
 1

Taskposé: Exploring Fluid Boundaries in a Task-Based
Window Manager

Michael Bernstein
MIT CSAIL

Cambridge, MA
msbernst@mit.edu

Jeff Shrager
Symbolic Systems Program

Stanford University
Stanford, CA

jshrager@stanford.edu

Terry Winograd
Stanford HCI Group

Stanford, CA
winograd@cs.stanford.edu

ABSTRACT
Window managers assist users in navigating their comput-
ing workspaces by providing an organizational and access
mechanism for their open windows. Window manager
research has aimed to leverage users’ tasks to organize the
growing number of open windows in a useful manner. This
research has assumed task classifications to be binary—a
window is in a task, or not—and context-independent. We
suggest that tasks’ continual evolution can invalidate this
approach and introduce association between artifacts as an
alternative organizational scheme. Association relates
windows to one another at varying degrees; task-relatedness
is an emergent property of association. We describe Task-
posé, our implementation of an associative window man-
ager, and report on a week-long user study of the system.

Author Keywords
Task management, window management.

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: User Inter-
faces—graphical user interfaces, windowing systems.

INTRODUCTION
Human activity is characterized by complex patterns in both
the physical and digital worlds. On physical desks, reams of
paper and documents, books and writing tools evidence this
activity [27]. Computer desktops are likewise characterized
by an array of running programs, e-mail, chat, to-dos and
authored documents [6, 8]. Research has found users to
generally keep at least eight windows open on their desktop
[21], and this number is sure to rise as screen space and
memory become cheaper and more aspects of our lives go
online.

In the physical world we use numerous means to organize
challenging complexity: documents are sorted into piles,
notes indicate reminders or items of priority, and perhaps
we utilize a paper organizer or two [27]. Similar attempts to
organize the computer desktop have been made, for exam-
ple using complex file hierarchies and multicolored email
flags, but overall the computer desktop has resisted such
organization. Two prime examples, the Windows taskbar
and the Mac OS X dock, siphon all open programs into a
single pile at the bottom of the screen, offering little in
terms of organizing principle other than time or program of
origin.

We may expect to find a measure of control over this
situation by considering the implicit tasks underlying users’
activity. By “task” we mean a high-level goal towards
which a person’s actions are directed: writing an essay,
paying bills, socializing, or researching camera prices are
all examples. By minimizing the expected cost of finding a
particular artifact [36], task-based approaches can be
powerful tools for customizing one’s workspace (see, e.g.,
[9, 31]). In the physical world, the paraphernalia related to a
given task may be sprawled out across the desk, while that
of inactive tasks hovers in piles nearby. If the taskbar and
desktop were meaningfully organized into tasks, human
spatial memory and hierarchical thinking could likewise be
leveraged to help us organize our computational lives.

Researchers have spent considerable effort on this proposi-
tion and introduced a variety of task-based systems which
can automatically group windows into tasks [17, 23, 26, 32,
34] or give the user control over these groupings [5, 22, 38,
39, 41, 44]. This prior work has explored a variety of
questions: What kind of organizational schemes do users
employ most successfully? How can computer users com-
municate their tasks to the system? Do these need to be
communicated explicitly, or can tasks be intuited from user
actions? To what extent can users be troubled to organize
such short-lived windows themselves, and to what extent
should the computer help users automatically organize their
work?

We have ourselves approached these questions in several
steps. We begin by reporting on an observational study of
how users typically organize their computer desktop during
real work. Armed with a sense of how users create and

interact with windows, and building on previous research,
we propose an association-based task model wherein
windows may identify with multiple tasks. We apply this
approach in an automatic task and window organization
system called Taskposé, wherein association offers both the
motivation and mechanisms for tracking window relation-
ships. Finally, we report on two evaluation studies of the
Taskposé prototype.

RELATED WORK
Taskposé draws from related work in two broad categories:
theoretical and observational research surrounding the
nature of tasks in human-computer interaction, and prior
window and task management systems. We address each in
turn.

Tasks in Human-Computer Interaction
As the ‘task’ is not a well-defined concept, much prior
work has been dedicated to exploring task boundaries and
ramifications. The idea of task-based analysis of activities
is a well-established theory in cognitive psychology (see,
e.g. [15, 20, 30]), where it serves as a foundation for more
recent work. Traditional HCI cognitive modeling (see, e.g.
[11, 37]) has generally been concerned with micro-scale
goals and objectives, making it more difficult to analyze the
macro-sized tasks which are our concern: these can last
hours and involve numerous interrelated goals. Activity
Theory researchers have sought to address this problem by
treating the computer interface as a medium through which
users take action towards a goal [10, 24, 33]. Suchman [43]
notes the importance of the larger task goal as an important
mediator of action. Additionally, Winograd and Flores [45]
caution us that task identification may become ad-hoc as
pre-composed groupings break down during actual work.

Other research speaks to these theories by exploring worker
tasks, interruptions and ad-hoc switching through ethno-
graphic observation (e.g., [4]) at differing levels of granu-
larity. Observing entire task lifecycles, Czerwinski et al.
[14] reported 53-minute task completion times on average
and Bellotti et al. [8] saw a majority of tasks being com-
pleted within four hours. González and Mark [19] focused
on a finer level of detail and found users spent only 2.5-
minute stretches on electronic tools before task interruption
and only a modestly higher 11 minutes at the more general
level of the work sphere. Even our fine-grained interaction
patterns are fragmented: Hutchings et al. [21] tracked
window usage and discovered that participants spent a
median amount of 3.77 seconds on a particular window
before switching away; the mean was 20.9 seconds. Taken
together, this work paints a startling picture of the promi-
nence of task switching and interruption in our work.

Tasks and Window Managers
The commercial world contains dozens of window manag-
ers, from open-source customizations to commercial-grade
software such as the Windows taskbar [2] and Apple OS X
Exposé system [1]. We consider this generic window

management work as it addresses underlying engineering
and design issues.

Researchers have approached window manager design in
two ways: either by building systems that can intuit users’
task structure, or by giving up on such automation
completely and instead granting users manual control over
window and task organization. As a result task-based
window managers fall into one of two categories: agnostic
or predictive.

Agnostic window managers do not attempt to make any
generalizations about users’ tasks and rely on the users
themselves to define the tasks as they work. The strength of
this approach is that it does not make task classification
mistakes. Agnostic window managers have been explored
in many shapes and forms: Rooms [22], virtual desktops,
the Task Gallery [39], GroupBar [41], the ABC Extension
to Windows XP [5], WindowScape [44] and Scalable
Fabric [38] are all examples. These types of systems offer
their most significant return given an equally significant
investment in manually organizing windows into tasks.
Thus, we believe they are best suited to long-term tasks that
operate in a static set of windows. Rather than exploring the
relative merits of a new kind of agnostic interface, we have
chosen to focus on the predictive space.

Predictive window managers utilize algorithms that assign a
window to its mostly likely task. The clear advantage of
predictive window managers is that, if they make correct
decisions, they do not impose additional sorting time
requirements on the user in order to extract some benefit.
Of course, if the system makes incorrect decisions, users
are generally worse off than if the computer had done
nothing at all. This approach bases its decisions on (often
indirect) evidence of task creation and manipulation, such
as window titles, switch history and content evaluation..
Examples here include TaskTracer [17], Kimura [26],
SWISH [34] and window-frequency algorithms [32].
UMEA [23], while not a window manager, follows a
similar approach toward creating dynamically-updating
project spaces.

FIELDWORK
The goal of our observational study was to inform our
model of task creation and manipulation. To build on prior
observational research, we focused on users’ existing
window usage patterns and adaptations around task work.
We hoped to capture user mistakes and breakdowns, as they
are often a useful starting place for future designs. By
pulling out cross-user threads from this observation we
hoped to provide evidence to guide our research.

Method
Our opening study was an in-situ observational visitation.
We recruited subjects who came to use a university public
computer cluster. Nine males and nine females participated;
they were all undergraduate students, graduate students or
visitors to the university. With permission, at some arbitrar-

 3

ily chosen point during their ongoing work, we observed
and video-taped the participants’ actions, occasionally
asking them questions about their ongoing activity. Each of
the participants was observed and videotaped for a 5 to 15
minute period of normal computer use. At the conclusion of
the study, the videotaped records were coded for window
switches, number of windows open, and task relationships.

Results
Consistent with prior studies, we found users were gener-
ally engaged in multiple interleaved tasks. This
multitasking often involved a central task and at least one
peripheral task. One canonical example was that of a
participant who wrote an email to her friends about a
concert while referencing a web site and gathering e-mail
addresses from an online student directory. Over the course
of our study, we saw this central task encompass from one
to seven simultaneous open windows, averaging around
three windows.

Task switching is often opportunistic. Participants would
sometimes leave a task with the intention of briefly pursu-
ing another item only to launch into a completely new
task—until eventually remembering to resume the previous
work (Figure 1). Chat windows are emblematic of a class of
windows that caused this phenomenon: generally unrelated
to all other work, constantly referenced, but only active for
short bursts of time. This class also included music players,
sports tickers, and email clients.

We found participants’ window switch frequency to be
bimodal: most participants would settle in to a specific
window and work without switching for a few minutes,
then begin switching windows quickly and often for a
period until finally settling again. This window thrashing
activity [22] might signal a new task or sub-task, but just as
likely the user was referencing the other windows, reori-
enting his or her workspace, trying to find a particular
window or even taking a break (as in Figure 1). Users
actively synthesizing information from multiple windows
tended to exhibit similar behavior but had shorter dwell
periods on the main window.

Discussion of the Observational Study
In our observations, users were generally aware of one task
at any given time. As a result, ‘orphaned’ windows were
often left open long after they were still in use, because
users tended to forget about them and they do not make

themselves apparent. The user’s task space should therefore
be considered random access, or perhaps center-surround
[18], where the user is aware of the current task and only
the sub- or super-tasks that are especially relevant to the
project at hand.

Even though we preferentially chose subjects with multiple
open windows, few of the participants exhibited complex
multitasking behavior. We attribute this result to our
locating the study in a public computer cluster. Public
computers are generally used for short periods of time and
for single purposes such as checking email; this environ-
ment discouraged multitasking. As evidence in support of
this explanation, participants who had brought their own
laptops to use in the cluster exhibited a far greater number
of multitasking behaviors than participants using public
computers.

Our account of desktop multi-tasking might be summarized
as follows:
• Users generally work on a single main task at a time,

often spanning multiple windows.
• Task switching does not often happen between main

tasks—users tend to work in coherent bursts. However,
short switches between the current main task and back-
ground items such as chat, music or email are not un-
common.

• New tasks or subtasks are spun off opportunistically. Old
threads are often left behind if some new work becomes
high-priority, or if the trail leading back to it becomes
too long. This results in windows sometimes switching
task association quickly, and sometimes migrating be-
tween associations over a long period of time.

FROM CLASSIFICATION TO ASSOCIATION
Previous research explicitly assigns windows to a specific
task group—a window is either part of one task, or it is part
of another. Our work’s contribution lies in incorporating the
claim that tasks are “fuzzy” and have continuously chang-
ing relationships with their contents. We build on a small
but growing set of literature that indicates that task classifi-
cation, an approach in which work artifacts are placed
strictly in one task, is an improper match for users’ mental
models.

One interesting result arises from the evaluation of the
machine-learning techniques applied to TaskTracer [42]. In
their study, the authors asked users to evaluate whether

Figure 1 An example of opportunistic task switching: A participant in our observational study who is (a) editing his resume switches to (b) a
chat window when his friend greets him, then is drawn to (c) several other unrelated chat windows before (d) returning to work.

TaskTracer had made a correct task classification prediction
based on their activity. These researchers found that users
were often unsure which task a window should be allied
with: “…users are often not 100% sure themselves or may
provide different answers in different contexts. Users are
often able to tell the system what it is not, but not what it
is” [42]. In an evaluation of the Activity-Based Computing
extension to Windows XP, a user likewise mused: “The
worst thing? Well [...] if you have to put everything into
activities, then you need to constantly consider ‘where does
this one belong’” [5].

It is important to note here that because users are aware of
their own higher-level goals, they should in theory know
the classification of every window. However, users’ diffi-
culty with the sorting operation suggests this awareness
may not always be present. Because both of these systems
allow for arbitrary naming of tasks, the classification
systems in use cannot be causing this difficulty. Instead, we
believe that the single task classification model does not
always map well onto users’ mental models of their work.
This situation is essentially the problem of asking pilers—
who often delay sorting of artifacts—to live in a world
where filing is the only option [27]. It is worsened by
requisite mental upkeep in the form of continuous filing of
new windows.

To give an example of the problem at hand, imagine a
fictitious user who is beginning a new task of buying a
book. The user logs on to an online shopping web site in
order to purchase the book, then is distracted by a related
item and begins browsing related works. From a task
perspective, is the user still buying the book? Is the user
really not buying the book? This situation is an example of
a gray area with regards to clean mapping. Or, when a user
writes a document under a yearly report task, but later
refers to the document when generating a set of slides for a
boardroom presentation, should the paper be part of the
business report task, or the boardroom presentation task? Or
both? Here, we see a situation where an artifact’s task
classification changes with a context switch.

Bowker and Star [11] address this concern as part of a
larger argument on the consequences of classification. They
define classification as “a spatial, temporal, or spatio-
temporal segmentation of the world” characterized by (1)
consistent decision principles, (2) mutually exclusive
categories and (3) the union of the categories encompassing
all possibilities. The authors point to examples of our
“muddled folk classification”:

A quick scan of one of the author’s desktops re-
veals eight residual categories represented in the

various folders of email and papers: “fun,” “take
back to office,” “remember to look up,” “misc.,”
“misc. correspondence,” general web informa-
tion,” “teaching stuff to do,” and “to do.” We
doubt if this is an unusual degree of disarray or an
overly prolific use of the “none of the above” cate-
gory so common to standardized tests and surveys.
[11]

The work above supports a hypothesis that the relationship
between tasks and actions is not one-to-one and suggests
that it is preferable to build systems which handle classifi-
cation more flexibly. For example, research on the Piles
[28] and Placeless Documents [16] projects have supported
less strictly defined organizational schemata. More recently,
this general phenomenon has also exhibited itself on the
web via the rise of folksonomies, which espouse greater
flexibility than traditional filing [40]. Our work also ex-
plores this gray area of task classification.

A New Task Model: Association
Based on the foregoing observations and previous research,
we believe that the following two kinds of situations are a
common use case that must be considered in the design of
task-oriented windows managers:
1. Users’ task classifications come in many shades, which

strict groupings cannot support, and
2. Strengths of association between artifacts may change

over usage time, or immediately if the context switches.
With the exception of WindowScape [44], research into
task-based windows managers has assumed that windows
are cleanly mapped into a specific task and that windows
are statically part of one task. Following computer science
terminology as well as Bowker and Star, we term such
window managers as performing classification. Classifica-
tion is defined as treating task decisions as a binary yes-or-
no problem: is this window part of this task, or isn’t it?

By way of contrast, we define association as allowing
artifacts to identify with tasks at varying degrees. A win-
dow can be strongly associated with a single task, weakly
associated with several tasks or associated with none at all.
Our goal is to design a window manager that incorporates
association in a useful and user-friendly way.

TASKPOSÉ
In order to support complex desktop activity, we have
developed an associative window manager called Taskposé
wherein window icons appear in a two-dimensional space
(Figure 2). It draws its name from Apple Exposé [1], which
inspired the system’s two-dimensional layout and use of
continually-updating window screenshots.

 5

Taskposé represents open windows by their thumbnails,
which continuously update while the visualization is open.
The distance between these thumbnails is tied to the pre-
dicted semantic (i.e., task-based) relation between windows.
Taskposé, in fact, has no task groupings at all. Rather, as
users exhibit behavior implying that windows are related to
one another, the icons move closer together on the task
manager display. The user’s Gestalt organizational capaci-
ties permit him or her to interpret this layout as a meaning-
ful task organization—the spacing suggesting rather than
imposing an organization. It is fundamental that the visuali-
zation can be understood in multiple ways, because a
window may participate in multiple tasks. For example, a
window related to writing a paper and to drafting a presen-
tation should be easily interpretable as belonging to either
group.

The decision to replace actual task groupings with visible
degrees of association was motivated by our hypothesis that
task classifications are not binary decisions to be made.
Likewise, the continuously-updating nature of the visualiza-
tion, as well as the ability of windows to remain between
two clusters, supports the idea that tasks are context-
dependent and may change over time. We made a design
decision to visualize the user’s workspace in two dimen-
sions because we felt it represented interdependencies
better than window icons arranged in a one-dimensional
line such as in the Windows taskbar or OS X dock.

Interaction with Taskposé
A few simple rules guide Taskposé’s user interface. First,
distance between window pairs is determined by how
related Taskposé believes them to be. Tightly related
windows will thus move right next to each other (Figure 2
inset), and unrelated ones remain apart. Groups of any
number of windows may form in this manner. Windows
related to several disjoint groups will appear between those

groups in the visualization. A user may anchor a window
via a right-click interaction, preventing it from moving
unless unanchored. The user can also move a window to
another part of the visualization via a drag interaction if he
or she wishes. Taskposé does not currently interpret drag-
and-drop location as new relationship information.

Important windows inform other aspects of the Taskposé
interface. Most critically, window size in the visualization
is directly correlated with the window’s importance, as
estimated by Taskposé (Figure 2). One major design
concern was that windows would move from remembered
locations while the user wasn’t looking, and thus he or she
would have difficulty relocating windows. Thus, in Task-
posé, important windows have more “mass”: they move
less, if at all, as the visualization updates. This weighting of
important windows trades on an assumption that important
windows are typically the ones that users will want to find,
and will be the most disruptive if they unexpectedly shift.

Switching Windows
A complete interaction with Taskposé takes only a few
seconds. The Taskposé visualization may be brought up in
one of two ways:
1. Double-clicking the Taskposé icon in the system tray.
2. Holding the Alt key and pressing the ` (Accent Grave)

key. This interaction was chosen for its close physical
similarity to the inveterate Alt-Tab key combination—
most users preferred this method for its speed and ease.

When the Taskposé visualization appears, it overlays the
contents of the user’s screen and outlines the current
window in red to help orient. To switch windows, the user
clicks on the appropriate thumbnail. When the user clicks
on a window, Taskposé hides and the operating system
switches to the requested window. If the user decides not to

Figure 2 The Taskposé visualization arranges open windows in two dimensions when the visualization is called up. Windows automatically size
relative to their importance. Inset: closely-related windows appear together in the visualization.

switch windows, he or she can hide the visualization by
repeating either of the show mechanisms above.

IMPLEMENTATION AND ALGORITHMS
The Taskposé prototype is implemented in Windows using
C# and the .NET platform; it hooks into the Win32 API to
listen to and publish window events as well as to retrieve
window icons, labels and screenshots. Three main algo-
rithms underlie the Taskposé system: the WindowRank
algorithm for determining window importance, the window
relationship algorithm, and the graph layout algorithm.

The WindowRank Algorithm
The WindowRank algorithm takes as input a series of
switches between windows in the operating system, and
outputs a real number representing its determination of the
importance of the window to the user’s work. Other algo-
rithms have attempted to utilize window switching to
determine window relevance with reasonable success [32,
34], but to our knowledge none have attempted to do so to
describe window importance. We later use this importance
metric to inform our relatedness algorithm.

WindowRank builds on the approach popularized by
Google’s PageRank [35]. PageRank treats the Internet as a
series of nodes on a graph, and links between pages as
edges on that graph. A web page’s PageRank is determined
by the accumulated PageRank of web pages linking to it.
WindowRank treats windows as the nodes in the graph and
user window switches as edges. So, each time a user
switches from Window A to Window B, WindowRank
treats the action as Window A voting for Window B and
adds a proportion of its own rank to the destination.

WindowRank is useful in the Taskposé context for several
reasons. First, information is collected without the user
having to make any explicit assertions about relationships.
The algorithm runs quietly every time a new user action
occurs: for example, a window switch, open, or close.
Because the number of graph nodes is relatively small, the
algorithm in practice runs quite quickly and does not
become a performance issue. Second, as we shall see,
knowing which windows are important to the user’s work
plays a critical role in differentially weighting windows’
opinions about what is related to what.

The Window Relationship Algorithm
The most important utilization of WindowRank appears in
the window relationship algorithm. It was our goal to
fashion an algorithm that would output associative related-
ness over a continuous region, which we could then incor-
porate into our visualization. Our algorithm takes as input
window switches and window ranks and then outputs a real
number in (0, 1) representing a weighted judgment of the
strength of the relationship between the two windows. 0
corresponds to totally unrelated, and 1 corresponds to
extremely closely related.

There are many classes of algorithms which might fill this
role. We have chosen one which, while fairly simplistic,
serves well as a proof-of-concept algorithm for Taskposé.
Our algorithm is similar to other window switch relation-
ship algorithms, but is unique in its incorporation of win-
dow importance. We believe that this consideration to be
useful in improving the accuracy of such algorithms.

WindowRank and importance are necessary here because
Window A and Window B may have different opinions
about how closely related they are to each other. For an
explanation, consider a naïve algorithm which treats both
Window A and Window B as equals in the decision. If
Window A is an important window, it will likely have
switched to and from different windows many times. So, its
vote for B will be relatively small, but likely accurate, as
the user has not evinced much behavior indicating a strong
relationship between the windows. On the other hand, if
Window B is unimportant and thus sees fewer switches,
each switch to A will greatly influence B’s opinion of its
relationship to A. Here, by averaging A and B’s guesses,
the naïve algorithm will return an over-inflated estimate of
the windows’ relationship.

WindowRank reduces this problem by allowing important
windows to override unimportant windows’ over-inflated
claims. The algorithm in use weights each vote by the ratio
of its rank to the two windows’ ranks summed:

(B)WindowRank(A)WindowRank
(B)WindowRank

, X)Switches(B
, A)Switches(B

(B)WindowRank(AWindowRank
(A)WindowRank

, X)Switches(A
, B)Switches(An(A,B)Associatio

X

X

+
⋅

+
+

⋅=

∑

∑

)

This returned value is between 0 and 1, and is used by the
Taskposé visualization to display window relationships.

Graph Visualization and Updating
Given the a posteriori relationship computed between
windows, a spring-based graph algorithm [7] (also known
as a mass-spring model) lays out the icons. In a spring-
embedded graph layout, a simulated spring is attached
between every two nodes in the graph, and spring physics
continually adjust node locations. For example, two nodes
connected by a short, stiff spring will stay near each other.
We decided upon a spring-embedded graph because of its
aesthetic layout characteristics and its ability to map con-
tinuous values from our relatedness algorithm directly onto
visual distances.

The output of the window relationship algorithm is linearly
mapped onto both the spring length and stiffness for each
pair of windows. The result of this operation is that closely
related windows are connected by short, stiff springs, and
tend to cluster. Unrelated windows end up with long but
loose springs; this is desired so that there is some flexibility
in the windows’ relative placement.

During each program cycle, every window is moved by an
amount proportional to the overall force acting on it by all

 7

the springs connected to it. This proportion is determined
by each window’s WindowRank. That is, important win-
dows which have above average WindowRank move less,
and unimportant windows (with less WindowRank) move
proportionately more. This allows the graph to smoothly
update without disrupting the positions of important win-
dows.

EVALUATION METHOD
To evaluate Taskposé, we wished to test the following
hypotheses:

H1 Taskposé’s approach of associating rather than classi-
fying windows maps well onto users’ mental models of
their work.

H2 Taskposé successfully scales to situations with many
windows open.

H3 Taskposé’s window importance and relationship
tracking algorithms are powerful enough to avoid nega-
tively interfering with users’ evaluations of H1 and H2.

We conducted two studies of Taskposé, encompassing a
pair of study designs: a first-use study and a longitudinal
study. These studies elicited four different types of data
collection: free form interview, self-reported questionnaire,
videotaped observation and computer-generated usage log.
Participants were not told of Taskposé’s underlying algo-
rithms until after each study was completed.

First-Use Study
We chose a first-use study for its power to rapidly elicit
usability problems. Ten undergraduate students at our
university (six male, four female) were recruited to take
part in the forty-five minute study. Sessions were held on
the participants’ own computers or on the researcher’s
laptop. Personal computers’ resolution varied, though the
laptop was always set at 1280x1024 pixels.

First, the researcher gave a tour of the interface. Then, the
participant was presented with a task to compile informa-
tion from several Internet web sites. This task was inspired
by the multitasking activities we observed in our fieldwork
study. Specifically, participants were asked to find specified
information about the Political Science programs at four
major universities. This information was to be compiled
into a separate document for each Political Science pro-
gram. Participants were given 20 minutes to complete the
task.

The task required numerous window switches and caused a
great deal of window thrashing [22]. We encouraged
participants to use Taskposé when switching windows, but
they were not required to do so. Participants followed a
‘think-aloud’ protocol during completion of the task: this
vocalization of participants’ inner thoughts and confusion
clarified the user’s mental model of the program to the
researcher at moments of breakdown. Further, the re-
searcher observed and videotaped participants’ interactions
with the system.

As the purpose of this short study was mainly to elicit
usability problems and iterate on Taskposé’s design, we did
not attempt to collect quantitative data. The results of this
study were incorporated in the next version of Taskposé
and led into the longer, more substantive longitudinal
evaluation.

Longitudinal Evaluation
Due to the background nature of window managers and the
wide variety of taskbar use styles, we felt that allowing
Taskposé to be used in conjunction with everyday work
practices and over an extended period would produce a
more compelling measure of its success or failure. The
main strength of a longitudinal approach lies in testing the
sustainability and scalability of our design; its main draw-
back is that allowing users to use the software on their own
time precluded a researcher from observing the interaction.

Ten undergraduate students (five male, five female) were
recruited for this study. Taskposé was installed on their
main computers, and the researcher demonstrated its use.
For one week, participants used Taskposé in the course of
their everyday computer work for an hour a day. Partici-
pants who wished were allowed to use Taskposé more than
the required seven hours. No specific task instructions were
given, as we were interested in as naturalistic an experience
as possible. Each participant was given a logbook in which
to record reactions to the software during use sessions,
which would be reviewed by the researcher at the culmina-
tion of the study.

After the week elapsed, researchers held a debriefing
session and the participants answered a questionnaire about
the experience. With regards to the interface itself, the
questionnaire contained a series of Likert scale questions
designed to measure the accuracy and usefulness of window
importance and relationship tracking, and ease of finding
the desired window. On a broader level, we inquired after
the system’s contribution to users’ understanding of their
workspace, enjoyment, and their likelihood of integrating a
“perfect” version of Taskposé into their everyday work
habits. Additionally, the software kept automatic usage logs
so the researcher could analyze data such as typical number
of open windows and program usage frequency.

RESULTS
This section highlights several outcomes of the longitudinal
use study. We organize the results around analysis of our
hypotheses.

Association over Classification
Users generally expressed an interest in continuing to use
Taskposé in their everyday computer work. On a 7 point
Likert scale, users responded with a median score of 6
when asked how likely they would be to integrate a perfect
version of the system into their regular work practice
(Figure 3). Enjoyment was likewise rated highly, with a
median response of 5.5.

Users’ willingness to integrate an idealized system into
their regular workflow, especially given the limits they had
experienced with the window relationship algorithms,
suggests that Taskposé’s grouping approach did in fact map
well to users’ mental models of their work (H1). In inter-
views, participants generally confirmed that they were in
favor of the visualization strategy, especially during intense
task-based work. Often users asked for additional control
and customizability over the interface, such as being able to
resize windows and integrate drag/drop information into
relationship knowledge. This suggests that they wished to
further incorporate individual working styles in their use of
the software. No users mentioned that strict task groupings
would have been preferred, or suggested using them as an
interface alternative at all.

Scaling
When asked for classes of situations when Taskposé was or
wasn’t useful, eight of the ten participants responded that
Taskposé was much more useful when the number of open
windows outstripped the space available on the Windows
taskbar. Most participants preferred Taskposé to the taskbar
and alt-tab in this kind of situation. This feedback lends
strong support to H2. As expected, respondents commented
that using Taskposé was a burden when the taskbar was still
a viable option, or when switching back and forth between
two windows repeatedly made it simpler to use the alt-tab
key combination.

Window Relationships and Importance
Users found Taskposé’s relationship and importance
tracking to be quite useful, though they criticized the
underlying algorithms’ accuracy. Figure 4 summarizes
users’ evaluations of the importance and relationship
tracking algorithms in Taskposé. Users’ comments reflected
this support for the functionality; for example: “The best

part was this unique way of grouping windows that were
most important, which Taskposé did accurately and which
I'd never seen before.” In general, the positive reactions to
the functionality supports hypothesis H3 and reinforces our
belief that association is a positive task management model
(H1).

Freeform comments revealed a few classes of problems
with the relationship algorithm. First, parent program
relationships were not accounted for in the Taskposé model:
for example, users wished chat windows to automatically
group with each other and with the buddy list. Secondly,
participants reported that when working on multiple tasks,
they found Taskposé would occasionally move the tasks
close together as a result of their switching between the
tasks; they had expected the distinct tasks to be spaced
farther apart. Finally, as expected, tabbed Internet browsing
was found to decrease the usefulness of the algorithm
because the browser started associating with multiple
groupings. Because tabbed browsing is attempting to solve
the same problem as Taskposé—controlling an overabun-
dance of windows—it is not surprising that their orthogonal
approaches might interfere.

Logging Results Reveal Extended Use
Nine of the ten participants returned usable activity logs
(one user’s logs were corrupted). We attempted to analyze
this log data to gather more quantitative usage information.
Specifically, we intended to measure how often participants
switched programs using Taskposé, and compare that to the
number of times they switched using other means such as
the taskbar, alt-tab, or by simply clicking on the window.

Surprisingly, we found that participants left the Taskposé
software running in the background for extended periods of
time—one user logged eight days straight—and often used
it continuously. Thus, we were left with no indication of
when they began their official usage hour each day. This
behavior might have been expected: Taskposé does not
track window relationships when not running, so leaving
the software on in the background guaranteed it would be
useful at the beginning of the usage hour. Though we are
left with artificially low Taskposé switch rates as a result of
this behavior (Table 1), it is an encouraging suggestion as

Figure 4 Participants found relationship and importance tracking to
be useful to their work. The importance tracking algorithm received
positive reactions, though the response to relation tracking was
middling.

Figure 3 Participants were generally enthusiastic about incorporat-
ing Taskposé model into their everyday computing. Workspace
understanding was generally unaffected.

Participants’ Taskposé
use time (hrs)

Total Taskposé
window switches

Taskposé usage
rate (switches/hr)

195.4 196 1.00
118.2 237 2.01
64.7 156 2.41
57.9 181 3.12
40.8 48 1.18
20.8 75 3.61
13.9 21 1.511
12.1 19 1.57
10.3 161 15.58

Table 1 Users kept Taskposé open far beyond the required seven
hours, leading to an artificially low recorded usage rates.

 9

to users’ ability to incorporate the Taskposé model success-
fully into their workflow.

Design Improvements
The study also elicited a set of design suggestions for the
software. In this section we review several of the most
promising suggestions based on the long-term evaluation.

Users tended to either use the anchoring functionality very
lightly, if at all. Mainly users credited this to a lack of
discoverability, as it was hidden in a right-click menu
beneath each window icon. A simple design solution would
be to use a pushpin metaphor [3] to make the interaction
more visible. In our envisioned prototype, a specific corner
of each window would be treated as a hotspot to allow one-
click anchoring at the current location.

A second line of design feedback suggested that we scale
the window thumbnails to fill the visualization at all times.
Under this change, when two windows are open, they
would appear large to fill the Taskposé display, but shrink
to fit a third window when one is opened. This leads to
problems with the consistency of window position, but is
certainly a useful direction to consider.

The next major step in interaction for Taskposé is to allow
users to specify strengths of association if they wish. For
example, a user might position a window near a specific
grouping to indicate that the window is strongly associated
with its new neighbors. In effect, Taskposé would remem-
ber manually-specified associations. Such a system, if
designed well, could lessen the need for a perfectly accurate
association prediction algorithm.

CONCLUSIONS AND FUTURE WORK
In this paper, we introduce Taskposé, a window manager
that embodies task association rather than classification as
its core premise. In our user studies of the system, we found
that the approach mapped well onto users’ mental models
of their work. Taskposé’s current limitations lie primarily in
the accuracy of its window relationship tracking. Several
lines of predictive task management research have proposed
other methods; however, the mathematical algorithms
underlying these machine learning solutions are generally
able to only make classification decisions or probabilistic
guesses rather than generate the continuous strength-of-
association numbers that Taskposé requires, so adaptation
of these algorithms would be necessary to support the
Taskposé model. Regardless, doing so would probably
yield the single most significant increase in Taskposé’s
usefulness. Pursuing other data tracking techniques, such as
concentrating on window dwell time, parent/child relation-
ships, as well as algorithms such as Bayesian updating and
multidimensional scaling [13] could also prove fruitful. We
are also interested in examining richer data to inform our
algorithms; tracking eye movements and visual attention
[25] is an especially good candidate.

With regards to the interface itself, Taskposé’s extended
use study brought to light several dimensions of interactiv-
ity within its visual grouping paradigm. While we experi-
mented with a linear mapping between associative relation-
ship and visual distance, other sorts of mappings (such as
logarithmic) might lead to stronger visibility of in-group
and out-group status. Additionally, a few participants stated
that they would have preferred a one-dimensional version
of the program which could dock to the bottom of the
screen just like the Windows taskbar, thus obviating the
need to call up the visualization—the ideal design for such
a system is certainly a direction for future research.

And here we finally return to the big picture question: how
to organize our complex world. It is all too tempting to treat
piles of post-it notes and an unorganized computer desktop
as simply in need of filing. Yet we have seen that in some
circumstances it is undesirable, if not impossible, to accu-
rately file and re-file our life. We put forth an always-
changing landscape as a richer and more promising notion.

ACKNOWLEDGEMENTS
This work was completed at Stanford University. The
authors would like to thank the great number of researchers
who lent their support, including Scott Klemmer, Todd
Davies, Erica Robles, Victoria Bellotti, Jim Thornton, Ed
Chi, Duke Hutchings, Simone Stumpf, Jon Herlocker, Greg
Smith, Pat Langley, and Stephen Voida. Early versions of
Taskposé were supported by code from Jon Herlocker and
Duke Hutchings. Taskposé software is freely available for
use by contacting the authors.

REFERENCES
1. Exposé. Apple Computer, Inc. http://www.apple.com
2. Windows Taskbar. Microsoft. http://www.microsoft.com
3. OPEN LOOK. Sun Microsystems, Inc. http://www.sun.com
4. Bannon, L., Cypher, A., Greenspan, S., and Monty, M. L.

(1983). Evaluation and analysis of users' activity organization.
Proc. CHI 1983: ACM Press. pp. 54-57, 1983.

5. Bardram, J., Bunde-Pedersen, J., and Soegaard, M. Support for
Activity Based Computing in a Personal Computing Operating
System. Proc. CHI 2006: ACM Press. pp. 211-220, 2006.

6. Barreau, D. and Nardi, B. A. Finding and reminding: file
organization from the desktop. SIGCHI Bull. 27(3), 39-43,
1995.

7. Battista, G.D., Eades, P., Tamassia, R. and Tollis, I.G. Graph
drawing algorithms for the visualization of graphs. New Jer-
sey: Prentice Hall, 1999.

8. Bellotti, V., Dalal, B., Good, N., Flynn, P., Bobrow, D. G., and
Ducheneaut, N. What a to-do: Studies of task management
towards the design of a personal task list manager. Proc. CHI
2004: ACM Press. pp. 735-742, 2004.

9. Bellotti, V., Ducheneaut, N., Howard, M., and Smith, I.
Taking email to task: the design and evaluation of a task man-
agement centered email tool. Proc. CHI 2003: ACM Press. pp.
345-352, 2003.

10. Bødker, S. Through the interface: A human activity approach
to user interface design. Hillsdale, NJ: L. Erlbaum, 1991.

11. Bowker, G. C. and Star, S. L. Sorting things out: Classifica-
tion and its consequences. Cambridge, MA: MIT Press, 1999.

12. Card, S. K., Newell, A., and Moran, T. P. The psychology of
human-computer interaction. Hillsdale, NJ: L. Erlbaum, 1983.

13. Cox, T. F. and Cox, M. A. Multidimensional scaling. London:
Chapman & Hall, 2000.

14. Czerwinski, M., Horvitz, E., and Wilhite, S. A diary study of
task switching and interruptions. Proc. CHI 2004: ACM Press.
pp. 175-182, 2004.

15. Damos, D., Ed. Multiple-Task Performance. London: Taylor
& Francis, 1991.

16. Dourish, P., Edwards, W. K., LaMarca, A., Lamping, J.,
Petersen, K., Salisbury, M., Terry, D. B., and Thornton, J. Ex-
tending document management systems with user-specific
active properties. ACM Trans. Inf. Systems 18(2), 140-170,
2000.

17. Dragunov, A. N., Dietterich, T. G., Johnsrude, K., McLaugh-
lin, M., Li, L., and Herlocker, J. L. TaskTracer: A desktop en-
vironment to support multi-tasking knowledge workers. Proc.
IUI 2005: ACM Press. pp. 75-82, 2005.

18. Furnas, G. W. Generalized fisheye views. Proc. CHI 1986:
ACM Press. pp. 16-23, 1986.

19. González, V. M. and Mark, G. “Constant, constant, multi-
tasking craziness": managing multiple working spheres. Proc.
CHI 2004: ACM Press. pp.113-120, 2004.

20. Hoc, J.M. Cognitive psychology of planning. San Diego, CA:
Academic Press Professional, 1988.

21. Hutchings, D. R., Smith, G., Meyers, B., Czerwinski, M., and
Robertson, G. Display space usage and window management
operation comparisons between single monitor and multiple
monitor users. Proc. AVI 2004: ACM Press. pp. 32-39, 2004.

22. Jr., D. A. H., and Card, S. Rooms: The use of multiple virtual
workspaces to reduce space contention in a window-based
graphical user interface. ACM Trans. Graphics 5(3), 211-243,
1986.

23. Kaptelinin, V. UMEA: Translating interaction histories into
project contexts. Proc. CHI 2003: ACM Press. pp. 353-360,
2003.

24. Kaptilenin, V., and Nardi, B. A. Activity theory: Basic con-
cepts and applications.
http://www.sigchi.org/chi97/proceedings/tutorial/bn.htm.
1997.

25. Kumar, M. GUIDe: Gaze-enhanced User Interface Design.
http://hci.stanford.edu/research/GUIDe/

26. MacIntyre, B., Mynatt, E. D., Voida, S., Hansen, K. M.,
Tullio, J., and Corso, G. M. Support for multitasking and
background awareness using interactive peripheral displays.
Proc. UIST 2001: ACM Press. pp. 41-50, 2001.

27. Malone, T. W. How do people organize their desks?: Implica-
tions for the design of office information systems. ACM Trans.
on Information Systems, 1(1), 99-112, 1983.

28. Mander, R., Salomon, G., and Wong, Y. Y. A “pile” metaphor
for supporting casual organization of information. Proc. CHI
1992: ACM Press. pp. 627-634, 1992.

29. Mark, G., Gonzalez, V. M., and Harris, J. No task left behind?:
examining the nature of fragmented work. Proc. CHI 2005:
ACM Press. pp. 321-330, 2005.

30. Miller, G., Galanter, E., and Pribram, K. Plans and the
structure of behavior. New York: Holt, Reinhart and Winston,
1960.

31. Moran, T.P. Activity: Analysis, design and management. Proc.
Symposium on the Foundations of Interaction Design. 2003.

32. Nair, R., Voida, S., and Mynatt, E. D. Frequency-based
detection of task switches. Proc. HCI 2005: British Computer
Society. pp. 94-99, 2005.

33. Nardi, B. A. Context and consciousness: Activity theory and
human-computer interaction. Cambridge, MA: MIT Press,
1996.

34. Oliver, N., Smith, G., Thakkar, C., and Surendran, A. C.
SWISH: Semantic analysis of window titles and switching
history. Proc. IUI 2006: ACM Press. pp. 194-201, 2006.

35. Page, L., Brin, S., Motwani, R., and Winograd, T. The PageR-
ank Citation Ranking: Bringing Order to the Web, Stanford
Digital Libraries Working Paper, 1998.

36. Pirolli, P. and Card, S.K. Information foraging. Psychological
Review 106(4), 643-675, 1999.

37. Pirolli, P., Cognitive engineering models and cognitive
architectures in human-computer interaction, in Handbook of
applied cognition, F.T. Durso, Ed. West Sussex, England:
John Wiley & Sons. pp. 443-477, 1999.

38. Robertson, G., Horvitz, E., Czerwinski, M., Baudisch, P.,
Hutchings, D. R., Meyers, B., Robbins, D., and Smith, G.
Scalable fabric: Flexible task management. Proc. AVI 2004:
ACM Press. pp. 85-89, 2004.

39. Robertson, G., van Dantzich, M., Robbins, D., Czerwinski, M.,
Hinckley, K., Risden, K., Thiel, D., and Gorokhovsky, V. The
task gallery: A 3D window manager. Proc. CHI 2000: ACM
Press. pp. 494-501, 2000.

40. Smith, G. Atomiq: Folksonomy: social classification.
http://atomiq.org/archives/2004/08/
folksonomy_social_classification.html, Aug. 2004.

41. Smith, G., Baudisch, P., Robertson, G., Czerwinski, M.,
Meyers, B., Robbins, D., and Andrews, D. GroupBar: The
TaskBar evolved. Proc. OZCHI 2003: ACM Press. pp. 34-43,
2003.

42. Stumpf, S., Bao, X., Dragunov, A., Dietterich, T. G.,
Herlocker, J., Johnsrude, K., Li, L., and Shen, J.Q. Predicting
user tasks: I know what you're doing! Proc. AAAI 2005: AIII
Press. 2005.

43. Suchman, L. A. Plans and situated actions: The problem of
human-machine communication. Cambridge University Press,
1987.

44. Tashman, C. WindowScape: A Task Oriented Window
Manager. Proc. UIST 2006: ACM Press. 2006.

45. Winograd, T., and Flores, F. Understanding computers and
cognition: A new foundation for design. Norwood, NJ: Ablex
Publishing Corporation, 1986.

