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ABSTRACT 
Window managers assist users in navigating their comput-
ing workspaces by providing an organizational and access 
mechanism for their open windows. Window manager 
research has aimed to leverage users’ tasks to organize the 
growing number of open windows in a useful manner. This 
research has assumed task classifications to be binary—a 
window is in a task, or not—and context-independent. We 
suggest that tasks’ continual evolution can invalidate this 
approach and introduce association between artifacts as an 
alternative organizational scheme. Association relates 
windows to one another at varying degrees; task-relatedness 
is an emergent property of association. We describe Task-
posé, our implementation of an associative window man-
ager, and report on a week-long user study of the system. 

Author Keywords 
Task management, window management. 

ACM Classification Keywords 
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INTRODUCTION 
Human activity is characterized by complex patterns in both 
the physical and digital worlds. On physical desks, reams of 
paper and documents, books and writing tools evidence this 
activity [27]. Computer desktops are likewise characterized 
by an array of running programs, e-mail, chat, to-dos and 
authored documents [6, 8]. Research has found users to 
generally keep at least eight windows open on their desktop 
[21], and this number is sure to rise as screen space and 
memory become cheaper and more aspects of our lives go 
online. 

In the physical world we use numerous means to organize 
challenging complexity: documents are sorted into piles, 
notes indicate reminders or items of priority, and perhaps 
we utilize a paper organizer or two [27]. Similar attempts to 
organize the computer desktop have been made, for exam-
ple using complex file hierarchies and multicolored email 
flags, but overall the computer desktop has resisted such 
organization. Two prime examples, the Windows taskbar 
and the Mac OS X dock, siphon all open programs into a 
single pile at the bottom of the screen, offering little in 
terms of organizing principle other than time or program of 
origin.  

We may expect to find a measure of control over this 
situation by considering the implicit tasks underlying users’ 
activity. By “task” we mean a high-level goal towards 
which a person’s actions are directed: writing an essay, 
paying bills, socializing, or researching camera prices are 
all examples. By minimizing the expected cost of finding a 
particular artifact [36], task-based approaches can be 
powerful tools for customizing one’s workspace (see, e.g., 
[9, 31]). In the physical world, the paraphernalia related to a 
given task may be sprawled out across the desk, while that 
of inactive tasks hovers in piles nearby. If the taskbar and 
desktop were meaningfully organized into tasks, human 
spatial memory and hierarchical thinking could likewise be 
leveraged to help us organize our computational lives.  

Researchers have spent considerable effort on this proposi-
tion and introduced a variety of task-based systems which 
can automatically group windows into tasks [17, 23, 26, 32, 
34] or give the user control over these groupings [5, 22, 38, 
39, 41, 44]. This prior work has explored a variety of 
questions: What kind of organizational schemes do users 
employ most successfully? How can computer users com-
municate their tasks to the system? Do these need to be 
communicated explicitly, or can tasks be intuited from user 
actions? To what extent can users be troubled to organize 
such short-lived windows themselves, and to what extent 
should the computer help users automatically organize their 
work?   

We have ourselves approached these questions in several 
steps. We begin by reporting on an observational study of 
how users typically organize their computer desktop during 
real work. Armed with a sense of how users create and 

 



 

interact with windows, and building on previous research, 
we propose an association-based task model wherein 
windows may identify with multiple tasks. We apply this 
approach in an automatic task and window organization 
system called Taskposé, wherein association offers both the 
motivation and mechanisms for tracking window relation-
ships. Finally, we report on two evaluation studies of the 
Taskposé prototype. 

RELATED WORK 
Taskposé draws from related work in two broad categories: 
theoretical and observational research surrounding the 
nature of tasks in human-computer interaction, and prior 
window and task management systems. We address each in 
turn. 

Tasks in Human-Computer Interaction 
As the ‘task’ is not a well-defined concept, much prior 
work has been dedicated to exploring task boundaries and 
ramifications. The idea of task-based analysis of activities 
is a well-established theory in cognitive psychology (see, 
e.g. [15, 20, 30]), where it serves as a foundation for more 
recent work. Traditional HCI cognitive modeling (see, e.g. 
[11, 37]) has generally been concerned with micro-scale 
goals and objectives, making it more difficult to analyze the 
macro-sized tasks which are our concern: these can last 
hours and involve numerous interrelated goals. Activity 
Theory researchers have sought to address this problem by 
treating the computer interface as a medium through which 
users take action towards a goal [10, 24, 33]. Suchman [43] 
notes the importance of the larger task goal as an important 
mediator of action. Additionally, Winograd and Flores [45] 
caution us that task identification may become ad-hoc as 
pre-composed groupings break down during actual work.  

Other research speaks to these theories by exploring worker 
tasks, interruptions and ad-hoc switching through ethno-
graphic observation (e.g., [4]) at differing levels of granu-
larity. Observing entire task lifecycles, Czerwinski et al. 
[14] reported 53-minute task completion times on average 
and Bellotti et al. [8] saw a majority of tasks being com-
pleted within four hours. González and Mark [19] focused 
on a finer level of detail and found users spent only 2.5-
minute stretches on electronic tools before task interruption 
and only a modestly higher 11 minutes at the more general 
level of the work sphere. Even our fine-grained interaction 
patterns are fragmented: Hutchings et al. [21] tracked 
window usage and discovered that participants spent a 
median amount of 3.77 seconds on a particular window 
before switching away; the mean was 20.9 seconds.  Taken 
together, this work paints a startling picture of the promi-
nence of task switching and interruption in our work. 

Tasks and Window Managers 
The commercial world contains dozens of window manag-
ers, from open-source customizations to commercial-grade 
software such as the Windows taskbar [2] and Apple OS X 
Exposé system [1]. We consider this generic window 

management work as it addresses underlying engineering 
and design issues. 

Researchers have approached window manager design in 
two ways: either by building systems that can intuit users’ 
task structure, or by giving up on such automation 
completely and instead granting users manual control over 
window and task organization. As a result task-based 
window managers fall into one of two categories: agnostic 
or predictive. 

Agnostic window managers do not attempt to make any 
generalizations about users’ tasks and rely on the users 
themselves to define the tasks as they work. The strength of 
this approach is that it does not make task classification 
mistakes. Agnostic window managers have been explored 
in many shapes and forms: Rooms [22], virtual desktops, 
the Task Gallery [39], GroupBar [41], the ABC Extension 
to Windows XP [5], WindowScape [44] and Scalable 
Fabric [38] are all examples. These types of systems offer 
their most significant return given an equally significant 
investment in manually organizing windows into tasks. 
Thus, we believe they are best suited to long-term tasks that 
operate in a static set of windows. Rather than exploring the 
relative merits of a new kind of agnostic interface, we have 
chosen to focus on the predictive space.  

Predictive window managers utilize algorithms that assign a 
window to its mostly likely task. The clear advantage of 
predictive window managers is that, if they make correct 
decisions, they do not impose additional sorting time 
requirements on the user in order to extract some benefit. 
Of course, if the system makes incorrect decisions, users 
are generally worse off than if the computer had done 
nothing at all. This approach bases its decisions on (often 
indirect) evidence of task creation and manipulation, such 
as window titles, switch history and content evaluation.. 
Examples here include TaskTracer [17], Kimura [26], 
SWISH [34] and window-frequency algorithms [32]. 
UMEA [23], while not a window manager, follows a 
similar approach toward creating dynamically-updating 
project spaces.  

FIELDWORK 
The goal of our observational study was to inform our 
model of task creation and manipulation. To build on prior 
observational research, we focused on users’ existing 
window usage patterns and adaptations around task work. 
We hoped to capture user mistakes and breakdowns, as they 
are often a useful starting place for future designs. By 
pulling out cross-user threads from this observation we 
hoped to provide evidence to guide our research. 

Method 
Our opening study was an in-situ observational visitation. 
We recruited subjects who came to use a university public 
computer cluster. Nine males and nine females participated; 
they were all undergraduate students, graduate students or 
visitors to the university. With permission, at some arbitrar-
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ily chosen point during their ongoing work, we observed 
and video-taped the participants’ actions, occasionally 
asking them questions about their ongoing activity. Each of 
the participants was observed and videotaped for a 5 to 15 
minute period of normal computer use. At the conclusion of 
the study, the videotaped records were coded for window 
switches, number of windows open, and task relationships. 

Results  
Consistent with prior studies, we found users were gener-
ally engaged in multiple interleaved tasks. This 
multitasking often involved a central task and at least one 
peripheral task. One canonical example was that of a 
participant who wrote an email to her friends about a 
concert while referencing a web site and gathering e-mail 
addresses from an online student directory. Over the course 
of our study, we saw this central task encompass from one 
to seven simultaneous open windows, averaging around 
three windows.  

Task switching is often opportunistic. Participants would 
sometimes leave a task with the intention of briefly pursu-
ing another item only to launch into a completely new 
task—until eventually remembering to resume the previous 
work (Figure 1). Chat windows are emblematic of a class of 
windows that caused this phenomenon: generally unrelated 
to all other work, constantly referenced, but only active for 
short bursts of time. This class also included music players, 
sports tickers, and email clients. 

We found participants’ window switch frequency to be 
bimodal: most participants would settle in to a specific 
window and work without switching for a few minutes, 
then begin switching windows quickly and often for a 
period until finally settling again. This window thrashing 
activity [22] might signal a new task or sub-task, but just as 
likely the user was referencing the other windows, reori-
enting his or her workspace, trying to find a particular 
window or even taking a break (as in Figure 1). Users 
actively synthesizing information from multiple windows 
tended to exhibit similar behavior but had shorter dwell 
periods on the main window. 

Discussion of the Observational Study 
In our observations, users were generally aware of one task 
at any given time. As a result, ‘orphaned’ windows were 
often left open long after they were still in use, because 
users tended to forget about them and they do not make 

themselves apparent. The user’s task space should therefore 
be considered random access, or perhaps center-surround 
[18], where the user is aware of the current task and only 
the sub- or super-tasks that are especially relevant to the 
project at hand. 

Even though we preferentially chose subjects with multiple 
open windows, few of the participants exhibited complex 
multitasking behavior. We attribute this result to our 
locating the study in a public computer cluster. Public 
computers are generally used for short periods of time and 
for single purposes such as checking email; this environ-
ment discouraged multitasking. As evidence in support of 
this explanation, participants who had brought their own 
laptops to use in the cluster exhibited a far greater number 
of multitasking behaviors than participants using public 
computers. 

Our account of desktop multi-tasking might be summarized 
as follows: 
• Users generally work on a single main task at a time, 

often spanning multiple windows. 
• Task switching does not often happen between main 

tasks—users tend to work in coherent bursts. However, 
short switches between the current main task and back-
ground items such as chat, music or email are not un-
common.  

• New tasks or subtasks are spun off opportunistically. Old 
threads are often left behind if some new work becomes 
high-priority, or if the trail leading back to it becomes 
too long. This results in windows sometimes switching 
task association quickly, and sometimes migrating be-
tween associations over a long period of time. 

 

FROM CLASSIFICATION TO ASSOCIATION 
Previous research explicitly assigns windows to a specific 
task group—a window is either part of one task, or it is part 
of another. Our work’s contribution lies in incorporating the 
claim that tasks are “fuzzy” and have continuously chang-
ing relationships with their contents. We build on a small 
but growing set of literature that indicates that task classifi-
cation, an approach in which work artifacts are placed 
strictly in one task, is an improper match for users’ mental 
models. 

One interesting result arises from the evaluation of the 
machine-learning techniques applied to TaskTracer [42]. In 
their study, the authors asked users to evaluate whether 

 
Figure 1 An example of opportunistic task switching: A participant in our observational study who is (a) editing his resume switches to (b) a 
chat window when his friend greets him, then is drawn to (c) several other unrelated chat windows before (d) returning to work. 



 

TaskTracer had made a correct task classification prediction 
based on their activity. These researchers found that users 
were often unsure which task a window should be allied 
with: “…users are often not 100% sure themselves or may 
provide different answers in different contexts. Users are 
often able to tell the system what it is not, but not what it 
is” [42]. In an evaluation of the Activity-Based Computing 
extension to Windows XP, a user likewise mused: “The 
worst thing? Well [...] if you have to put everything into 
activities, then you need to constantly consider ‘where does 
this one belong’” [5]. 

It is important to note here that because users are aware of 
their own higher-level goals, they should in theory know 
the classification of every window. However, users’ diffi-
culty with the sorting operation suggests this awareness 
may not always be present. Because both of these systems 
allow for arbitrary naming of tasks, the classification 
systems in use cannot be causing this difficulty. Instead, we 
believe that the single task classification model does not 
always map well onto users’ mental models of their work. 
This situation is essentially the problem of asking pilers—
who often delay sorting of artifacts—to live in a world 
where filing is the only option [27]. It is worsened by 
requisite mental upkeep in the form of continuous filing of 
new windows.  

To give an example of the problem at hand, imagine a 
fictitious user who is beginning a new task of buying a 
book. The user logs on to an online shopping web site in 
order to purchase the book, then is distracted by a related 
item and begins browsing related works. From a task 
perspective, is the user still buying the book? Is the user 
really not buying the book? This situation is an example of 
a gray area with regards to clean mapping. Or, when a user 
writes a document under a yearly report task, but later 
refers to the document when generating a set of slides for a 
boardroom presentation, should the paper be part of the 
business report task, or the boardroom presentation task? Or 
both? Here, we see a situation where an artifact’s task 
classification changes with a context switch. 

Bowker and Star [11] address this concern as part of a 
larger argument on the consequences of classification. They 
define classification as “a spatial, temporal, or spatio-
temporal segmentation of the world” characterized by (1) 
consistent decision principles, (2) mutually exclusive 
categories and (3) the union of the categories encompassing 
all possibilities. The authors point to examples of our 
“muddled folk classification”: 

A quick scan of one of the author’s desktops re-
veals eight residual categories represented in the 

various folders of email and papers: “fun,” “take 
back to office,” “remember to look up,” “misc.,” 
“misc. correspondence,” general web informa-
tion,” “teaching stuff to do,” and “to do.” We 
doubt if this is an unusual degree of disarray or an 
overly prolific use of the “none of the above” cate-
gory so common to standardized tests and surveys. 
[11] 

The work above supports a hypothesis that the relationship 
between tasks and actions is not one-to-one and suggests 
that it is preferable to build systems which handle classifi-
cation more flexibly. For example, research on the Piles 
[28] and Placeless Documents [16] projects have supported 
less strictly defined organizational schemata. More recently, 
this general phenomenon has also exhibited itself on the 
web via the rise of folksonomies, which espouse greater 
flexibility than traditional filing [40]. Our work also ex-
plores this gray area of task classification.  

A New Task Model: Association 
Based on the foregoing observations and previous research, 
we believe that the following two kinds of situations are a 
common use case that must be considered in the design of 
task-oriented windows managers:  
1. Users’ task classifications come in many shades, which 

strict groupings cannot support, and 
2. Strengths of association between artifacts may change 

over usage time, or immediately if the context switches. 
With the exception of WindowScape [44], research into 
task-based windows managers has assumed that windows 
are cleanly mapped into a specific task and that windows 
are statically part of one task. Following computer science 
terminology as well as Bowker and Star, we term such 
window managers as performing classification. Classifica-
tion is defined as treating task decisions as a binary yes-or-
no problem: is this window part of this task, or isn’t it?  

By way of contrast, we define association as allowing 
artifacts to identify with tasks at varying degrees. A win-
dow can be strongly associated with a single task, weakly 
associated with several tasks or associated with none at all. 
Our goal is to design a window manager that incorporates 
association in a useful and user-friendly way. 

TASKPOSÉ 
In order to support complex desktop activity, we have 
developed an associative window manager called Taskposé 
wherein window icons appear in a two-dimensional space 
(Figure 2). It draws its name from Apple Exposé [1], which 
inspired the system’s two-dimensional layout and use of 
continually-updating window screenshots. 
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Taskposé represents open windows by their thumbnails, 
which continuously update while the visualization is open. 
The distance between these thumbnails is tied to the pre-
dicted semantic (i.e., task-based) relation between windows. 
Taskposé, in fact, has no task groupings at all. Rather, as 
users exhibit behavior implying that windows are related to 
one another, the icons move closer together on the task 
manager display. The user’s Gestalt organizational capaci-
ties permit him or her to interpret this layout as a meaning-
ful task organization—the spacing suggesting rather than 
imposing an organization. It is fundamental that the visuali-
zation can be understood in multiple ways, because a 
window may participate in multiple tasks. For example, a 
window related to writing a paper and to drafting a presen-
tation should be easily interpretable as belonging to either 
group. 

The decision to replace actual task groupings with visible 
degrees of association was motivated by our hypothesis that 
task classifications are not binary decisions to be made. 
Likewise, the continuously-updating nature of the visualiza-
tion, as well as the ability of windows to remain between 
two clusters, supports the idea that tasks are context-
dependent and may change over time. We made a design 
decision to visualize the user’s workspace in two dimen-
sions because we felt it represented interdependencies 
better than window icons arranged in a one-dimensional 
line such as in the Windows taskbar or OS X dock.  

Interaction with Taskposé 
A few simple rules guide Taskposé’s user interface. First, 
distance between window pairs is determined by how 
related Taskposé believes them to be. Tightly related 
windows will thus move right next to each other (Figure 2 
inset), and unrelated ones remain apart. Groups of any 
number of windows may form in this manner. Windows 
related to several disjoint groups will appear between those 

groups in the visualization. A user may anchor a window 
via a right-click interaction, preventing it from moving 
unless unanchored. The user can also move a window to 
another part of the visualization via a drag interaction if he 
or she wishes. Taskposé does not currently interpret drag-
and-drop location as new relationship information.  

Important windows inform other aspects of the Taskposé 
interface. Most critically, window size in the visualization 
is directly correlated with the window’s importance, as 
estimated by Taskposé (Figure 2). One major design 
concern was that windows would move from remembered 
locations while the user wasn’t looking, and thus he or she 
would have difficulty relocating windows. Thus, in Task-
posé, important windows have more “mass”: they move 
less, if at all, as the visualization updates. This weighting of 
important windows trades on an assumption that important 
windows are typically the ones that users will want to find, 
and will be the most disruptive if they unexpectedly shift. 

Switching Windows 
A complete interaction with Taskposé takes only a few 
seconds. The Taskposé visualization may be brought up in 
one of two ways: 
1. Double-clicking the Taskposé icon  in the system tray. 
2. Holding the Alt key and pressing the ` (Accent Grave) 

key. This interaction was chosen for its close physical 
similarity to the inveterate Alt-Tab key combination—
most users preferred this method for its speed and ease. 

When the Taskposé visualization appears, it overlays the 
contents of the user’s screen and outlines the current 
window in red to help orient. To switch windows, the user 
clicks on the appropriate thumbnail. When the user clicks 
on a window, Taskposé hides and the operating system 
switches to the requested window. If the user decides not to 

 
Figure 2 The Taskposé visualization arranges open windows in two dimensions when the visualization is called up. Windows automatically size 
relative to their importance. Inset: closely-related windows appear together in the visualization. 



 

switch windows, he or she can hide the visualization by 
repeating either of the show mechanisms above.  

IMPLEMENTATION AND ALGORITHMS 
The Taskposé prototype is implemented in Windows using 
C# and the .NET platform; it hooks into the Win32 API to 
listen to and publish window events as well as to retrieve 
window icons, labels and screenshots. Three main algo-
rithms underlie the Taskposé system: the WindowRank 
algorithm for determining window importance, the window 
relationship algorithm, and the graph layout algorithm. 

The WindowRank Algorithm 
The WindowRank algorithm takes as input a series of 
switches between windows in the operating system, and 
outputs a real number representing its determination of the 
importance of the window to the user’s work. Other algo-
rithms have attempted to utilize window switching to 
determine window relevance with reasonable success [32, 
34], but to our knowledge none have attempted to do so to 
describe window importance.  We later use this importance 
metric to inform our relatedness algorithm. 

WindowRank builds on the approach popularized by 
Google’s PageRank [35]. PageRank treats the Internet as a 
series of nodes on a graph, and links between pages as 
edges on that graph. A web page’s PageRank is determined 
by the accumulated PageRank of web pages linking to it. 
WindowRank treats windows as the nodes in the graph and 
user window switches as edges. So, each time a user 
switches from Window A to Window B, WindowRank 
treats the action as Window A voting for Window B and 
adds a proportion of its own rank to the destination.  

WindowRank is useful in the Taskposé context for several 
reasons. First, information is collected without the user 
having to make any explicit assertions about relationships. 
The algorithm runs quietly every time a new user action 
occurs: for example, a window switch, open, or close. 
Because the number of graph nodes is relatively small, the 
algorithm in practice runs quite quickly and does not 
become a performance issue. Second, as we shall see, 
knowing which windows are important to the user’s work 
plays a critical role in differentially weighting windows’ 
opinions about what is related to what. 

The Window Relationship Algorithm 
The most important utilization of WindowRank appears in 
the window relationship algorithm. It was our goal to 
fashion an algorithm that would output associative related-
ness over a continuous region, which we could then incor-
porate into our visualization. Our algorithm takes as input 
window switches and window ranks and then outputs a real 
number in (0, 1) representing a weighted judgment of the 
strength of the relationship between the two windows. 0 
corresponds to totally unrelated, and 1 corresponds to 
extremely closely related.  

There are many classes of algorithms which might fill this 
role. We have chosen one which, while fairly simplistic, 
serves well as a proof-of-concept algorithm for Taskposé. 
Our algorithm is similar to other window switch relation-
ship algorithms, but is unique in its incorporation of win-
dow importance. We believe that this consideration to be 
useful in improving the accuracy of such algorithms. 

WindowRank and importance are necessary here because 
Window A and Window B may have different opinions 
about how closely related they are to each other. For an 
explanation, consider a naïve algorithm which treats both 
Window A and Window B as equals in the decision. If 
Window A is an important window, it will likely have 
switched to and from different windows many times. So, its 
vote for B will be relatively small, but likely accurate, as 
the user has not evinced much behavior indicating a strong 
relationship between the windows. On the other hand, if 
Window B is unimportant and thus sees fewer switches, 
each switch to A will greatly influence B’s opinion of its 
relationship to A. Here, by averaging A and B’s guesses, 
the naïve algorithm will return an over-inflated estimate of 
the windows’ relationship. 

WindowRank reduces this problem by allowing important 
windows to override unimportant windows’ over-inflated 
claims. The algorithm in use weights each vote by the ratio 
of its rank to the two windows’ ranks summed: 

(B)WindowRank(A)WindowRank
(B)WindowRank

, X)Switches(B
, A)Switches(B

(B)WindowRank(AWindowRank
(A)WindowRank

, X)Switches(A
, B)Switches(An(A,B)Associatio

X

X

+
⋅

+
+

⋅=

∑

∑

  

   
)

   

This returned value is between 0 and 1, and is used by the 
Taskposé visualization to display window relationships.  

Graph Visualization and Updating 
Given the a posteriori relationship computed between 
windows, a spring-based graph algorithm [7] (also known 
as a mass-spring model) lays out the icons. In a spring-
embedded graph layout, a simulated spring is attached 
between every two nodes in the graph, and spring physics 
continually adjust node locations. For example, two nodes 
connected by a short, stiff spring will stay near each other. 
We decided upon a spring-embedded graph because of its 
aesthetic layout characteristics and its ability to map con-
tinuous values from our relatedness algorithm directly onto 
visual distances. 

The output of the window relationship algorithm is linearly 
mapped onto both the spring length and stiffness for each 
pair of windows. The result of this operation is that closely 
related windows are connected by short, stiff springs, and 
tend to cluster. Unrelated windows end up with long but 
loose springs; this is desired so that there is some flexibility 
in the windows’ relative placement.  

During each program cycle, every window is moved by an 
amount proportional to the overall force acting on it by all 
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the springs connected to it. This proportion is determined 
by each window’s WindowRank. That is, important win-
dows which have above average WindowRank move less, 
and unimportant windows (with less WindowRank) move 
proportionately more. This allows the graph to smoothly 
update without disrupting the positions of important win-
dows.  

EVALUATION METHOD 
To evaluate Taskposé, we wished to test the following 
hypotheses: 

H1 Taskposé’s approach of associating rather than classi-
fying windows maps well onto users’ mental models of 
their work. 

H2 Taskposé successfully scales to situations with many 
windows open. 

H3 Taskposé’s window importance and relationship 
tracking algorithms are powerful enough to avoid nega-
tively interfering with users’ evaluations of H1 and H2. 

We conducted two studies of Taskposé, encompassing a 
pair of study designs: a first-use study and a longitudinal 
study. These studies elicited four different types of data 
collection: free form interview, self-reported questionnaire, 
videotaped observation and computer-generated usage log. 
Participants were not told of Taskposé’s underlying algo-
rithms until after each study was completed. 

First-Use Study 
We chose a first-use study for its power to rapidly elicit 
usability problems. Ten undergraduate students at our 
university (six male, four female) were recruited to take 
part in the forty-five minute study. Sessions were held on 
the participants’ own computers or on the researcher’s 
laptop. Personal computers’ resolution varied, though the 
laptop was always set at 1280x1024 pixels. 

First, the researcher gave a tour of the interface. Then, the 
participant was presented with a task to compile informa-
tion from several Internet web sites. This task was inspired 
by the multitasking activities we observed in our fieldwork 
study. Specifically, participants were asked to find specified 
information about the Political Science programs at four 
major universities. This information was to be compiled 
into a separate document for each Political Science pro-
gram. Participants were given 20 minutes to complete the 
task. 
 
The task required numerous window switches and caused a 
great deal of window thrashing [22]. We encouraged 
participants to use Taskposé when switching windows, but 
they were not required to do so. Participants followed a 
‘think-aloud’ protocol during completion of the task: this 
vocalization of participants’ inner thoughts and confusion 
clarified the user’s mental model of the program to the 
researcher at moments of breakdown. Further, the re-
searcher observed and videotaped participants’ interactions 
with the system. 

As the purpose of this short study was mainly to elicit 
usability problems and iterate on Taskposé’s design, we did 
not attempt to collect quantitative data. The results of this 
study were incorporated in the next version of Taskposé 
and led into the longer, more substantive longitudinal 
evaluation. 

Longitudinal Evaluation 
Due to the background nature of window managers and the 
wide variety of taskbar use styles, we felt that allowing 
Taskposé to be used in conjunction with everyday work 
practices and over an extended period would produce a 
more compelling measure of its success or failure. The 
main strength of a longitudinal approach lies in testing the 
sustainability and scalability of our design; its main draw-
back is that allowing users to use the software on their own 
time precluded a researcher from observing the interaction. 

Ten undergraduate students (five male, five female) were 
recruited for this study. Taskposé was installed on their 
main computers, and the researcher demonstrated its use. 
For one week, participants used Taskposé in the course of 
their everyday computer work for an hour a day. Partici-
pants who wished were allowed to use Taskposé more than 
the required seven hours. No specific task instructions were 
given, as we were interested in as naturalistic an experience 
as possible. Each participant was given a logbook in which 
to record reactions to the software during use sessions, 
which would be reviewed by the researcher at the culmina-
tion of the study.  

After the week elapsed, researchers held a debriefing 
session and the participants answered a questionnaire about 
the experience. With regards to the interface itself, the 
questionnaire contained a series of Likert scale questions 
designed to measure the accuracy and usefulness of window 
importance and relationship tracking, and ease of finding 
the desired window.  On a broader level, we inquired after 
the system’s contribution to users’ understanding of their 
workspace, enjoyment, and their likelihood of integrating a 
“perfect” version of Taskposé into their everyday work 
habits. Additionally, the software kept automatic usage logs 
so the researcher could analyze data such as typical number 
of open windows and program usage frequency.  

RESULTS 
This section highlights several outcomes of the longitudinal 
use study. We organize the results around analysis of our 
hypotheses.  

Association over Classification 
Users generally expressed an interest in continuing to use 
Taskposé in their everyday computer work. On a 7 point 
Likert scale, users responded with a median score of 6 
when asked how likely they would be to integrate a perfect 
version of the system into their regular work practice 
(Figure 3). Enjoyment was likewise rated highly, with a 
median response of 5.5. 



 

Users’ willingness to integrate an idealized system into 
their regular workflow, especially given the limits they had 
experienced with the window relationship algorithms, 
suggests that Taskposé’s grouping approach did in fact map 
well to users’ mental models of their work (H1). In inter-
views, participants generally confirmed that they were in 
favor of the visualization strategy, especially during intense 
task-based work. Often users asked for additional control 
and customizability over the interface, such as being able to 
resize windows and integrate drag/drop information into 
relationship knowledge. This suggests that they wished to 
further incorporate individual working styles in their use of 
the software. No users mentioned that strict task groupings 
would have been preferred, or suggested using them as an 
interface alternative at all. 

Scaling  
When asked for classes of situations when Taskposé was or 
wasn’t useful, eight of the ten participants responded that 
Taskposé was much more useful when the number of open 
windows outstripped the space available on the Windows 
taskbar. Most participants preferred Taskposé to the taskbar 
and alt-tab in this kind of situation. This feedback lends 
strong support to H2. As expected, respondents commented 
that using Taskposé was a burden when the taskbar was still 
a viable option, or when switching back and forth between 
two windows repeatedly made it simpler to use the alt-tab 
key combination. 

Window Relationships and Importance 
Users found Taskposé’s relationship and importance 
tracking to be quite useful, though they criticized the 
underlying algorithms’ accuracy. Figure 4 summarizes 
users’ evaluations of the importance and relationship 
tracking algorithms in Taskposé. Users’ comments reflected 
this support for the functionality; for example: “The best 

part was this unique way of grouping windows that were 
most important, which Taskposé did accurately and which 
I'd never seen before.” In general, the positive reactions to 
the functionality supports hypothesis H3 and reinforces our 
belief that association is a positive task management model 
(H1).  

Freeform comments revealed a few classes of problems 
with the relationship algorithm. First, parent program 
relationships were not accounted for in the Taskposé model: 
for example, users wished chat windows to automatically 
group with each other and with the buddy list. Secondly, 
participants reported that when working on multiple tasks, 
they found Taskposé would occasionally move the tasks 
close together as a result of their switching between the 
tasks; they had expected the distinct tasks to be spaced 
farther apart. Finally, as expected, tabbed Internet browsing 
was found to decrease the usefulness of the algorithm 
because the browser started associating with multiple 
groupings. Because tabbed browsing is attempting to solve 
the same problem as Taskposé—controlling an overabun-
dance of windows—it is not surprising that their orthogonal 
approaches might interfere. 

Logging Results Reveal Extended Use 
Nine of the ten participants returned usable activity logs 
(one user’s logs were corrupted). We attempted to analyze 
this log data to gather more quantitative usage information. 
Specifically, we intended to measure how often participants 
switched programs using Taskposé, and compare that to the 
number of times they switched using other means such as 
the taskbar, alt-tab, or by simply clicking on the window.  

Surprisingly, we found that participants left the Taskposé 
software running in the background for extended periods of 
time—one user logged eight days straight—and often used 
it continuously. Thus, we were left with no indication of 
when they began their official usage hour each day. This 
behavior might have been expected: Taskposé does not 
track window relationships when not running, so leaving 
the software on in the background guaranteed it would be 
useful at the beginning of the usage hour. Though we are 
left with artificially low Taskposé switch rates as a result of 
this behavior (Table 1), it is an encouraging suggestion as 

Figure 4 Participants found relationship and importance tracking to 
be useful to their work. The importance tracking algorithm received 
positive reactions, though the response to relation tracking was 
middling. 

Figure 3 Participants were generally enthusiastic about incorporat-
ing Taskposé model into their everyday computing. Workspace
understanding was generally unaffected. 

Participants’ Taskposé 
use time (hrs) 

Total Taskposé 
window switches 

Taskposé usage 
rate (switches/hr)

195.4 196 1.00 
118.2 237 2.01 
64.7 156 2.41 
57.9 181 3.12 
40.8 48 1.18 
20.8 75 3.61 
13.9 21 1.511 
12.1 19 1.57 
10.3 161 15.58 

 
Table 1 Users kept Taskposé open far beyond the required seven 
hours, leading to an artificially low recorded usage rates. 
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to users’ ability to incorporate the Taskposé model success-
fully into their workflow. 

Design Improvements 
The study also elicited a set of design suggestions for the 
software. In this section we review several of the most 
promising suggestions based on the long-term evaluation. 

Users tended to either use the anchoring functionality very 
lightly, if at all. Mainly users credited this to a lack of 
discoverability, as it was hidden in a right-click menu 
beneath each window icon. A simple design solution would 
be to use a pushpin metaphor [3] to make the interaction 
more visible. In our envisioned prototype, a specific corner 
of each window would be treated as a hotspot to allow one-
click anchoring at the current location. 

A second line of design feedback suggested that we scale 
the window thumbnails to fill the visualization at all times. 
Under this change, when two windows are open, they 
would appear large to fill the Taskposé display, but shrink 
to fit a third window when one is opened. This leads to 
problems with the consistency of window position, but is 
certainly a useful direction to consider. 

The next major step in interaction for Taskposé is to allow 
users to specify strengths of association if they wish. For 
example, a user might position a window near a specific 
grouping to indicate that the window is strongly associated 
with its new neighbors. In effect, Taskposé would remem-
ber manually-specified associations. Such a system, if 
designed well, could lessen the need for a perfectly accurate 
association prediction algorithm. 

CONCLUSIONS AND FUTURE WORK 
In this paper, we introduce Taskposé, a window manager 
that embodies task association rather than classification as 
its core premise. In our user studies of the system, we found 
that the approach mapped well onto users’ mental models 
of their work. Taskposé’s current limitations lie primarily in 
the accuracy of its window relationship tracking. Several 
lines of predictive task management research have proposed 
other methods; however, the mathematical algorithms 
underlying these machine learning solutions are generally 
able to only make classification decisions or probabilistic 
guesses rather than generate the continuous strength-of-
association numbers that Taskposé requires, so adaptation 
of these algorithms would be necessary to support the 
Taskposé model. Regardless, doing so would probably 
yield the single most significant increase in Taskposé’s 
usefulness. Pursuing other data tracking techniques, such as 
concentrating on window dwell time, parent/child relation-
ships, as well as algorithms such as Bayesian updating and 
multidimensional scaling [13] could also prove fruitful. We 
are also interested in examining richer data to inform our 
algorithms; tracking eye movements and visual attention 
[25] is an especially good candidate. 

With regards to the interface itself, Taskposé’s extended 
use study brought to light several dimensions of interactiv-
ity within its visual grouping paradigm. While we experi-
mented with a linear mapping between associative relation-
ship and visual distance, other sorts of mappings (such as 
logarithmic) might lead to stronger visibility of in-group 
and out-group status. Additionally, a few participants stated 
that they would have preferred a one-dimensional version 
of the program which could dock to the bottom of the 
screen just like the Windows taskbar, thus obviating the 
need to call up the visualization—the ideal design for such 
a system is certainly a direction for future research. 

And here we finally return to the big picture question: how 
to organize our complex world. It is all too tempting to treat 
piles of post-it notes and an unorganized computer desktop 
as simply in need of filing. Yet we have seen that in some 
circumstances it is undesirable, if not impossible, to accu-
rately file and re-file our life. We put forth an always-
changing landscape as a richer and more promising notion. 
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