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ABSTRACT 
Twitter streams are on overload: active users receive 
hundreds of items per day, and existing interfaces force us 
to march through a chronologically-ordered morass to find 
tweets of interest. We present an approach to organizing a 
user's own feed into coherently clustered trending topics for 
more directed exploration. Our Twitter client, called Eddi, 
groups tweets in a user’s feed into topics mentioned 
explicitly or implicitly, which users can then browse for 
items of interest. To implement this topic clustering, we 
have developed a novel algorithm for discovering topics in 
short status updates powered by linguistic syntactic 
transformation and callouts to a search engine. An 
algorithm evaluation reveals that search engine callouts 
outperform other approaches when they employ simple 
syntactic transformation and backoff strategies. Active 
Twitter users evaluated Eddi and found it to be a more 
efficient and enjoyable way to browse an overwhelming 
status update feed than the standard chronological interface.  

ACM Classification: H5.2. Information interfaces and 
presentation (e.g., HCI): User interfaces.  

General Terms: Design, Human Factors 

Author Keywords: Twitter, topic clustering, social streams 
INTRODUCTION 
Social status streams threaten to become a torrent. As our 
information consumption grows to include microblogging 
services like Twitter and Facebook, tools struggle to keep 
up. Active Twitter users can easily receive over 1000 tweets 
in their streams each day, covering a wide variety of topics 
like research, design, dinner, Apple, Twitter, and the latest 
Internet meme. Twitter users often express a desire to filter 
the torrent down to just a single current, focusing on just 
tweets on a single topic or muting a popular but overplayed 
topic. Such interfaces do not exist, in large part because 140 
characters is too short for text processing algorithms to 
index. Users must instead trim their follow lists or grimly 
resign themselves to missing interesting posts. 

In this work we introduce an interactive topic browser for 
Twitter feeds and an algorithm that makes Twitter topic 
browsing feasible. When a feed is overwhelmed with large 
numbers of tweets, topic browsing can help the user gain a 
foothold—especially when the feed is dominated by 
informational tweets [19]. Topic-based browsing 
approaches have seen success in information-oriented tasks 
within search [6, 17], document exploration [11, 16] and 
blog interfaces [1], but have yet to be applied to social 
streams due to difficulty in modeling short pieces of 
content. Our topic-oriented Twitter browser, Eddi, groups 
the user’s feed into coherent threads of conversation such as 
research, design, Microsoft, and Kanye West (Figure 1).  

Eddi’s approach enables users to manage their feed in ways 
that have been difficult so far: rather than missing the 
hundreds or thousands of tweets arriving between log-ins, 
Eddi users see an overview of the stream since last time and 
decide what to explore. The system is a trending topics 
interface for your own social network, threading related 
tweets together into coherent conversations. 

To enable this interface, we have developed a novel 
technique called TweeTopic that uses search engines as a 
distributed knowledge base. Using TweeTopic, the tweet 
“macbook died, but the Genius guys gave me a new 1!” will 
associate not just with topics explicitly mentioned like 
MacBook, but also ones obliquely referenced like Genius 
Bar or implied like Apple. Existing techniques (e.g. term 
frequency – inverse document frequency (TF-IDF) [23], 
topic modeling (LDA) [3, 21]) struggle with tweets as 140 
characters is often too little to give the algorithm reliable 
signals about important words. Our work observes that 
tweets are approximately similar to search queries. It trans-
forms tweets via part-of-speech analysis [2] and inverse 
document frequency (IDF) metrics into versions more amen-
able to search engines; it then uses the returned pages to 
bootstrap additional knowledge about the tweet. TweeTopic 
can complete this calculation within seconds of receiving 
the tweet and does not need topics defined beforehand. 

Eddi and TweeTopic are influenced by past work on 
information management in blogs [1], topic browsing (e.g., 
[17]), and topic identification algorithms (e.g., [3, 8, 23]). 
We extend this research into the microblogging domain, 
where information overload is so overwhelming that most 
users do not even try to read everything. 
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The remainder of this paper is organized as follows: We 
first present related work in information stream browsing 
interfaces. We then introduce our system, Eddi, and 
describe the algorithm used to generate topics. We detail a 
comparison of TweeTopic to other topic detection 
approaches and a usability evaluation of the system. 

RELATED WORK 
Eddi and TweeTopic build on related work in three areas: 
microblogging, topic browsing interfaces, and topic 
modeling algorithms. 

Twitter 
The microblogging service Twitter has exploded in 
popularity since its 2006 launch. Users can choose to follow 
anyone else and receive every status update (“tweet”) 
shared by that person. Java et al. found major trends on the 
service to be daily chatter, conversations, information 
sharing and news reporting [15]. Naaman et al. manually 
coded tweets to quantify this breakdown, revealing that 
information sharing (22%), opinions (~25%), random 
thoughts (~25%), and personal status (~40%) make up the 
vast majority of tweets [19]. In the Discussion section, we 
will consider how our work is impacted by these categories. 
Honeycutt [13] investigated the conversational aspects of 
Twitter, which might help us segment topics. 

Though network-scale analyses of Twitter are increasingly 
common (e.g., [15]), the literature on microblog 
consumption is still nascent. Zhang et al. [27] studied the 

use of Yammer, an enterprise-oriented Twitter service, 
inside a Fortune 500 company. The authors found a strong 
correlation between a user’s ability to find relevant 
information on Yammer and the service’s perceived 
usefulness. Ehrlich and Shami [7] found microblogs 
increasingly being used as a real-time information source, 
but incoming volume became overwhelming. Both papers 
conclude that solving the noise and relevancy problems, as 
Eddi attempts to do, is an important challenge. 

Topic Browsing 
Eddi chooses a clustering approach due to the dynamic, 
broad nature of Twitter discussion. We introduce ‘topic’ as 
a facet by which users can browse their feed. Faceted 
browsing interfaces have outperformed hierarchical 
interfaces on a variety of search and exploration tasks [26]. 
However, topic-clustering systems are difficult to design. 
Hearst notes that while they are automatable and are more 
responsive to unknown inputs, topic-clustering interfaces 
are less understandable than compiled categories [11, 12].  

Nonetheless, researchers have found advantages for topic-
clustering interfaces in a variety of user scenarios. Dumais 
et al. found that classifying web pages into categories 
reduced time required in search tasks [6]. Indeed, in a 
longitudinal evaluation of a system called Findex, Käki 
found that clustered search categories were useful when 
relevant documents were far down in the results list [17]. 

 

 
Figure 1. Eddi is a topic-oriented browsing interface for Twitter. Clockwise from upper right is the tag cloud, timeline (hidden in 

another tab), the topic dashboard, and the navigational list. 



 

 

Topic browsing is also beginning to make inroads into 
social computing interfaces such as blogs. Baumer and 
Fisher performed a topic analysis of blogger’s blogrolls, 
focusing, as we do, on information in the user’s attentional 
sphere rather than the entire information space [1]. 
MrTaggy offered a topic-based browsing interface over 
social bookmark data [16]. Other approaches such as visual 
analytics of tweet contents via word frequency 
visualizations (e.g., [20]) fall under this umbrella as well. 

We draw on research visualizing and navigating large 
document collections (for a review, see Hearst [12]). We 
find it appropriate to visualize tweets using a tag cloud, 
since tag clouds are shown to be effective signalers of 
social activity [10]. The inclusion of analytics views such as 
the ThemeRiver [9] are also intended to encourage social 
data analysis, as advocated by Wattenberg and Kriss [25]. 

Topic Identification 
Data mining researchers have begun extracting structure 
from social streams. Ramage, Liebling and Dumais recently 
trained LDA models from Twitter data [21], finding that 
they can use the generated vectors to recommend tweets. 
Leskovec et al. tracked textual memes online through the 
2008 Presidential election [18]. Shamma et al. mapped 
tweet keywords onto the Presidential debate timeline using 
a TF-IDF-style metric [24]. 

Information retrieval research complements these data 
mining approaches. Noun phrases are known to be good 
topic markers in paragraph-long text descriptions in 
information retrieval (IR) research [2, 14]. However, there 
are too many noun phrases to show to a user, so Bendersky 
et al. perform machine learning on noun phrase rankings to 
improve accuracy [2]. Rather than utilize this heavyweight 
approach, we will take advantage of search engines’ ability 
to rewrite queries to solve the ranking problem. 

TweeTopic builds on research that uses external knowledge 
sources to label text. Dakka and Ipeirotis mined WordNet 
and Wikipedia to create facet hierarchies for news articles 
[5], and Gabrilovich and Markovich represented news 
articles as a weighted vector of Wikipedia-based concepts 
to compute similarity metrics [8]. Because many Twitter 
topics are breaking news or are not considered important 
enough to be in curated knowledge repositories, our work 
contributes the notion of turning to a search engine as a 
knowledge base. Tweets are also several orders of 
magnitude shorter than news articles, so we introduce text 
transformations to make topic identification more reliable. 
Sahami and Heilman used Google to compute similarity of 
two short text queries [22], and TweeTopic takes 
inspiration from this search engine-based approach. 

DESIGN HYPOTHESES 
We began with informal survey research of social status 
stream users on Mechanical Turk (N=78) and in-person 
interviews. Participants consistently cited topic as an 
important factor in whether a tweet was important to see. 

Users wanted to track important but uncommon topics (e.g., 
hci research), and filter out common but undesired topics 
(e.g., lunch). In particular, while weak-tie friends tweet 
about issues of interest, they also tweet about other topics 
and personal life issues that users would often rather filter. 

We developed design principles from our observations: 
• First, because tweets are tiny, they are as fast for users 

to preview as to read completely. They have no 
intermediate representation like a headline that can be 
used for search and news topic browsing interfaces. 
Thus, Eddi provides a quick brushing (mouseover) 
interaction and a topic dashboard, making it quick for 
users to skim tweets directly.  

• Second, unlike news articles, tweets often blend 
commentary with information content. Eddi supports 
discussion by bringing commentary on a single topic 
together even if the tweets are distributed in time.  

• Third, tweets are often intended to be consumed in 
real-time and have important temporal characteristics. 
We thus included a timeline that allows users to check 
for updates in the minutes, days, or weeks since they 
last checked Twitter. We also ensured that our 
algorithm can process a tweet within seconds. 

EDDI: TOPIC-BASED BROWSING INTERFACE 
Eddi is a novel interface for browsing Twitter streams that 
clusters tweets by topics trending within the user’s own 
feed (Figure 1). Eddi is named after the phenomenon of 
river eddies: swirling stationary points in quickly moving 
streams. The system observes a user’s Twitter stream and 
constructs these stationary points of interest for the user to 
explore. Unlike existing trending topic interfaces like 
Tweetmeme and Twitter’s trending topics, Eddi identifies 
topics within the user’s own feed and about single tweets. 
Even if only a single user on Twitter tweets about UIST, 
Eddi will recognize it and bring it to the user’s attention. 

The Eddi landing page (Figure 1) displays an at-a-glance 
dashboard view of the topics flowing through the user’s 
Twitter stream. This dashboard view includes a topic tag 
cloud, a navigational list of topic categories, a timeline, and 
a set of recommended tweets on interesting topics. By 
default, Eddi shows the last 24 hours of the user’s Twitter 
feed. A calendar widget is available for doing more detailed 
exploration of arbitrary date ranges. 

Tag Cloud Overview 
The tag cloud describes the major topical themes in the 
user’s Twitter stream (Figure 1). Some example topics that 
appear often in the authors’ tag clouds include research, 
design, search, iPhone, Twitter, and jQuery, as well as 
topics tied to newsworthy events such as healthcare, SXSW, 
and iPad. Topic size is scaled proportionally to the number 
of tweets on the topic. These terms describe the tweets 
inside each topic category, though the individual tweets 
need not explicitly contain the topic words. Any #hashtags 
in the feed are automatically added to the interface. 



 

 

The tag cloud includes a brushing interface for previewing 
the contents of a category. When the user brushes over a 
topic keyword in the tag cloud, a detail tooltip appears 
displaying the number of tweets and the five most recent 
tweets in the topic. This interface is intended to give users 
the ability to peek inside a topic before committing to 
explore it. For topics with five or fewer tweets, the entire 
contents can be read quickly by mousing over the topics 
title. 

Topic Detail View 
By clicking on a topic in the tag cloud, navigational list, 
topic dashboard, or timeline, the user can elect to view all 
the tweets in that topic (Figure 2). These tweets are 
displayed reverse-chronologically, as in most Twitter 
clients today, to preserve implicit conversation threads. 
Underneath is a second list of tweets that Eddi believes to 
be weakly associated with the category.  

Navigational List 
The left column contains a complete list of topics in the 
feed, sorted by popularity (Figure 1). The list also provides 
the same brushing tooltip as the tag cloud, so a user can 
mouse over a topic name to see a compressed list of tweets 

in the category. A search box at the top of the list allows for 
search over topic names in the list. In comparison to the tag 
cloud, which is limited to just the most popular topics, this 
list can be quite long to support serendipitous exploration of 
unpopular but interesting topics in the long tail. 

Topic Dashboard 
One drawback of an overview and detail interface is that the 
user must spend time absorbing the overview before seeing 
the tweets. We thus promote tweets on interesting topics to 
a summary dashboard on the homepage to make browsing 
more immediate (Figure 3). The dashboard shows up to five 
tweets chosen from the top ten topic categories. It contains 
a thumbnail of the author’s profile picture, which we found 
suffices to identify many tweeters and allows recommended 
tweets to be displayed with few pixels. 

To recommend personalized topics, we analyze the user’s 
own tweets to find topics they talk about. We found that 
this heuristic works reasonably well for most users, similar 
to past research [4, 21]. When a topic in the user’s interest 
profile appears in the feed, it is added to the dashboard 
regardless of the number of tweets in the topic. Thus, a 
topic of great interest such as HCI will be promoted to the 
top of the dashboard even if there is only a single tweet. 

Timeline 
The topic timeline, available in a separate tab next to the tag 
cloud, draws attention to temporal events in the feed 
(Figure 4). The timeline focuses on time-sensitive spikes by 
using a stacked graph visualization [9, 25]: the height of the 
strip at a particular time is based on the number of tweets in 
that topic. Topics that trend over time will grow in size at 
particular times and become more salient, such as news 
items, conferences, and announcements. 

TWEETOPIC: TOPIC ASSIGNMENT ALGORITHM 
In this section, we describe Eddi’s topic assignment 
algorithm for short status updates. Such algorithms have 
many applications in real-time search and microblogging 
user interfaces. The TweeTopic algorithm labels a tweet 

 
Figure 2. The topic detail view for the google topic. At top, 

tweets believed to belong to the topic. Below, tweets that Eddi 
assigned a lower confidence score to the google topic. 

 
Figure 3. The Topic Dashboard previews a subset of the topics 

inline, determined by what the user tends to tweet about. 

 

 
Figure 4. An example Eddi timeline showcases trending topics 

over the past week. Topics associated with Ted Kennedy 
trended up on the second day from the right, due to his death. 

 



 

 

with a set of topic descriptors that can be used in the Eddi 
user interface. TweeTopic is easily implementable, does not 
require long training periods and is appropriate for both 
interactive applications and prototyping. 

Current best practices for topic identification assume that 
indexed documents are of a decent length. This is an 
assumption that tweets fail almost by definition, being at 
most 140 characters long. Short length leads to poor topic 
analysis of tweets if we use traditional approaches. 
Specifically, traditional techniques tend to use word 
repetition as a measure of importance or term co-occurrence 
to identify related words. Word repetition approaches such 
as term frequency – inverse document frequency (TF-IDF) 
[23] suffer because users tend to remove word redundancy 
from a tweet to save space. Techniques based on co-
occurrence matrices, such as Latent Dirichlet Allocation 
(LDA) [3, 21], are likewise debilitated by users compressing 
out similar words to gain space to insert their own opinions.  

We can illustrate with an example tweet: “Ron Rivest 
cracks me up. It keeps me awake when algorithm design 
brings the LOLZ.” In this tweet, no terms are repeated. 
Thus, TF-IDF is essentially just the IDF term.  Since IDF 
looks for uncommon words, this approach produces bad 
topic words like cracks, keeps, brings and LOLZ.  

TweeTopic Overview 
Eddi’s algorithm, TweeTopic, takes in a status update and 
outputs a list of ranked terms describing it. Thus, a tweet 
such as “Awesome article on some SIGGRAPH user 
interface work: http://bit.ly/30MJy” will output terms such 
as animation, character, 3d, computer graphics, user 
interface and SIGGRAPH. Table I shows example tweets 
along with their assigned topics. 

 

The central intuition behind TweeTopic is that we can 
finesse a tweet to look like a search query, then use search 
engines to retrieve documents to expand our knowledge 
about the text. The algorithm proceeds in three steps: text 
transformation, search engine querying, and result mining. 

Step 1: Text Transformation 
TweeTopic’s central approach is to utilize search engines as 
an external knowledge source; however, search engines 
expect short, direct queries as inputs. Tweets are more 
likely to be ungrammatical and rambling, so the first step in 
TweeTopic is to transform the update into keywords that 
might resemble a search query. We begin by heuristically 
transforming Twitter-specific markups to make the tweet 
appear more syntactical by removing terms such as RT and 
turning @username mentions into capitalized names.  

We then adapt the notion that noun phrases are good topic 
markers in paragraph-long text descriptions [2, 14]. We use 
a maximum entropy part-of-speech tagger1 to identify all 
the noun phrases in the tweet. In the tweet “Awesome 
article on some SIGGRAPH user interface work: 
http://bit.ly/30MJy”, we identify the word “article” and the 
phrase “SIGGRAPH user interface work” for analysis. 

Step 2: Query a Search Engine 
The second step is to concatenate the noun phrases and send 
them as a query to a search engine. From the tweet in step 
1, our query is “article SIGGRAPH user interface work.” 
The tweet now resembles a reasonable search engine query. 
We can now use the search engine as a large knowledge 
base. The search engine will return a result set of 
documents that best captures the gist of the query.  

Often, the query is over-constrained and the search engine 
returns fewer than ten or no results for our query. This 
occurs often when we identify many nouns in the tweet and 
thus have a long query. In these cases, we use iterative 
backoff to adjust the query until the search engine returns at 
least 10 results. We repeatedly remove from the query the 
word with the fewest occurrences on the web (these may be 
misspellings or mistakes that over-constrain the search) 
until we get a result. Then we start over, iteratively re-
moving words with the most occurrences on the web (these 
may be generic noise terms). We finally average the result 
votes from the two runs. Our system uses the Yahoo! Build 
Your Own Search Service, or Y!BOSS2, to issue queries. 

Step 3: Identify Popular Terms in the Results 
The final step in our algorithm identifies popular terms in 
the search results and assigns these as potential topics for 
the tweet. For each of the top ten returned results, we 
identify important terms in the webpage via a weighting 
scheme such as TF-IDF. Y!BOSS provides a list of about 20 
TF-IDF-style key terms for each search result, which we use 
directly. For each page in the top ten results, we tally one 

                                                             
1 http://nlp.stanford.edu/software 
2 http://developer.yahoo.com/search/boss 

Apple 

 W00t! Snow Leopard gave me 10 gigs back! 

 
RT @username: gmail is down, but the imap connection on my 

iphone still works (fingers crossed!) 

 
My iPhone 3GS cracked-on-a-rock, @username’s swam in a toilet, 

both repaired/replaced in 20 min @ Boylston Apple Store. Total 
cost: $0. 

Obama 

 
I think the most striking thing about Obama’s speech + GOP 

response for casual listeners would be how much agreement 
there was. 

 
RT @username: The fastest way to prove you are an idiot is to call 

the President a liar on live TV 

Research 

 @username Congratulations on the CSCW best paper nomination! 

 
Stanford scientists turn liposuction leftovers into embryonic-like 

stem cells: http://bit.ly/3GHsw9 

 
CORRECTION: the deadline for submissions to the Graduate 

Student Consortium for TEI ’09 is October 2 
http://bit.ly/15D8Mv 

Table I. An example set of categories and tweets in those 
categories, as classified by TweeTopic. 



 

 

vote for each key term (topic) associated with the page. 
Topics with at least five votes are certified as valid 
descriptors of the tweet. Topics with fewer votes are 
retained as suggestions. We found through experimentation 
that five votes provided the right balance between accuracy 
and completeness. After this step, we are left with a set of 
terms describing the tweet and a 10-point score representing 
the number of search documents that voted for each term. 

Combining Categories 
Each tweet is now described with multiple topics, which for 
Eddi’s purposes often gives us too many topics to display. 
We need the smallest number of topics that ensure all 
tweets are represented. This is a version of the set cover 
problem; we utilize a typical greedy solution that takes the 
largest topic grouping, assigns those tweets to that topic, 
and works its way to less popular topics while discarding 
topics whose tweets have been entirely covered by other 
topics. We allow tweets to exist in multiple categories. 

EVALUATION 
This paper introduces both an algorithm for topic detection 
and a topic-oriented user interface for social information 
streams such as Twitter feeds. In this section, we (1) 
benchmark TweeTopic against other topic detection 
approaches, and (2) compare Eddi to a typical 
chronological interface for consuming Twitter feeds.  

Study 1: Algorithm Topic Detection Comparison 
In this section we benchmark TweeTopic’s performance to 
other algorithms, and to variations of itself. By doing so, we 
can learn which steps in the algorithm are most important 
and how they compare to the state of the art. 

Algorithms 
To follow, we describe the algorithms in our evaluation. 
We chose alternative algorithms that are used for topic 
detection and topic-based user interfaces. 

Unigram Random: A simple baseline algorithm that 
removes stopwords from the tweet and then chooses a 
random word from the remaining text. 

Inverse Document Frequency (IDF): The traditional 
approach to identifying important words is term frequency 
– inverse document frequency (TF-IDF), but tweets are so 
short that the TF term is very noisy. Thus, we compared to 
IDF on a web corpus. We included an algorithm that ranked 
words by high IDF (Unigram High IDF), preferring common 
terms on the web, and an algorithm that ranked words by 
low IDF (Unigram Low IDF), preferring uncommon terms on 
the web. Because IR research has found noun phrases to be 
good topic markers in freeform text [2, 14], we also 
included Noun Phrase High IDF and Noun Phrase Low IDF. 
In our results, all low IDF conditions outperformed their 
high IDF counterparts, so we will report only Low IDF. 

Topic Modeling (LDA): Another approach to topic detection 
is Latent Dirichlet Allocation, or LDA [3], which has seen 
considerable success modeling topics in web articles and 
Twitter [21]. However, it generates distributions over 

words, so individual words and phrases recommended as 
topics may be less helpful in a user interface. Following 
Ramage et al. [21], we gathered 1.6 million tweets from a 
24-hour period on March 18th-19th 2010 using Twitter’s 
spritzer feed, which streams a pseudo-random 5% selection 
of all tweets via an API. We used a language detection 
toolkit3 to identify 850,000 of those tweets as English. We 
then stemmed and removed stopwords from the tweets, 
removed terms occurring fewer than 30 times across the 
dataset, and removed the 40 most popular words from the 
dataset. We weighted words in each topic by P(topic | 
tweet) so that terms strongly associated with the highly 
probable topics were recommended. 

We also prepared versions of TweeTopic that disabled the 
tweet transformation and the search iteration.  

Transformed vs. Raw: One step in TweeTopic transforms 
the tweet to look like a search query. We call the variants 
that do syntax manipulation, Transformed. Other variants 
used the raw tweet text. TweeTopic also performs two 
distinct transformation stages: stopword removal, and noun 
phrase extraction. We want to separate the effect of these 
stages, so we distinguished Y!BOSS Transformed Iterated 
(only stopword removal) from Y!BOSS Noun-Transformed 
Iterated (stopword removal and noun phrase extraction).  

Iterated vs. None: The search step in the algorithm uses an 
interated backoff strategy to adjust the query if the search 
fails. Those that use backoff we call Iterated; other versions 
issued only a single query. So, Y!BOSS sent the whole tweet 
to the search engine and did not use backoff, whereas 
Y!BOSS Transformed Iterated both performed syntax 
transformation and used the search backoff strategy.  

Data 
We gathered 100 random tweets that passed through the 
Twitter spritzer feed a few minutes after the tweets used to 
train the LDA algorithm. We recruited three human coders 
for topic rating, all heavy Twitter users. We again filtered 
out non-English tweets and tweets that the coders could not 
understand. Each algorithm generated its top five topic 
recommendations for each tweet. If five topics could not be 
generated, any missing topics were automatically scored as 
incorrect. As in typical IR relevancy judgment tasks, each 
coder judged every topic recommendation as relevant or not 
relevant. This coding resulted in 11 algorithms * 5 topics 
per algorithm = 55 coded topic recommendations per tweet 
and 500 ratings per algorithm. We calculated inter-rater 
agreement on this dataset using Fleiss’s Kappa (κ=.70, 
z=85.06, p<0.001) which indicated substantial agreement. 

Results 
Because our outcomes are binary and not continuous, we 
used logistic regression analysis to predict the probability of 
a binary output. In our case, this binary output is “1” if the 

                                                             
3 http://www.microsofttranslator.com/dev/ 



 

 

topic was rated as correct and “0” if not. We added control 
variables for the tweet, rater and topic rank for each 
algorithm (highest rank: 1, lowest rank: 5). 

Results from Table II demonstrate that TweeTopic-style 
search approaches outperformed other algorithms when 
using transformation or iteration. The odds-ratio describes 
how many times more likely the tweet is to be correctly 
classified with that algorithm than by the control, Unigram 
Random. For example, using Y!BOSS Noun-Transformed 
Iterated means that the topic is 1.90 times as likely to be 
classified as correct than with Unigram Random. Thus, 
TweeTopic doubles the baseline performance.  

These numbers are useful but do not tell us whether the 
algorithms differ significantly. Using Wald tests with 
Bonferroni correction (p < 0.05), we compared individual 
algorithms. Y!BOSS Noun-Transformed Iterated was the 
highest-performing, so we compared it to each other 
algorithm. Y!BOSS Noun-Transformed Iterated and Y!BOSS 
Transformed Iterated are statistically indistinguishable, but 
the algorithm statistically outperforms all others. 

Search engine callouts were successful only if they used 
either iteration or transformation. With neither 
transformation nor iteration, the search often returned no 
results, leading to only one-tenth the accuracy as choosing a 
random non-stopword from the tweet. Combining both 
transformation and iteration outperformed either alone.  

Counter to our hypothesis, while noun phrases are good 
markers for long queries [2] and paragraphs [14], they seem 
to be unnecessary for tweets. The simplest version of the 
algorithm with good performance only requires the removal 
of stopwords and Twitter lingo. Figure 5 tells a similar 
story when the algorithms are only asked for a single top-
ranked prediction. Transformation and iteration lead to 
about 40% precision – about twice our baseline expectation 
and almost three times what an LDA topic model provides. 

Latent Dirichlet Analysis generally did not provide 
meaningful topic terms. LDA identified words associated 
with words in the tweet, rather than meaningful topics. So, 
a tweet about Chinese vaccines in the news produced poor 
suggestions like free, read, and via. (It did find good topics 
as well, like news.) We believe that LDA will be much more 
useful in scenarios like personalization, where term vectors 
and large numbers of words are necessary [21]. 

Study 2: Browsing Your Own Twitter Feed 
Eddi’s design hypothesizes that a topic-oriented interface 
for Twitter can help users manage the overwhelming data in 
their feeds. To test this hypothesis, we conducted a 
laboratory study to get a broad sense of whether Eddi is 
subjectively better for browsing an overwhelming Twitter 
feed than standard reverse chronological list interfaces.  

Eddi’s challenge in this task is to offset the additional up-
front cost of understanding the topic list and of navigating 
between topics. We gave users a short period of time to 

browse their feed using both interfaces, and then asked 
them to compare the experiences. Our evaluation measured 
subjective feelings of efficiency, effectiveness and 
satisfaction, outlined by Hearst as important constructs for 
the evaluation of interfaces like Eddi [12]. Our hypothesis 
was that Eddi would be rated more effective and with 
higher satisfaction, without significantly decreasing 
efficiency, when compared to the chronological interface.  

Participants 
We recruited active Twitter users who checked the service 
daily, preferring those who followed over 100 other 
accounts. Fifteen users answered our call on Twitter in 
exchange for a small gratuity. Their ages ranged from 19 to 
49 (median=29). Two were IT professionals, six were 
students, and the rest were scattered across careers like 
entertainment, content strategy, and finance. They reported 
checking Twitter several times a day, once an hour, or 
constantly. We found an average of 786 tweets per day in 
their feeds (σ=658), with a large right skew: the maximum 
was 2,840. The median participant followed 243 accounts 
(µ=382, σ=345). They used various Twitter clients, but 
Tweetie and the native web client were the most popular. 

Interface Conditions 
The study utilized a within-subjects design to directly 
compare Eddi to the standard reverse-chronological Twitter 
interface approach. To ensure that any observed differences 
were due to the Eddi interface and not to nuances of layout 
or coloring, users in the control condition saw a client that 
listed the tweets reverse-chronologically as in most Twitter 
clients today. Visually, this control interface looked very 
similar to the layout Eddi uses in the detail pane (Figure 2) 

Algorithm Odds Ratio z p-value 
Y!BOSS Noun-Transformed Iterated  1.90 6.78 < .001 
Y!BOSS Transformed Iterated 1.88 6.70 < .001 
Y!BOSS Transformed 1.43 3.77 < .001 
Unigram Low IDF 1.31 2.80 < .01 
Nouns Low IDF 1.28 2.61 < .01 
Y!BOSS Iterated 1.23 2.19 < .05 
Unigram Random (baseline) (1.00) n/a n/a 
LDA 0.41 -7.78 < .001 
Y!BOSS 0.18 -12.08 <.001 

Table II. Logistic regression coefficients. TweeTopic-style 
search techniques consistently outperformed others. 
 

 
Figure 5. Transformation and iteration led to high precision. 

 



 

 

with all tweets in a vertical column. Constructing our own 
control interface allowed us to (1) display tweets from an 
arbitrary period of history, which most clients cannot do; 
(2) control for differences between participants’ Twitter 
clients, and (3) remove the requirement that users click 
“More” to reveal more tweets. Participants noted that this 
interface felt extremely similar to the web interface. 

In within-subjects studies, we do not want participants to 
see the same feed items in both conditions due to potential 
confounding learning effects. Thus, each trial featured a 
different 24-hour period from the user’s Twitter timeline. 
We chose the date windows to be at least one week old to 
reduce memory effects, at least 4 days apart to reduce the 
likelihood that topics crossed over, and excluded weekends. 
Pilot studies suggested that this separation was sufficient to 
minimize undesired memory and learning effects, and that 
users remembered few of the tweets from this set. 

Procedure 
The experimenter first trained participants on Eddi and the 
control interface. The participants’ task was to browse their 
own Twitter feed, trying to absorb as much from each day’s 
stream as possible. Participants were given three minutes in 
each trial in order to mimic a typical Twitter scenario: 
having a few moments of downtime to catch up on Twitter. 
To help us understand which tweets the user was reading, 
we used position on the screen as a proxy for attention, 
marking tweets as potentially viewed if they had remained 
in the browser window for at least two seconds. Tweets 
might appear onscreen in several ways: in the Topic Dash-
board, in the mouse brushing previews, and in the topic 
detail pages. Tweets scrolled off-screen were not counted. 

The study consisted of a total of six trials. In three of the 
trials, subjects used the reverse-chronological interface, and 
in the other three trials, subjects used Eddi. The interfaces 
alternated, and the order was counterbalanced between 
participants. We randomized the order of date windows.  

After all trials were completed, participants reported 
subjective ratings on a 9-point Likert scale for each 
interface, with 1 meaning “strongly disagree” and 9 
meaning “strongly agree.” We used 9-point scales for 
consistency with previous work [26]. Our evaluation 
measured subjective outcomes outlined by Hearst as 
important constructs for the evaluation of interfaces like 
Eddi: efficiency (quick to scan), effectiveness (have seen 
everything), and satisfaction (easy to browse, enjoyable, 
overwhelming, and tedious) [12, 26]. 

To examine whether Eddi was helping users find interesting 
information, we asked participants to re-read and rate 300 
tweets from previous trials as interesting or not interesting. 
We selected 150 tweets from one of the days previously 
browsed using Eddi, and 150 tweets from another day 
browsed using the chronological interface. We randomized 
the order of the 300 tweets and removed information about 
which interface the tweets had originally appeared in.  

Finally, the researcher led the participants through a semi-
structured interview to draw out benefits and drawbacks. 

Results: Subjective Assessment 
To analyze the Likert scale comparisons, which are 
arguably non-continuous and non-normal, we utilized the 
nonparametric Wilcoxon Signed Ranks Test for paired 
samples. Eddi scored higher on the efficiency metric and all 
satisfaction metrics (Figure 6). It was quicker to scan, easier 
to browse, and more enjoyable. Effectiveness was 
approximately the same for both interfaces. These results 
supported our hypothesis that Eddi would improve the 
Twitter browsing experience for overwhelming feeds. 

Efficiency was one of the greatest benefits of using Eddi. 
One participant explained: “Eddi helps me find things that 
I’m interested in, faster.” Another participant offered, “It 
gives me a very quick way to have a first pass and to keep 
me from needing to read 140 characters about something I 
don’t care about.” The brushing interface for previewing 
categories provided a very fast mechanism for users to skim 
the contents of a category and decide to investigate.  

Users found Eddi more enjoyable, easier to browse, less 
tedious and less overwhelming than the chronological feed. 
“This is kind of exactly what Twitter is missing,” offered 
one participant who is following 1250 people. Another 
participant seconded, “I get bored faster with the traditional 
feed. There’s way more stuff that I’m not interested in.” A 
third user reacted by suggesting that an interface like Eddi 
would prompt him to combine his four Twitter accounts, 
which he had split due to overwhelming traffic.  

Participants were more ambivalent about Eddi’s effective-
ness at coverage. When asked about the worst part of the 
Eddi interface, some participants who typically read every 
tweet in their feed mentioned the inability to know if they 
had seen “everything”. The chronological interface was 
simply “less enjoyable but more comprehensive.” Others, 

 
Metric µ (Eddi) µ (Chronological) p-value 
Quick to Scan 6.0 3.4 < .01 
Have Seen Everything 3.9 3.9 .97 
Easy to Browse 7.4 5.1 < .01 
Enjoyable 7.5 4.8 < .01 
Overwhelming 2.5 5.1 < .05 
Tedious 4.0 5.6 < .05 

Figure 6. Eddi fared better on all metrics except confidence in 
seeing everything desired in the feed. 

 



 

 

who didn’t feel compelled to see every tweet, saw the ab-
straction as a positive trait: “With the serial feed I feel like I 
need to see everything. Here, I can quickly get a gestalt.” 

TweeTopic fared well in qualitative feedback. In semi-
structured interviews, participants reported that tweets were 
accurately classified. A typical response: “Yeah — I didn’t 
see much that made me say, ‘Why is this here?’” The terms 
selected for display were at the right level of abstraction: 
participants were not in favor of broader terms such as 
technology or entertainment, nor did they want to split 
existing terms into more specific ones. 

We expected to see that participants would view more 
tweets in the chronological condition than in the Eddi 
condition, because it is faster to skim and scroll than to 
grasp and then navigate a set of categories. To test this, we 
performed repeated-measures ANOVA with number of 
tweets seen as the dependent variable and study condition 
as the independent variable, with each trial as an 
observation. The effect was significant (F(1, 67) = 65.91, 
p<.001), with the average participant viewing 80 tweets 
(σ=37) with Eddi and 145 tweets (σ=75) in the 
chronological condition. This suggests that, for our 
participants, Eddi’s benefits subjectively compensated for 
viewing half as many tweets on average. 

Results: Precision and Recall 
By recording a sample of the tweets that participants found 
interesting and the tweets they viewed in each interface, we 
can be more quantitative about Eddi’s effect on browsing.  

We calculated precision, the percentage of all tweets 
viewed that the user found interesting in our rated sample, 
and recall, the percentage of all interesting tweets from our 
rated sample that the user saw while browsing. The mean 
precision across all participant trials was .19 (σ=.15), while 
the mean recall was .40 (σ=.25). We utilized repeated 
measure ANOVAs with precision and recall as the 
dependent variables and interface as independent variable.  

Eddi users were more effective at finding tweets they were 
interested in seeing. Eddi significantly increased users’ 
ability to read only tweets they want to see: precision was 
significantly higher in the Eddi condition (µ=.253, σ=.183) 
than in the control condition (µ=.146, σ=.088), (F(1, 12) = 
7.41, p < .05, η2=.11). In the Eddi condition, approximately 
one in four tweets seen were later rated as interesting; the 
chronological view was near one in seven. Recall was not 
significantly impacted (F(1, 12) = 0.06, n.s.), meaning that 
participants found the same number of interesting tweets in 
both conditions even though they viewed nearly twice as 
many in the chronological condition. Eddi thus allows users 
to consume a ‘purer’ Twitter stream without sacrificing 
coverage of interesting items. 

Limitations 
There are some clear limitations to our laboratory 
evaluation: (1) Users had access to our clients for a limited 
time, making it difficult to extrapolate conclusions on how 

the tool might be used longitudinally. For example, 
longitudinal use amongst the authors has found that topics 
tend to be stable over time, enabling the user to pin favorite 
topics to the dashboard. (2) Users were viewing the history 
of their feed rather than tweets they had never seen before, 
making our task slightly less realistic. However, because we 
selected Twitter users with active feeds, our participants 
had often not seen many tweets shown in the study. 

DISCUSSION 
Eddi was developed with an eye toward information-
sharing tweets: tweets that break news, post URLs, or 
comment on events [19]. These tweets are most likely to 
share topics and contain stronger topic signals. However, 
topics can cross-cut tweet categories: in the topic Apple, 
tweets in all 3 categories of: news (“new iPhone 
announced!”), opinions (“I love my iPhone!”), and personal 
status (“my iPhone saved me – got me downtown in 
15min!”) are common. It is an open question how much a 
topic-oriented interface benefits users whose feeds consist 
mainly of personal status updates; however, our user study 
included all types of tweets, so we have some support that 
Eddi remains useful in these situations. 

It may seem puzzling that our user study found that the 
topic organization was meaningful and accurate when the 
best algorithm had only 40% precision. How could these 
algorithms lead to a good user experience? Our experience 
is that Eddi’s Combining Categories set cover algorithm 
that happens in Step 3 is mainly responsible. The algorithm 
strongly prefers topic categories that are shared between 
tweets. It is far more likely than 40% that a topic 
independently shared by two or more tweets will be correct. 
Thus, Eddi succeeds in part because it focuses on a user’s 
entire network neighborhood at once. In future work we 
hope to explore this notion in more depth: what is the 
relationship between number of tweets and performance? 

Eddi is best suited for feeds with more items than can be 
read. Users with small numbers of followees and users 
tracking groups closely may not gain as much benefit from 
Eddi. We believe that a mass of undifferentiated low-
priority follows may be the right job for the system. The 
user can explore tweets from people who are interesting but 
do not need to be tracked closely, or followed only when 
they discuss certain topics. “Say I wanted a tea category,” 
one participant explained. “I don’t care about what some 
people say not about tea, but I definitely care about what 
they say about tea.” We intend to pursue designs along 
these lines, such as a “Follow When…” system that allows 
users to follow accounts for particular topics. For example, 
“Follow @GuyKawasaki when he tweets about social 
computing; ignore the rest.” 

Search-based approaches currently still fail with some 
classes of tweets. For example, in non-literal tweets, quotes, 
or philosophizing, TweeTopic often acted literally; e.g., 
“I'm hungry as a hostage over here. Damn!” was tagged as 
hostage. The system could get distracted by strong Internet 



 

 

search presences: the tweet “it’s raining” was tagged with 
song and music because of the famous song “It’s Raining 
Men”. Missing context could also throw off the algorithm: 
knowing that the tweet was from the day after St. Patrick’s 
day would have helped decipher “I wonder how many 
people went to jail last nite drunk wakin up pissed and 
hungova #rudeawakening”. Another route to improvement 
would be to expand links and hashtags in the tweets. 

All clustering interfaces face the challenge that a single 
large cluster might dominate the display. For example, a 
user following only jQuery developers may have a rather 
monolithic feed. However, there are standard steps to avoid 
this problem: agglomerative clustering, for example, is 
more robust to the large-cluster problem. 

CONCLUSION 
We have described a novel interface called Eddi that allows 
users to explore overwhelming status update streams 
according to topics of interest. We introduced a simple, 
novel topic detection algorithm that uses noun-phrase 
detection and a search engine as an external knowledge 
base. The algorithm, TweeTopic, outperforms comparable 
topic detection algorithms on a rating task. In a user study, 
we have found that Eddi is more enjoyable and more 
efficient to browse than the traditional chronological 
Twitter interface. Subjects view a significantly lower 
percentage of undesired, irrelevant tweets, without 
sacrificing the total number of interesting tweets they see. 
We view Eddi as a promising first step toward building an 
intuitive, effective set of tools for absorbing and 
manipulating social status streams. These streams already 
include Facebook, Twitter, LinkedIn, and FriendFeed, and 
are sure to only grow in number. 
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