
niques [21], building a model of user preferences and then making predic-
tions based on what similar users found useful. Customization efforts may
also be initiated by the user, such as with Greasemonkey [4] or Chickenfoot
[11], where the user can write site-specific scripts to customize rendered web
pages after the fact. Databasket does not focus on end-user customization,
but instead attempts to give web developers access to the data they can use
to personalize the web.

Databasket builds upon a wide variety of work focusing on open data
standards and shared information. The vision of the Semantic Web [10]
spells out a web with information freely shared in machine-readable for-
mats, with information decentralized but universally accessible. Recently
researchers have proposed radically new architectures for the web to achieve

2



similar goals [18]. Reality has tended toward web sites maintaining private
data sources, however, so scrapers such as Sifter [15] have been developed to
reverse-engineer data in deep web sites such as Amazon. Whether scraped
or obtained via web sites with public APIs, this data and its accompany-
ing mashup culture is beginning to see research in tools for scripting and
manipulating (e.g., [13]).

Centralizing the user’s data in a single point of contact is another driving
force behind Databasket. Piggybank [14] is such a browser extension, allow-
ing users to download and maintain a wide variety of web data provided it
can be translated into a Semantic Web format. Such ideas have also been
explored in the Semantic Web community, termed “semantic caching” [17].
Google Gears [3] and the upcoming SQLite installation in Firefox 3 offer
client-side web databases, but segment data by a domain origin security
model rather than letting multiple sites view and edit the same data. The
OpenID system [6] centralizes a small amount of user data to allow universal
login across web sites. Tools such as Haystack [20] have explored the user
interface ramifications of having all data interrelatable.

Databasket derives many of its design principles from work in usable
security (e.g., [12]). For example, the PRIME project [19] reports on several
different paradigms for user management of an identity system, including the
drag-and-drop actions we have incorporated. Our user interface was directly
inspired by The Web Wallet [23], a tool for management of sensitive personal
information on the web.

Usage Scenario

Suppose Sanjay is interested in shopping for holiday presents for his wife
Kitty. He visits Amazon.com, but is having trouble finding the right book.
Amazon suggests to Sanjay that it could recommend gifts based on what he
and his wife’s friends have been buying, if he is willing to share information
about his friends. Amazon also reports that their privacy policy dictates
that they will completely anonymize the data Sanjay sends, so his privacy
is ensured.

Sanjay agrees and opens up the Databasket sidebar in his browser (Fig-
ure 1). He finds his collection of friends data (his ‘Friends’ basket), and
drags it over to the Amazon.com web site. He drags the basket over a target
on the web site; as he does, he is presented with a choice of sending this data
only once, or permanently allowing Amazon to query his data. Deciding to
share the data only once, he drops the basket onto the appropriate selection.

3



Figure 2: The Databasket sidebar interface in Firefox

The page reloads, and Sanjay notes that Kitty’s friend recently purchased a
particular fantasy book and rated it highly. Knowing his wife likes fantasy
as well, he decides to purchase this recommendation. As Sanjay checks out,
Amazon notes that Sanjay had previously elected to share his home address
and credit card information with them permanently, and allows Sanjay to
skip filling out that particular information. Amazon also notes that it is
inserting the book into Sanjay’s ‘Media’ basket, so other web sites can know
he owns the book.

Meanwhile, Kitty is writing an email to Sanjay’s coworker to decide what
to get him for the holidays. She knows that she is Facebook friends with this
coworker, but doesn’t know his email address. Having shared her Friends
information with Gmail, Kitty can type in his name like any contact and
Gmail indexes into her Friends information in Databasket to import the
contact.

The following section details the user interface that Sanjay and Kitty
have used to enable this personalization.

4



User Interface

The user experience for Databasket centers around its privacy controls.
Databasket does not share data with web sites unless the user grants explicit
permission. Naive users are particularly given to simply ‘clicking through’
most warning messages without reading or understanding them, however,
so it is of paramount importance that the users understand exactly what
they are doing when they decide to share highly personal information with
the web site. Researchers in usable security have developed a set of design
guidelines for such systems (e.g., [12]), and Databasket draws on these for
design inspiration.

Granting Permission

The Databasket user interface is shown in Figure 2. It separates the user’s
personal data into a small number of baskets, including Friends and Con-
tacts, Purchased Items, and Personal ID (a collection including his name,
address and e-mail information). Each basket is draggable and can be re-
ceived by specific Databasket elements on participating web pages. Web
pages create drag targets advertising their use to the user, for instance an
ability to receive Friends information. If the user wishes to share information
with the web site, he or she grabs the basket in the Databasket sidebar and
moves it over to the drop target on the web page. When the user enters the
drop target, Databasket presents a larger target window to the user (Figure
3), asking the user to make a choice between sharing the data only once, or
allowing the site permanent read permission to Friends data. By dropping
the data on the appropriate choice, the user indicates his or her wish, and
Databasket allows the web site read access to the data.

Sites may also write data to the Databasket central store, and users may
wish to allow them write access in order to allow other sites to read the
data. To grant write permissions, the process is reversed: the user drags an
icon from the web site to the Databasket sidebar.

Examining Basket Contents

The user may click on the magnifying glass icon next to each basket’s title
to open up a Browser tab containing the contents of that basket (Figure 4).
The data may be heterogeneous between and within baskets – for example,
your music contains albums, tracks, artists, and possibly even music videos,
some of which may be missing different fields – so we utilize Exhibit [16] for

5



Figure 3: The Databasket drop target, injected onto the web page, asking
users to differentiate between one-time and permanent permissions granting.

Figure 4: Examining the contents of the user’s Friends basket using the
Exhibit [16] interface.

6



Figure 5: The permissions inspection interface, sorted at top by basket and
at bottom by web site.

its ability to visualize and enable faceted browsing navigation across semi-
structured data. Exhibit loads the data into a local web interface to allow
the user to inspect the data being shared.

Inspecting and Revoking Permissions

Databasket allows the user to view currently shared data and revoke any
privileges if desired. A link from the main databasket interface brings up the
permissions inspection interface (Figure 5). This interface presents current
permissions data with the user in two ways: indexed by basket (e.g., all web
sites with read permission to the Purchased Items backet), and by web site
(e.g., all baskets shared with Facebook.com). The user may use a “Revoke”
link to deny the web site further access to that basket.

Auditing Personal Information Transfer (Not Yet Implemented)

A final part of the interaction (not yet part of our prototype) will allow the
user to inspect the data that has been transferred to web sites. This histor-
ical record serves as a paper trail of sorts, allowing the user to understand
what he or she has shared with other parties in the past.

7



Developer API

In addition to its user-facing components, Databasket presents an API to
web application developers. Data in baskets are represented in semantic
web format (RDF). Web applications access these data using query language
SPARQL [7], and modify it with SPARQL/Update [8] (both standards pro-
posed to the W3C). Both of these languages bear some resemblance to the
SQL language for querying and updating relational data, but are designed
to express relational constraints over a directed and potentially schema-free
RDF graph.

To provide access to a user’s data, Databasket injects a new global ob-
ject, databasket, into the top-level of every web page’s Javascript environ-
ment. In the current iteration, this object exposes three functions to web
application developers:

query(queryString, resultFormat) This function executes the SPARQL
query queryString in all baskets to which the site has access, and
returns the results as a string in the specified resultFormat.

update(basketUri, updateStmt) Executes a SPARQL/Update statement
updateStmt within the basket basketUri.

addListener(listener) Subscribes listener to permission changes for
the page’s domain; listener will receive a callback when this occurs.

This simple API is sufficient for web applications to perform queries and
updates, and to react appropriately when their permissions are changed, for
example by reloading their content or re-attempting some queries.

In order for developers to write appropriate SPARQL queries and up-
dates, they must have some knowledge of the structure of the data within
a basket. For example, FOAF is an RDF vocabulary for describing peo-
ple [2], and it is reasonable to store contact information for friends in the
‘Friends’ basket as nodes of type foaf:Person with other FOAF-specified
attributes. Such conventions (partially enforced by the system as described
in the following section) would need to be learned by a new developer.

Implementation

All data in Databasket is stored in a persistent RDF store managed by Jena,
a Java Semantic Web framework [5]. This includes both user data and data
about baskets, permissions, and so forth. The Databasket backend uses

8



SPARQL and SPARQL/Update in preference to APIs provided by Jena
wherever possible, increasing the flexibility of the system to changes in data
model or RDF store implementation.

All data is stored together in one database, and the division of data into
baskets is implemented by finding sub-graphs within the global graph that
correspond to given baskets. Each basket is a node of RDF type basket that
has some number of associated basketTopLevel RDF types. The basket also
participates in a basketItem relationship with any number of other nodes
whose type is one of the ‘top level’ types for this basket. Those nodes may
have further connection to other nodes of other types.

Continuing the example from the previous section, the ‘Friends’ bas-
ket would have foaf:Person as one of its basketTopLevel types, and
basketItem connections to several foaf:Persons representing the user’s
friends. The entire sub-graph of connected RDF nodes is considered to be
part of the basket; this definition is straightforward and allows for simple
sharing of data between baskets, but may need to be refined in the future.

Web applications are never given direct access to the databasket nodes
in the store. In particular, while this is not a problem for executing queries, it
means that an application cannot explicitly manipulate the necessary graph
structure to add or remove items from a basket. Instead, the system requires
specification of which basket should be affected by an update action, creates
links to newly-added nodes of a basketTopLevel type for that basket, and
removes links to deleted nodes.

The Databasket user interface is implemented as a Firefox web browser
extension. The extension communicates with the Jena store through a Java
remote interface, decoupling the data source and permitting future develop-
ment of other data providers or consumers.

The Firefox user interface markup language has built-in support for using
a template to generate user interface elements that display RDF data. We
exploit this facility in order to dynamically construct the UI and automati-
cally update it whenever, for example, the user grants or revokes permissions
on a basket. The user interface itself uses a variety of Javascript techniques
to implement direct manipulation.

In order to display the data in an Exhibit for users to inspect, the system
simply makes a SELECT query to the appropriate basket, then translates the
returned RDF-XML to Exhibit’s JSON format by use of the Babel web API
[1].

9



User Study

We conducted a formative evaluation of the Databasket user interface as part
of the iterative design process. Test subjects were four graduate students
who had previously been introduced to Databasket but had not interacted
with it themselves.

In the evaluation, subjects used Firefox and Databasket initialized with
three baskets, and only a few items in each basket. The goal of this eval-
uation was not to test whether the current interface could scale to many
baskets with hundreds of items. Rather, we were interested in learning
whether the general interface approach for permissions granting and mon-
itoring made sense. Each subject was presented with a brief overview of
Databasket and then began a sequence of tasks centered around manipulat-
ing their ‘Friends’ basket. The tasks were described to the user in concrete
terms using an example friend and two web application mock-ups, but were
roughly:

1. View data in a basket.

2. View permissions for a basket.

3. Grant read permissions for a basket.

4. Revoke read permissions for a basket.

5. Grant write permissions for a basket.

The evaluation uncovered a number of small usability problems, some
of which were addressed between subjects. In general, users understood the
purpose of Databasket and its interaction with web sites. All users had some
initial difficulty with the metaphor of dragging data directly to the site to
grant read access; in no case was this a user’s first attempted action. More
problematic was the metaphor of dragging from the site to the basket to
grant write permission. Even with strong wording on the drag target (“drag
me”), users still anticipated consistency with the read-granting interface.
One subject pointed out that since write permission might include deletion
as well as updating or adding data, the directionality implied by dragging
from site to basket was not necessarily accurate.

Other common difficulties included mode errors with the baskets vs.
permissions views; and questions about the granularity of permissions, both
with respect to individual items within a basket, and individual pages or
applications in a domain. Across all tasks, the cumulative success rate for

10



completion was 80%. All users completed all tasks after prompting from the
experimenter on where to focus their attention.

Discussion

Our work faces two major challenges: mass adoption, and a challenge that
it is opening up users to identity theft and unwittingly sharing more data
than they would otherwise desire to. We address each in turn.

Adoption is a serious challenge for a tool like ours, as we require both
data sources to fill the user’s database of information and web sites willing to
query it. Without enough users of the plug-in, major online businesses like
Amazon and Facebook have no reason to share their data with the user, or
to devote screen space to advertising their ability to take in data. However,
without major web sites giving the user control over their data, there is
nothing for the user to share with these sites. We propose to resolve this
chicken/egg problem by seeding the user’s database with information mined
from their workstations via the PLUM [22] system. PLUM tracks users’
email activity, windows and open programs, music playing, chat patterns,
and much more. By importing some or all of this data, we have created an
enticing opportunity for web sites to improve their personalization service.
To make the service of immediate use to the user, we can also seed their
database with personal information (name, contact info, etc.) that can act
as a certificate and allow participating web sites to forgo or shorten login
and registration procedures.

Databasket presents a veritable Pandora’s Box of problems if misused.
Users may unwittingly share data with malevolent web sites, thereby com-
promising themselves and very possibly their friends and contacts. Web sites
may misuse the data, saving it and sharing it with other partners against
the user’s wishes. These violations of privacy could enable very effective
security attacks on the user, as the phisher may use the person’s identifying
information to appear credible. We can offer a few modes of support. To
avoid web sites inadvertently sharing personal data, we suggest that our
model (the user owns the data, and the web sites query) allows the web site
to maintain little or no personal information about the user that may be
compromised. To address the question of keeping users from sharing data
with phishing web sites, one might consider a signing procedure similar to
current digital signature technology for payment interfaces, guaranteeing
even-handedness. We can also maintain a blacklist of known phishing web
sites. Databasket could turn the user interface a warning color if the user

11



seems intent on sharing data with either an unsigned web site or a known
phisher. As a mediator of the data sharing process, Databasket could thus
take an active role in ensuring the user does not take potentially dangerous
actions.

Future Work

There are many avenues for future work with our efforts. Here we cover
a few of interest: integrating the system with user modeling components
to seed data, offering aggregated data to improve protection, and active
information auditing as it is being shared.

The Databasket system can offer a much more compelling web experience
if web sites are able to base personalization services on a wider variety of
data sources. For example, Amazon could do a better job recommending
books if it knew the authors were graduate students at MIT studying human-
computer interaction, or that they listened to electronica music often while
coding. Integrating with PLUM [22] would allow just such information
to be placed into the Databasket framework; PLUM tracks all manner of
user activity, including active windows, web sites visited, emails read, chats,
music playing, and more. PLUM already uses a Jena semantic web format
for encoding its observations, so integration will be straightforward other
than mapping the data meaningfully into baskets.

Aggregating the user data presents a potentially useful way to preserve
privacy for users while they share data. Sharing the distribution of friends
living in particular areas, or the number of science fiction books owned (but
not their titles), or the topics most salient in the user’s e-mail conversations
(but not the emails’ contents themselves), may provide a middle ground
between sharing potentially sensitive data and providing data of real use to
web sites. Aggregates, however, complicate the user’s mental model consid-
erably: for example, is Databasket sharing friends’ distribution by state, or
county? Are we sharing the location distribution and last names, but not
email addresses? Or email addresses, but not number of communications
with each person in the last month? The challenge may lie in finding the
appropriate balance.

Users’ data are ever-changing, and they may forget with whom they
have permanently shared data. As a result, users may not anticipate the
results of this data flow between web applications, for example if Facebook
automatically attempts to befriend a new Gmail contact with whom the
user is having a flame war. Here, the user did not foresee the results of

12



her e-mail conversation as Gmail sharing the information with Databasket,
and Databasket automatically forwarding this information on to Facebook.
For this reason, it seems desirable to allow users to audit and potentially
censor the data they are sharing. Databasket could support this in a number
of ways; however, we do not wish to spam the user’s attention with large
numbers of dialogue boxes. Instead, we might consider a ticker tape or
notification balloon style interface, sharing a subset of the information being
sent each time it is about to be sent and giving the user a small time period
during which he or she may intercept and cancel or amend the transmission.

Conclusion

Databasket allows semantic web data to be stored in a central, user-controlled
repository and selectively shared with web applications. The Databasket in-
terface within the user’s web browser supports and promotes good decision-
making when the consequences of sharing personal data could be difficult to
reverse. By organizing data into understandable units – baskets – users gain
broad power over their data-driven interactions with web applications. The
Databasket vision is ultimately one in which web sites gain access to the
information they need to provide accurate and compelling personalized ser-
vices, and users regain control over the rich variety of data about themselves,
to the mutual benefit of both.

References

[1] Babel. http://simile.mit.edu/babel/.

[2] FOAF vocabulary specification. http://xmlns.com/foaf/spec/.

[3] Google Gears. http://gears.google.com/.

[4] Greasemonkey. http://www.greasespot.net/.

[5] Jena semantic web framework. http://jena.sourceforge.net.

[6] OpenID. http://openid.net/.

[7] SPARQL query language for RDF.
http://www.w3.org/TR/rdf-sparql-query/.

[8] SPARQL/Update: a language for updating RDF graphs.
http://jena.hpl.hp.com/~afs/SPARQL-Update.html.

13



[9] R. Barrett, P. Maglio, and D. Kellem. How to personalize the Web.
Proceedings of the SIGCHI conference on Human factors in computing
systems, pages 75–82, 1997.

[10] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scien-
tific American, 284(5):28–37, 2001.

[11] M. Bolin, P. Rha, and R. Miller. Automation and customization of
rendered web pages. In Proceedings of the 18th annual ACM symposium
on User interface software and technology, pages 163–172. ACM Press
New York, NY, USA, 2005.

[12] L. Cranor and S. Garfinkel. Security And Usability: Designing Secure
Systems That People Can Use. O’Reilly, 2005.

[13] J. Hong and J. Wong. Marmite: end-user programming for the web.
Conference on Human Factors in Computing Systems, pages 1541–
1546, 2006.

[14] D. Huynh, S. Mazzocchi, and D. Karger. Piggy Bank: Experience the
Semantic Web Inside Your Web Browser. In ISWC. Springer-Verlag
GmbH, 2005.

[15] D. Huynh, R. Miller, and D. Karger. Enabling web browser to augment
web sites’ filtering and sorting functionality. In Proceedings of the 19th
Conference on User Interface Software and Technology (UIST), 2006.

[16] D. Huynh, R. Miller, and D. Karger. Exhibit: Lightweight structured
data publishing. In WWW, 2007-05.

[17] D. Khushraj and O. Lassila. Ontological Approach to Generating Per-
sonalized User Interfaces for Web Services. International Semantic Web
Conference, 2005, 2005.

[18] M. Krohn, A. Yip, M. Brodsky, R. Morris, and M. Walfish. A world
wide web without walls. In 6th ACM Workshop on Hot Topics in Net-
working (Hotnets), Atlanta, GA, November 2007.

[19] J. Pettersson, S. Fischer-Hübner, N. Danielsson, J. Nilsson,
M. Bergmann, S. Clauss, T. Kriegelstein, and H. Krasemann. Making
PRIME usable. Proceedings of the 2005 symposium on Usable privacy
and security, pages 53–64, 2005.

14



[20] D. Quan, D. Huynh, and D. Karger. Haystack: A Platform for Author-
ing End User Semantic Web Applications. International Semantic Web
Conference, pages 738–753, 2003.

[21] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. Grou-
pLens: an open architecture for collaborative filtering of netnews. ACM
Press New York, NY, USA, 1994.

[22] M. Van Kleek and H. Shrobe. A Practical Activity Capture Framework
for Personal, Lifetime User Modeling. User Modeling, 2007.

[23] M. Wu, R. Miller, and G. Little. Web Wallet: preventing phishing at-
tacks by revealing user intentions. Proceedings of the second symposium
on Usable privacy and security, pages 102–113, 2006.

15


