

d.tools:
Visually Prototyping Physical UIs through Statecharts

Björn Hartmann, Scott R. Klemmer, Michael Bernstein, Nirav Mehta
Stanford University HCI Group
Computer Science Department

Stanford, CA 94305-9035, USA
{bjoern, srk}@cs.stanford.edu

Figure 1: Components of Physical User Interfaces

ABSTRACT
Processor enabled products, each with its own user inter-
face, have pervaded everyday life. To facilitate interaction
design exploration for novel devices, we have developed
d.tools, a design tool for prototyping the bits and the atoms
of physical user interfaces in concert. It enables designers
without specialized engineering or programming knowl-
edge to quickly build functional interactive prototypes.
d.tools offers a visual authoring environment that allows
for drag-and-drop specification of interaction models for
tangible user interfaces in a matter of minutes.
Keywords: Interaction design, prototyping, tangible UIs

INTRODUCTION
We have entered the age of ubiquitous computing: proces-
sor enabled products, each with its own user interface, have
pervaded everyday life. While interfaces on the desktop
have ossified around the WIMP paradigm, interfaces for
mobile, ambient, and tangible devices are still evolving
through experimentation. Designers of desktop computing
applications can rely on a vast library of development aids,
but tools that support the design of novel ubiquitous
computing devices are just emerging. Current designers of
information appliances have to possess expert knowledge
in a number of specialized areas, such as programming,
embedded microcontrollers, and circuit design in order to
build usable prototypes (see FIGURE 1). These requirements
make the current development process solution-information
driven—much time and resources are spent on determining
the right implementation—rather than need-information
driven, where innovation is directed by the desired user
functionality.
Von Hippel [6] highlights the importance of appropriate
high-level toolkits to separate need-intensive design tasks
from solution-intensive implementation tasks. d.tools
empowers designers to perform this need-based innovation.
We envision a world where end users can design, program
and fabricate their own devices. As a first step in this
direction, we are developing a toolkit for product and
interaction designers. This user group likely has some
knowledge about fabrication, content creation, and interac-
tion design, but does not necessarily possess the engineer-
ing expertise to build and program all involved electronic

components.

TOOLS FOR PROTOTYPING
Prototyping is the iterative process of building approxima-
tions to reflect on design decisions. It is a central activity of
the product design process. Our fieldwork with design
professionals and students taught us that in order to be
useful, prototyping tools must provide a fast, low-overhead
path to generate working results. d.tools achieves this low-
threshold requirement by initially insulating users from
circuit design and programming APIs through plug-and-
play hardware and a visual authoring interface.
In d.tools, designers create interaction prototypes using our
PC-based visual authoring environment (see FIGURE 2). The
PC can simulate an embedded controller and execute the
authored interaction models, communicating with the
prototype device through a tether (see FIGURE 3). States in
the editor define device outputs; state transitions are
triggered by physical inputs. When authoring, designers
visually lay out the device’s interaction model. This inter-
action model is executed as a finite state automaton on the
PC, processing sensor inputs and generating output signals
on the physical prototype. The interaction model is always
“live” during the design session, making the hardware
ready-to-hand for testing and experimentation. This tight
integration of design and execution allows for fast, fluid
iterations of the think–design–test cycle [4].

SCENARIO
Consider a product designer assigned the task of develop-
ing a handheld media player. She first shapes a rough form
prototype out of foam and subsequently embeds d.tools
interaction components such as buttons, sliders and an LCD
screen. She then connects the device to the PC through our Copyright held by author/owner

UIST’05, October 23–27, 2005, Seattle, Washington, USA.

Figure 2: An interaction statechart in our editor Figure 3: A media player prototype built with d.tools

master controller box. On the PC, she arranges icons
depicting the recognized physical I/O components into a
virtual representation of the physical device. This iconic
representation affords rapid recognition of device elements.
The designer then builds an interaction statechart by
dragging graphics, sounds or other output specifications
onto states and linking states through input transitions.
After authoring a few key interaction paths, the designer
can hand the functional prototype to her officemate for on-
the-spot user feedback.

IMPLEMENTATION
d.tools uses an Atmel ATmega128-based microcontroller
board to coordinate communication between the host PC
and individual hardware interaction components. The
microcontroller communicates with the host PC through
OpenSoundControl messages sent over an RS232 connec-
tion. The controller board acts as an I C2 master, providing a
common multi-drop bus where individual input and output
components can be hot-plugged. Each component has an
Atmel ATtiny45 controller that runs an I C2 slave program,
sending sensor data from an attached input to the master or
setting the state of an attached output according to received
commands. This polling bus architecture allows the master
controller to track presence and identity of hardware
components. For graphical output to small screens, d.tools
includes an LCD display which can be connected to a PC
graphics card with video output (Purdy AND-TFT-25PA-
KIT). On the T PC, we have implemented the visual state
editor in Java as an Eclipse IDE plug-in using the Graphical
Editing Framework (GEF). Our design decisions emphasize
modularity and extensibility through industry-standard
protocols and open source development tool chains.

RELATED WORK
Recent toolkits [1-3, 5] have opened up physical interface
development to software developers. However, these tools
still require programming experience. Commercial applica-
tions such as Max/MSP, a music synthesis and control
platform, have shown that domain experts (e.g., musicians)
can successfully author complex systems visually without
having to be proficient coders. d.tools combines the advan-
tages of these two application classes. Since we use a
standard communication protocol between hardware and
software, it is possible to connect other hardware platforms
such as Phidgets [2] to our visual editor by way of a
marshaling service.

WORK IN PROGRESS: EXTENSIBILITY
Having lowered the entry threshold for physical interaction
prototyping, we turn our attention to raising the complexity
ceiling of devices that can be prototyped. The integration
of d.tools into the Eclipse IDE makes it feasible to expose
textual programming to users that wish to transcend the
possibilities of a purely visual editor.
A hallmark of desktop GUI toolkits is their extensibility:
expert users can create their own widgets. Inspired by this,
we are developing a high-flexibility hardware architecture.
We are researching ways for users to add any device
adhering to the I C2 protocol into the d.tools architecture.
Using a programmable microcontroller also allows us to
run the interaction model on the embedded processor itself
and remove the PC tether. The prototype can then be used
for field testing outside the confines of a usability lab.

REFERENCES
1 Ballagas, R., M. Ringel, M. Stone, and J. Borchers.

iStuff: a physical user interface toolkit for ubiquitous
computing environments. CHI: ACM Conference on
Human Factors in Computing Systems, CHI Letters 5(1).
pp. 537–44, 2003.

2 Greenberg, S. and C. Fitchett. Phidgets: easy develop-
ment of physical interfaces through physical widgets.
UIST: ACM Symposium on User Interface Software and
Technology, CHI Letters 3(2). pp. 209–18, 2001.

3 Klemmer, S. R., J. Li, J. Lin, and J. A. Landay. Papier-
Mâché: Toolkit Support for Tangible Input. CHI: ACM
Conference on Human Factors in Computing Systems,
CHI Letters 6(1). pp. 399–406, 2004.

4 Klemmer, S. R., A. K. Sinha, J. Chen, J. A. Landay, N.
Aboobaker, and A. Wang. SUEDE: A Wizard of Oz
Prototyping Tool for Speech User Interfaces. UIST:
ACM Symposium on User Interface Software and Tech-
nology, CHI Letters 2(2). pp. 1–10, 2000.

5 Lee, J., D. Avrahami, S. Hudson, J. Forlizzi, P. Dietz,
and D. Leigh. The Calder Toolkit: Wired and Wireless
Components for Rapidly Prototyping Interactive De-
vices. In Proceedings of ACM Symposium on Designing
Interactive Systems. Cambridge, MA: ACM Press. pp.
167–75, August, 2004.

6 von Hippel, E., Democratizing Innovation. Cambridge,
MA: MIT Press. 2005.

	ABSTRACT
	INTRODUCTION
	TOOLS FOR PROTOTYPING
	SCENARIO
	IMPLEMENTATION
	RELATED WORK
	WORK IN PROGRESS: EXTENSIBILITY
	REFERENCES

