

Eddi: Interactive Topic-based Browsing
of Social Status Streams

Michael S. Bernstein1, Bongwon Suh2, Lichan Hong2, Jilin Chen3, Sanjay Kairam2, Ed H. Chi2
1 MIT CSAIL

32 Vassar St., Cambridge MA
msbernst@mit.edu

2 Palo Alto Research Center
3333 Coyote Hill, Palo Alto CA

{suh, hong, kairam,
echi}@parc.com

3 University of Minnesota
200 Union St., Minneapolis MN

jilin@cs.umn.edu

ABSTRACT
Twitter streams are on overload: active users receive
hundreds of items per day, and existing interfaces force us
to march through a chronologically-ordered morass to find
tweets of interest. We present an approach to organizing a
user's own feed into coherently clustered trending topics for
more directed exploration. Our Twitter client, called Eddi,
groups tweets in a user’s feed into topics mentioned
explicitly or implicitly, which users can then browse for
items of interest. To implement this topic clustering, we
have developed a novel algorithm for discovering topics in
short status updates powered by linguistic syntactic
transformation and callouts to a search engine. An
algorithm evaluation reveals that search engine callouts
outperform other approaches when they employ simple
syntactic transformation and backoff strategies. Active
Twitter users evaluated Eddi and found it to be a more
efficient and enjoyable way to browse an overwhelming
status update feed than the standard chronological interface.

ACM Classification: H5.2. Information interfaces and
presentation (e.g., HCI): User interfaces.

General Terms: Design, Human Factors

Author Keywords: Twitter, topic clustering, social streams
INTRODUCTION
Social status streams threaten to become a torrent. As our
information consumption grows to include microblogging
services like Twitter and Facebook, tools struggle to keep
up. Active Twitter users can easily receive over 1000 tweets
in their streams each day, covering a wide variety of topics
like research, design, dinner, Apple, Twitter, and the latest
Internet meme. Twitter users often express a desire to filter
the torrent down to just a single current, focusing on just
tweets on a single topic or muting a popular but overplayed
topic. Such interfaces do not exist, in large part because 140
characters is too short for text processing algorithms to
index. Users must instead trim their follow lists or grimly
resign themselves to missing interesting posts.

In this work we introduce an interactive topic browser for
Twitter feeds and an algorithm that makes Twitter topic
browsing feasible. When a feed is overwhelmed with large
numbers of tweets, topic browsing can help the user gain a
foothold—especially when the feed is dominated by
informational tweets [19]. Topic-based browsing
approaches have seen success in information-oriented tasks
within search [6, 17], document exploration [11, 16] and
blog interfaces [1], but have yet to be applied to social
streams due to difficulty in modeling short pieces of
content. Our topic-oriented Twitter browser, Eddi, groups
the user’s feed into coherent threads of conversation such as
research, design, Microsoft, and Kanye West (Figure 1).

Eddi’s approach enables users to manage their feed in ways
that have been difficult so far: rather than missing the
hundreds or thousands of tweets arriving between log-ins,
Eddi users see an overview of the stream since last time and
decide what to explore. The system is a trending topics
interface for your own social network, threading related
tweets together into coherent conversations.

To enable this interface, we have developed a novel
technique called TweeTopic that uses search engines as a
distributed knowledge base. Using TweeTopic, the tweet
“macbook died, but the Genius guys gave me a new 1!” will
associate not just with topics explicitly mentioned like
MacBook, but also ones obliquely referenced like Genius
Bar or implied like Apple. Existing techniques (e.g. term
frequency – inverse document frequency (TF-IDF) [23],
topic modeling (LDA) [3, 21]) struggle with tweets as 140
characters is often too little to give the algorithm reliable
signals about important words. Our work observes that
tweets are approximately similar to search queries. It trans-
forms tweets via part-of-speech analysis [2] and inverse
document frequency (IDF) metrics into versions more amen-
able to search engines; it then uses the returned pages to
bootstrap additional knowledge about the tweet. TweeTopic
can complete this calculation within seconds of receiving
the tweet and does not need topics defined beforehand.

Eddi and TweeTopic are influenced by past work on
information management in blogs [1], topic browsing (e.g.,
[17]), and topic identification algorithms (e.g., [3, 8, 23]).
We extend this research into the microblogging domain,
where information overload is so overwhelming that most
users do not even try to read everything.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
UIST’10, October 3–6, 2010, New York, New York, USA.
Copyright 2010 ACM 978-1-4503-0271-5/10/10....$10.00.

The remainder of this paper is organized as follows: We
first present related work in information stream browsing
interfaces. We then introduce our system, Eddi, and
describe the algorithm used to generate topics. We detail a
comparison of TweeTopic to other topic detection
approaches and a usability evaluation of the system.

RELATED WORK
Eddi and TweeTopic build on related work in three areas:
microblogging, topic browsing interfaces, and topic
modeling algorithms.

Twitter
The microblogging service Twitter has exploded in
popularity since its 2006 launch. Users can choose to follow
anyone else and receive every status update (“tweet”)
shared by that person. Java et al. found major trends on the
service to be daily chatter, conversations, information
sharing and news reporting [15]. Naaman et al. manually
coded tweets to quantify this breakdown, revealing that
information sharing (22%), opinions (~25%), random
thoughts (~25%), and personal status (~40%) make up the
vast majority of tweets [19]. In the Discussion section, we
will consider how our work is impacted by these categories.
Honeycutt [13] investigated the conversational aspects of
Twitter, which might help us segment topics.

Though network-scale analyses of Twitter are increasingly
common (e.g., [15]), the literature on microblog
consumption is still nascent. Zhang et al. [27] studied the

use of Yammer, an enterprise-oriented Twitter service,
inside a Fortune 500 company. The authors found a strong
correlation between a user’s ability to find relevant
information on Yammer and the service’s perceived
usefulness. Ehrlich and Shami [7] found microblogs
increasingly being used as a real-time information source,
but incoming volume became overwhelming. Both papers
conclude that solving the noise and relevancy problems, as
Eddi attempts to do, is an important challenge.

Topic Browsing
Eddi chooses a clustering approach due to the dynamic,
broad nature of Twitter discussion. We introduce ‘topic’ as
a facet by which users can browse their feed. Faceted
browsing interfaces have outperformed hierarchical
interfaces on a variety of search and exploration tasks [26].
However, topic-clustering systems are difficult to design.
Hearst notes that while they are automatable and are more
responsive to unknown inputs, topic-clustering interfaces
are less understandable than compiled categories [11, 12].

Nonetheless, researchers have found advantages for topic-
clustering interfaces in a variety of user scenarios. Dumais
et al. found that classifying web pages into categories
reduced time required in search tasks [6]. Indeed, in a
longitudinal evaluation of a system called Findex, Käki
found that clustered search categories were useful when
relevant documents were far down in the results list [17].

Figure 1. Eddi is a topic-oriented browsing interface for Twitter. Clockwise from upper right is the tag cloud, timeline (hidden in

another tab), the topic dashboard, and the navigational list.

Topic browsing is also beginning to make inroads into
social computing interfaces such as blogs. Baumer and
Fisher performed a topic analysis of blogger’s blogrolls,
focusing, as we do, on information in the user’s attentional
sphere rather than the entire information space [1].
MrTaggy offered a topic-based browsing interface over
social bookmark data [16]. Other approaches such as visual
analytics of tweet contents via word frequency
visualizations (e.g., [20]) fall under this umbrella as well.

We draw on research visualizing and navigating large
document collections (for a review, see Hearst [12]). We
find it appropriate to visualize tweets using a tag cloud,
since tag clouds are shown to be effective signalers of
social activity [10]. The inclusion of analytics views such as
the ThemeRiver [9] are also intended to encourage social
data analysis, as advocated by Wattenberg and Kriss [25].

Topic Identification
Data mining researchers have begun extracting structure
from social streams. Ramage, Liebling and Dumais recently
trained LDA models from Twitter data [21], finding that
they can use the generated vectors to recommend tweets.
Leskovec et al. tracked textual memes online through the
2008 Presidential election [18]. Shamma et al. mapped
tweet keywords onto the Presidential debate timeline using
a TF-IDF-style metric [24].

Information retrieval research complements these data
mining approaches. Noun phrases are known to be good
topic markers in paragraph-long text descriptions in
information retrieval (IR) research [2, 14]. However, there
are too many noun phrases to show to a user, so Bendersky
et al. perform machine learning on noun phrase rankings to
improve accuracy [2]. Rather than utilize this heavyweight
approach, we will take advantage of search engines’ ability
to rewrite queries to solve the ranking problem.

TweeTopic builds on research that uses external knowledge
sources to label text. Dakka and Ipeirotis mined WordNet
and Wikipedia to create facet hierarchies for news articles
[5], and Gabrilovich and Markovich represented news
articles as a weighted vector of Wikipedia-based concepts
to compute similarity metrics [8]. Because many Twitter
topics are breaking news or are not considered important
enough to be in curated knowledge repositories, our work
contributes the notion of turning to a search engine as a
knowledge base. Tweets are also several orders of
magnitude shorter than news articles, so we introduce text
transformations to make topic identification more reliable.
Sahami and Heilman used Google to compute similarity of
two short text queries [22], and TweeTopic takes
inspiration from this search engine-based approach.

DESIGN HYPOTHESES
We began with informal survey research of social status
stream users on Mechanical Turk (N=78) and in-person
interviews. Participants consistently cited topic as an
important factor in whether a tweet was important to see.

Users wanted to track important but uncommon topics (e.g.,
hci research), and filter out common but undesired topics
(e.g., lunch). In particular, while weak-tie friends tweet
about issues of interest, they also tweet about other topics
and personal life issues that users would often rather filter.

We developed design principles from our observations:
• First, because tweets are tiny, they are as fast for users

to preview as to read completely. They have no
intermediate representation like a headline that can be
used for search and news topic browsing interfaces.
Thus, Eddi provides a quick brushing (mouseover)
interaction and a topic dashboard, making it quick for
users to skim tweets directly.

• Second, unlike news articles, tweets often blend
commentary with information content. Eddi supports
discussion by bringing commentary on a single topic
together even if the tweets are distributed in time.

• Third, tweets are often intended to be consumed in
real-time and have important temporal characteristics.
We thus included a timeline that allows users to check
for updates in the minutes, days, or weeks since they
last checked Twitter. We also ensured that our
algorithm can process a tweet within seconds.

EDDI: TOPIC-BASED BROWSING INTERFACE
Eddi is a novel interface for browsing Twitter streams that
clusters tweets by topics trending within the user’s own
feed (Figure 1). Eddi is named after the phenomenon of
river eddies: swirling stationary points in quickly moving
streams. The system observes a user’s Twitter stream and
constructs these stationary points of interest for the user to
explore. Unlike existing trending topic interfaces like
Tweetmeme and Twitter’s trending topics, Eddi identifies
topics within the user’s own feed and about single tweets.
Even if only a single user on Twitter tweets about UIST,
Eddi will recognize it and bring it to the user’s attention.

The Eddi landing page (Figure 1) displays an at-a-glance
dashboard view of the topics flowing through the user’s
Twitter stream. This dashboard view includes a topic tag
cloud, a navigational list of topic categories, a timeline, and
a set of recommended tweets on interesting topics. By
default, Eddi shows the last 24 hours of the user’s Twitter
feed. A calendar widget is available for doing more detailed
exploration of arbitrary date ranges.

Tag Cloud Overview
The tag cloud describes the major topical themes in the
user’s Twitter stream (Figure 1). Some example topics that
appear often in the authors’ tag clouds include research,
design, search, iPhone, Twitter, and jQuery, as well as
topics tied to newsworthy events such as healthcare, SXSW,
and iPad. Topic size is scaled proportionally to the number
of tweets on the topic. These terms describe the tweets
inside each topic category, though the individual tweets
need not explicitly contain the topic words. Any #hashtags
in the feed are automatically added to the interface.

The tag cloud includes a brushing interface for previewing
the contents of a category. When the user brushes over a
topic keyword in the tag cloud, a detail tooltip appears
displaying the number of tweets and the five most recent
tweets in the topic. This interface is intended to give users
the ability to peek inside a topic before committing to
explore it. For topics with five or fewer tweets, the entire
contents can be read quickly by mousing over the topics
title.

Topic Detail View
By clicking on a topic in the tag cloud, navigational list,
topic dashboard, or timeline, the user can elect to view all
the tweets in that topic (Figure 2). These tweets are
displayed reverse-chronologically, as in most Twitter
clients today, to preserve implicit conversation threads.
Underneath is a second list of tweets that Eddi believes to
be weakly associated with the category.

Navigational List
The left column contains a complete list of topics in the
feed, sorted by popularity (Figure 1). The list also provides
the same brushing tooltip as the tag cloud, so a user can
mouse over a topic name to see a compressed list of tweets

in the category. A search box at the top of the list allows for
search over topic names in the list. In comparison to the tag
cloud, which is limited to just the most popular topics, this
list can be quite long to support serendipitous exploration of
unpopular but interesting topics in the long tail.

Topic Dashboard
One drawback of an overview and detail interface is that the
user must spend time absorbing the overview before seeing
the tweets. We thus promote tweets on interesting topics to
a summary dashboard on the homepage to make browsing
more immediate (Figure 3). The dashboard shows up to five
tweets chosen from the top ten topic categories. It contains
a thumbnail of the author’s profile picture, which we found
suffices to identify many tweeters and allows recommended
tweets to be displayed with few pixels.

To recommend personalized topics, we analyze the user’s
own tweets to find topics they talk about. We found that
this heuristic works reasonably well for most users, similar
to past research [4, 21]. When a topic in the user’s interest
profile appears in the feed, it is added to the dashboard
regardless of the number of tweets in the topic. Thus, a
topic of great interest such as HCI will be promoted to the
top of the dashboard even if there is only a single tweet.

Timeline
The topic timeline, available in a separate tab next to the tag
cloud, draws attention to temporal events in the feed
(Figure 4). The timeline focuses on time-sensitive spikes by
using a stacked graph visualization [9, 25]: the height of the
strip at a particular time is based on the number of tweets in
that topic. Topics that trend over time will grow in size at
particular times and become more salient, such as news
items, conferences, and announcements.

TWEETOPIC: TOPIC ASSIGNMENT ALGORITHM
In this section, we describe Eddi’s topic assignment
algorithm for short status updates. Such algorithms have
many applications in real-time search and microblogging
user interfaces. The TweeTopic algorithm labels a tweet

Figure 2. The topic detail view for the google topic. At top,

tweets believed to belong to the topic. Below, tweets that Eddi
assigned a lower confidence score to the google topic.

Figure 3. The Topic Dashboard previews a subset of the topics

inline, determined by what the user tends to tweet about.

Figure 4. An example Eddi timeline showcases trending topics

over the past week. Topics associated with Ted Kennedy
trended up on the second day from the right, due to his death.

with a set of topic descriptors that can be used in the Eddi
user interface. TweeTopic is easily implementable, does not
require long training periods and is appropriate for both
interactive applications and prototyping.

Current best practices for topic identification assume that
indexed documents are of a decent length. This is an
assumption that tweets fail almost by definition, being at
most 140 characters long. Short length leads to poor topic
analysis of tweets if we use traditional approaches.
Specifically, traditional techniques tend to use word
repetition as a measure of importance or term co-occurrence
to identify related words. Word repetition approaches such
as term frequency – inverse document frequency (TF-IDF)
[23] suffer because users tend to remove word redundancy
from a tweet to save space. Techniques based on co-
occurrence matrices, such as Latent Dirichlet Allocation
(LDA) [3, 21], are likewise debilitated by users compressing
out similar words to gain space to insert their own opinions.

We can illustrate with an example tweet: “Ron Rivest
cracks me up. It keeps me awake when algorithm design
brings the LOLZ.” In this tweet, no terms are repeated.
Thus, TF-IDF is essentially just the IDF term. Since IDF
looks for uncommon words, this approach produces bad
topic words like cracks, keeps, brings and LOLZ.

TweeTopic Overview
Eddi’s algorithm, TweeTopic, takes in a status update and
outputs a list of ranked terms describing it. Thus, a tweet
such as “Awesome article on some SIGGRAPH user
interface work: http://bit.ly/30MJy” will output terms such
as animation, character, 3d, computer graphics, user
interface and SIGGRAPH. Table I shows example tweets
along with their assigned topics.

The central intuition behind TweeTopic is that we can
finesse a tweet to look like a search query, then use search
engines to retrieve documents to expand our knowledge
about the text. The algorithm proceeds in three steps: text
transformation, search engine querying, and result mining.

Step 1: Text Transformation
TweeTopic’s central approach is to utilize search engines as
an external knowledge source; however, search engines
expect short, direct queries as inputs. Tweets are more
likely to be ungrammatical and rambling, so the first step in
TweeTopic is to transform the update into keywords that
might resemble a search query. We begin by heuristically
transforming Twitter-specific markups to make the tweet
appear more syntactical by removing terms such as RT and
turning @username mentions into capitalized names.

We then adapt the notion that noun phrases are good topic
markers in paragraph-long text descriptions [2, 14]. We use
a maximum entropy part-of-speech tagger1 to identify all
the noun phrases in the tweet. In the tweet “Awesome
article on some SIGGRAPH user interface work:
http://bit.ly/30MJy”, we identify the word “article” and the
phrase “SIGGRAPH user interface work” for analysis.

Step 2: Query a Search Engine
The second step is to concatenate the noun phrases and send
them as a query to a search engine. From the tweet in step
1, our query is “article SIGGRAPH user interface work.”
The tweet now resembles a reasonable search engine query.
We can now use the search engine as a large knowledge
base. The search engine will return a result set of
documents that best captures the gist of the query.

Often, the query is over-constrained and the search engine
returns fewer than ten or no results for our query. This
occurs often when we identify many nouns in the tweet and
thus have a long query. In these cases, we use iterative
backoff to adjust the query until the search engine returns at
least 10 results. We repeatedly remove from the query the
word with the fewest occurrences on the web (these may be
misspellings or mistakes that over-constrain the search)
until we get a result. Then we start over, iteratively re-
moving words with the most occurrences on the web (these
may be generic noise terms). We finally average the result
votes from the two runs. Our system uses the Yahoo! Build
Your Own Search Service, or Y!BOSS2, to issue queries.

Step 3: Identify Popular Terms in the Results
The final step in our algorithm identifies popular terms in
the search results and assigns these as potential topics for
the tweet. For each of the top ten returned results, we
identify important terms in the webpage via a weighting
scheme such as TF-IDF. Y!BOSS provides a list of about 20
TF-IDF-style key terms for each search result, which we use
directly. For each page in the top ten results, we tally one

1 http://nlp.stanford.edu/software
2 http://developer.yahoo.com/search/boss

Apple

 W00t! Snow Leopard gave me 10 gigs back!

RT @username: gmail is down, but the imap connection on my

iphone still works (fingers crossed!)

My iPhone 3GS cracked-on-a-rock, @username’s swam in a toilet,

both repaired/replaced in 20 min @ Boylston Apple Store. Total
cost: $0.

Obama

I think the most striking thing about Obama’s speech + GOP

response for casual listeners would be how much agreement
there was.

RT @username: The fastest way to prove you are an idiot is to call

the President a liar on live TV

Research

 @username Congratulations on the CSCW best paper nomination!

Stanford scientists turn liposuction leftovers into embryonic-like

stem cells: http://bit.ly/3GHsw9

CORRECTION: the deadline for submissions to the Graduate

Student Consortium for TEI ’09 is October 2
http://bit.ly/15D8Mv

Table I. An example set of categories and tweets in those
categories, as classified by TweeTopic.

vote for each key term (topic) associated with the page.
Topics with at least five votes are certified as valid
descriptors of the tweet. Topics with fewer votes are
retained as suggestions. We found through experimentation
that five votes provided the right balance between accuracy
and completeness. After this step, we are left with a set of
terms describing the tweet and a 10-point score representing
the number of search documents that voted for each term.

Combining Categories
Each tweet is now described with multiple topics, which for
Eddi’s purposes often gives us too many topics to display.
We need the smallest number of topics that ensure all
tweets are represented. This is a version of the set cover
problem; we utilize a typical greedy solution that takes the
largest topic grouping, assigns those tweets to that topic,
and works its way to less popular topics while discarding
topics whose tweets have been entirely covered by other
topics. We allow tweets to exist in multiple categories.

EVALUATION
This paper introduces both an algorithm for topic detection
and a topic-oriented user interface for social information
streams such as Twitter feeds. In this section, we (1)
benchmark TweeTopic against other topic detection
approaches, and (2) compare Eddi to a typical
chronological interface for consuming Twitter feeds.

Study 1: Algorithm Topic Detection Comparison
In this section we benchmark TweeTopic’s performance to
other algorithms, and to variations of itself. By doing so, we
can learn which steps in the algorithm are most important
and how they compare to the state of the art.

Algorithms
To follow, we describe the algorithms in our evaluation.
We chose alternative algorithms that are used for topic
detection and topic-based user interfaces.

Unigram Random: A simple baseline algorithm that
removes stopwords from the tweet and then chooses a
random word from the remaining text.

Inverse Document Frequency (IDF): The traditional
approach to identifying important words is term frequency
– inverse document frequency (TF-IDF), but tweets are so
short that the TF term is very noisy. Thus, we compared to
IDF on a web corpus. We included an algorithm that ranked
words by high IDF (Unigram High IDF), preferring common
terms on the web, and an algorithm that ranked words by
low IDF (Unigram Low IDF), preferring uncommon terms on
the web. Because IR research has found noun phrases to be
good topic markers in freeform text [2, 14], we also
included Noun Phrase High IDF and Noun Phrase Low IDF.
In our results, all low IDF conditions outperformed their
high IDF counterparts, so we will report only Low IDF.

Topic Modeling (LDA): Another approach to topic detection
is Latent Dirichlet Allocation, or LDA [3], which has seen
considerable success modeling topics in web articles and
Twitter [21]. However, it generates distributions over

words, so individual words and phrases recommended as
topics may be less helpful in a user interface. Following
Ramage et al. [21], we gathered 1.6 million tweets from a
24-hour period on March 18th-19th 2010 using Twitter’s
spritzer feed, which streams a pseudo-random 5% selection
of all tweets via an API. We used a language detection
toolkit3 to identify 850,000 of those tweets as English. We
then stemmed and removed stopwords from the tweets,
removed terms occurring fewer than 30 times across the
dataset, and removed the 40 most popular words from the
dataset. We weighted words in each topic by P(topic |
tweet) so that terms strongly associated with the highly
probable topics were recommended.

We also prepared versions of TweeTopic that disabled the
tweet transformation and the search iteration.

Transformed vs. Raw: One step in TweeTopic transforms
the tweet to look like a search query. We call the variants
that do syntax manipulation, Transformed. Other variants
used the raw tweet text. TweeTopic also performs two
distinct transformation stages: stopword removal, and noun
phrase extraction. We want to separate the effect of these
stages, so we distinguished Y!BOSS Transformed Iterated
(only stopword removal) from Y!BOSS Noun-Transformed
Iterated (stopword removal and noun phrase extraction).

Iterated vs. None: The search step in the algorithm uses an
interated backoff strategy to adjust the query if the search
fails. Those that use backoff we call Iterated; other versions
issued only a single query. So, Y!BOSS sent the whole tweet
to the search engine and did not use backoff, whereas
Y!BOSS Transformed Iterated both performed syntax
transformation and used the search backoff strategy.

Data
We gathered 100 random tweets that passed through the
Twitter spritzer feed a few minutes after the tweets used to
train the LDA algorithm. We recruited three human coders
for topic rating, all heavy Twitter users. We again filtered
out non-English tweets and tweets that the coders could not
understand. Each algorithm generated its top five topic
recommendations for each tweet. If five topics could not be
generated, any missing topics were automatically scored as
incorrect. As in typical IR relevancy judgment tasks, each
coder judged every topic recommendation as relevant or not
relevant. This coding resulted in 11 algorithms * 5 topics
per algorithm = 55 coded topic recommendations per tweet
and 500 ratings per algorithm. We calculated inter-rater
agreement on this dataset using Fleiss’s Kappa (κ=.70,
z=85.06, p<0.001) which indicated substantial agreement.

Results
Because our outcomes are binary and not continuous, we
used logistic regression analysis to predict the probability of
a binary output. In our case, this binary output is “1” if the

3 http://www.microsofttranslator.com/dev/

topic was rated as correct and “0” if not. We added control
variables for the tweet, rater and topic rank for each
algorithm (highest rank: 1, lowest rank: 5).

Results from Table II demonstrate that TweeTopic-style
search approaches outperformed other algorithms when
using transformation or iteration. The odds-ratio describes
how many times more likely the tweet is to be correctly
classified with that algorithm than by the control, Unigram
Random. For example, using Y!BOSS Noun-Transformed
Iterated means that the topic is 1.90 times as likely to be
classified as correct than with Unigram Random. Thus,
TweeTopic doubles the baseline performance.

These numbers are useful but do not tell us whether the
algorithms differ significantly. Using Wald tests with
Bonferroni correction (p < 0.05), we compared individual
algorithms. Y!BOSS Noun-Transformed Iterated was the
highest-performing, so we compared it to each other
algorithm. Y!BOSS Noun-Transformed Iterated and Y!BOSS
Transformed Iterated are statistically indistinguishable, but
the algorithm statistically outperforms all others.

Search engine callouts were successful only if they used
either iteration or transformation. With neither
transformation nor iteration, the search often returned no
results, leading to only one-tenth the accuracy as choosing a
random non-stopword from the tweet. Combining both
transformation and iteration outperformed either alone.

Counter to our hypothesis, while noun phrases are good
markers for long queries [2] and paragraphs [14], they seem
to be unnecessary for tweets. The simplest version of the
algorithm with good performance only requires the removal
of stopwords and Twitter lingo. Figure 5 tells a similar
story when the algorithms are only asked for a single top-
ranked prediction. Transformation and iteration lead to
about 40% precision – about twice our baseline expectation
and almost three times what an LDA topic model provides.

Latent Dirichlet Analysis generally did not provide
meaningful topic terms. LDA identified words associated
with words in the tweet, rather than meaningful topics. So,
a tweet about Chinese vaccines in the news produced poor
suggestions like free, read, and via. (It did find good topics
as well, like news.) We believe that LDA will be much more
useful in scenarios like personalization, where term vectors
and large numbers of words are necessary [21].

Study 2: Browsing Your Own Twitter Feed
Eddi’s design hypothesizes that a topic-oriented interface
for Twitter can help users manage the overwhelming data in
their feeds. To test this hypothesis, we conducted a
laboratory study to get a broad sense of whether Eddi is
subjectively better for browsing an overwhelming Twitter
feed than standard reverse chronological list interfaces.

Eddi’s challenge in this task is to offset the additional up-
front cost of understanding the topic list and of navigating
between topics. We gave users a short period of time to

browse their feed using both interfaces, and then asked
them to compare the experiences. Our evaluation measured
subjective feelings of efficiency, effectiveness and
satisfaction, outlined by Hearst as important constructs for
the evaluation of interfaces like Eddi [12]. Our hypothesis
was that Eddi would be rated more effective and with
higher satisfaction, without significantly decreasing
efficiency, when compared to the chronological interface.

Participants
We recruited active Twitter users who checked the service
daily, preferring those who followed over 100 other
accounts. Fifteen users answered our call on Twitter in
exchange for a small gratuity. Their ages ranged from 19 to
49 (median=29). Two were IT professionals, six were
students, and the rest were scattered across careers like
entertainment, content strategy, and finance. They reported
checking Twitter several times a day, once an hour, or
constantly. We found an average of 786 tweets per day in
their feeds (σ=658), with a large right skew: the maximum
was 2,840. The median participant followed 243 accounts
(µ=382, σ=345). They used various Twitter clients, but
Tweetie and the native web client were the most popular.

Interface Conditions
The study utilized a within-subjects design to directly
compare Eddi to the standard reverse-chronological Twitter
interface approach. To ensure that any observed differences
were due to the Eddi interface and not to nuances of layout
or coloring, users in the control condition saw a client that
listed the tweets reverse-chronologically as in most Twitter
clients today. Visually, this control interface looked very
similar to the layout Eddi uses in the detail pane (Figure 2)

Algorithm Odds Ratio z p-value
Y!BOSS Noun-Transformed Iterated 1.90 6.78 < .001
Y!BOSS Transformed Iterated 1.88 6.70 < .001
Y!BOSS Transformed 1.43 3.77 < .001
Unigram Low IDF 1.31 2.80 < .01
Nouns Low IDF 1.28 2.61 < .01
Y!BOSS Iterated 1.23 2.19 < .05
Unigram Random (baseline) (1.00) n/a n/a
LDA 0.41 -7.78 < .001
Y!BOSS 0.18 -12.08 <.001

Table II. Logistic regression coefficients. TweeTopic-style
search techniques consistently outperformed others.

Figure 5. Transformation and iteration led to high precision.

with all tweets in a vertical column. Constructing our own
control interface allowed us to (1) display tweets from an
arbitrary period of history, which most clients cannot do;
(2) control for differences between participants’ Twitter
clients, and (3) remove the requirement that users click
“More” to reveal more tweets. Participants noted that this
interface felt extremely similar to the web interface.

In within-subjects studies, we do not want participants to
see the same feed items in both conditions due to potential
confounding learning effects. Thus, each trial featured a
different 24-hour period from the user’s Twitter timeline.
We chose the date windows to be at least one week old to
reduce memory effects, at least 4 days apart to reduce the
likelihood that topics crossed over, and excluded weekends.
Pilot studies suggested that this separation was sufficient to
minimize undesired memory and learning effects, and that
users remembered few of the tweets from this set.

Procedure
The experimenter first trained participants on Eddi and the
control interface. The participants’ task was to browse their
own Twitter feed, trying to absorb as much from each day’s
stream as possible. Participants were given three minutes in
each trial in order to mimic a typical Twitter scenario:
having a few moments of downtime to catch up on Twitter.
To help us understand which tweets the user was reading,
we used position on the screen as a proxy for attention,
marking tweets as potentially viewed if they had remained
in the browser window for at least two seconds. Tweets
might appear onscreen in several ways: in the Topic Dash-
board, in the mouse brushing previews, and in the topic
detail pages. Tweets scrolled off-screen were not counted.

The study consisted of a total of six trials. In three of the
trials, subjects used the reverse-chronological interface, and
in the other three trials, subjects used Eddi. The interfaces
alternated, and the order was counterbalanced between
participants. We randomized the order of date windows.

After all trials were completed, participants reported
subjective ratings on a 9-point Likert scale for each
interface, with 1 meaning “strongly disagree” and 9
meaning “strongly agree.” We used 9-point scales for
consistency with previous work [26]. Our evaluation
measured subjective outcomes outlined by Hearst as
important constructs for the evaluation of interfaces like
Eddi: efficiency (quick to scan), effectiveness (have seen
everything), and satisfaction (easy to browse, enjoyable,
overwhelming, and tedious) [12, 26].

To examine whether Eddi was helping users find interesting
information, we asked participants to re-read and rate 300
tweets from previous trials as interesting or not interesting.
We selected 150 tweets from one of the days previously
browsed using Eddi, and 150 tweets from another day
browsed using the chronological interface. We randomized
the order of the 300 tweets and removed information about
which interface the tweets had originally appeared in.

Finally, the researcher led the participants through a semi-
structured interview to draw out benefits and drawbacks.

Results: Subjective Assessment
To analyze the Likert scale comparisons, which are
arguably non-continuous and non-normal, we utilized the
nonparametric Wilcoxon Signed Ranks Test for paired
samples. Eddi scored higher on the efficiency metric and all
satisfaction metrics (Figure 6). It was quicker to scan, easier
to browse, and more enjoyable. Effectiveness was
approximately the same for both interfaces. These results
supported our hypothesis that Eddi would improve the
Twitter browsing experience for overwhelming feeds.

Efficiency was one of the greatest benefits of using Eddi.
One participant explained: “Eddi helps me find things that
I’m interested in, faster.” Another participant offered, “It
gives me a very quick way to have a first pass and to keep
me from needing to read 140 characters about something I
don’t care about.” The brushing interface for previewing
categories provided a very fast mechanism for users to skim
the contents of a category and decide to investigate.

Users found Eddi more enjoyable, easier to browse, less
tedious and less overwhelming than the chronological feed.
“This is kind of exactly what Twitter is missing,” offered
one participant who is following 1250 people. Another
participant seconded, “I get bored faster with the traditional
feed. There’s way more stuff that I’m not interested in.” A
third user reacted by suggesting that an interface like Eddi
would prompt him to combine his four Twitter accounts,
which he had split due to overwhelming traffic.

Participants were more ambivalent about Eddi’s effective-
ness at coverage. When asked about the worst part of the
Eddi interface, some participants who typically read every
tweet in their feed mentioned the inability to know if they
had seen “everything”. The chronological interface was
simply “less enjoyable but more comprehensive.” Others,

Metric µ (Eddi) µ (Chronological) p-value
Quick to Scan 6.0 3.4 < .01
Have Seen Everything 3.9 3.9 .97
Easy to Browse 7.4 5.1 < .01
Enjoyable 7.5 4.8 < .01
Overwhelming 2.5 5.1 < .05
Tedious 4.0 5.6 < .05

Figure 6. Eddi fared better on all metrics except confidence in
seeing everything desired in the feed.

who didn’t feel compelled to see every tweet, saw the ab-
straction as a positive trait: “With the serial feed I feel like I
need to see everything. Here, I can quickly get a gestalt.”

TweeTopic fared well in qualitative feedback. In semi-
structured interviews, participants reported that tweets were
accurately classified. A typical response: “Yeah — I didn’t
see much that made me say, ‘Why is this here?’” The terms
selected for display were at the right level of abstraction:
participants were not in favor of broader terms such as
technology or entertainment, nor did they want to split
existing terms into more specific ones.

We expected to see that participants would view more
tweets in the chronological condition than in the Eddi
condition, because it is faster to skim and scroll than to
grasp and then navigate a set of categories. To test this, we
performed repeated-measures ANOVA with number of
tweets seen as the dependent variable and study condition
as the independent variable, with each trial as an
observation. The effect was significant (F(1, 67) = 65.91,
p<.001), with the average participant viewing 80 tweets
(σ=37) with Eddi and 145 tweets (σ=75) in the
chronological condition. This suggests that, for our
participants, Eddi’s benefits subjectively compensated for
viewing half as many tweets on average.

Results: Precision and Recall
By recording a sample of the tweets that participants found
interesting and the tweets they viewed in each interface, we
can be more quantitative about Eddi’s effect on browsing.

We calculated precision, the percentage of all tweets
viewed that the user found interesting in our rated sample,
and recall, the percentage of all interesting tweets from our
rated sample that the user saw while browsing. The mean
precision across all participant trials was .19 (σ=.15), while
the mean recall was .40 (σ=.25). We utilized repeated
measure ANOVAs with precision and recall as the
dependent variables and interface as independent variable.

Eddi users were more effective at finding tweets they were
interested in seeing. Eddi significantly increased users’
ability to read only tweets they want to see: precision was
significantly higher in the Eddi condition (µ=.253, σ=.183)
than in the control condition (µ=.146, σ=.088), (F(1, 12) =
7.41, p < .05, η2=.11). In the Eddi condition, approximately
one in four tweets seen were later rated as interesting; the
chronological view was near one in seven. Recall was not
significantly impacted (F(1, 12) = 0.06, n.s.), meaning that
participants found the same number of interesting tweets in
both conditions even though they viewed nearly twice as
many in the chronological condition. Eddi thus allows users
to consume a ‘purer’ Twitter stream without sacrificing
coverage of interesting items.

Limitations
There are some clear limitations to our laboratory
evaluation: (1) Users had access to our clients for a limited
time, making it difficult to extrapolate conclusions on how

the tool might be used longitudinally. For example,
longitudinal use amongst the authors has found that topics
tend to be stable over time, enabling the user to pin favorite
topics to the dashboard. (2) Users were viewing the history
of their feed rather than tweets they had never seen before,
making our task slightly less realistic. However, because we
selected Twitter users with active feeds, our participants
had often not seen many tweets shown in the study.

DISCUSSION
Eddi was developed with an eye toward information-
sharing tweets: tweets that break news, post URLs, or
comment on events [19]. These tweets are most likely to
share topics and contain stronger topic signals. However,
topics can cross-cut tweet categories: in the topic Apple,
tweets in all 3 categories of: news (“new iPhone
announced!”), opinions (“I love my iPhone!”), and personal
status (“my iPhone saved me – got me downtown in
15min!”) are common. It is an open question how much a
topic-oriented interface benefits users whose feeds consist
mainly of personal status updates; however, our user study
included all types of tweets, so we have some support that
Eddi remains useful in these situations.

It may seem puzzling that our user study found that the
topic organization was meaningful and accurate when the
best algorithm had only 40% precision. How could these
algorithms lead to a good user experience? Our experience
is that Eddi’s Combining Categories set cover algorithm
that happens in Step 3 is mainly responsible. The algorithm
strongly prefers topic categories that are shared between
tweets. It is far more likely than 40% that a topic
independently shared by two or more tweets will be correct.
Thus, Eddi succeeds in part because it focuses on a user’s
entire network neighborhood at once. In future work we
hope to explore this notion in more depth: what is the
relationship between number of tweets and performance?

Eddi is best suited for feeds with more items than can be
read. Users with small numbers of followees and users
tracking groups closely may not gain as much benefit from
Eddi. We believe that a mass of undifferentiated low-
priority follows may be the right job for the system. The
user can explore tweets from people who are interesting but
do not need to be tracked closely, or followed only when
they discuss certain topics. “Say I wanted a tea category,”
one participant explained. “I don’t care about what some
people say not about tea, but I definitely care about what
they say about tea.” We intend to pursue designs along
these lines, such as a “Follow When…” system that allows
users to follow accounts for particular topics. For example,
“Follow @GuyKawasaki when he tweets about social
computing; ignore the rest.”

Search-based approaches currently still fail with some
classes of tweets. For example, in non-literal tweets, quotes,
or philosophizing, TweeTopic often acted literally; e.g.,
“I'm hungry as a hostage over here. Damn!” was tagged as
hostage. The system could get distracted by strong Internet

search presences: the tweet “it’s raining” was tagged with
song and music because of the famous song “It’s Raining
Men”. Missing context could also throw off the algorithm:
knowing that the tweet was from the day after St. Patrick’s
day would have helped decipher “I wonder how many
people went to jail last nite drunk wakin up pissed and
hungova #rudeawakening”. Another route to improvement
would be to expand links and hashtags in the tweets.

All clustering interfaces face the challenge that a single
large cluster might dominate the display. For example, a
user following only jQuery developers may have a rather
monolithic feed. However, there are standard steps to avoid
this problem: agglomerative clustering, for example, is
more robust to the large-cluster problem.

CONCLUSION
We have described a novel interface called Eddi that allows
users to explore overwhelming status update streams
according to topics of interest. We introduced a simple,
novel topic detection algorithm that uses noun-phrase
detection and a search engine as an external knowledge
base. The algorithm, TweeTopic, outperforms comparable
topic detection algorithms on a rating task. In a user study,
we have found that Eddi is more enjoyable and more
efficient to browse than the traditional chronological
Twitter interface. Subjects view a significantly lower
percentage of undesired, irrelevant tweets, without
sacrificing the total number of interesting tweets they see.
We view Eddi as a promising first step toward building an
intuitive, effective set of tools for absorbing and
manipulating social status streams. These streams already
include Facebook, Twitter, LinkedIn, and FriendFeed, and
are sure to only grow in number.

ACKNOWLEDGMENTS
We thank PARC’s ASC group, David Karger, Rob Miller,
our user study participants, and the anonymous reviewers.
REFERENCES
1. Baumer, E. and Fisher, D. Smarter Blogroll: An Exploration

of Social Topic Extraction for Manageable Blogrolls. HICSS
'08, IEEE Press (2008).

2. Bendersky, M. and Croft, W.B. Discovering key concepts in
verbose queries. SIGIR '08, ACM Press (2008).

3. Blei, D.M., Ng, A.Y., and Jordan, M.I. Latent Dirichlet
Allocation. Journal of Machine Learning Research 3, 4-5
(2003), 993-1022.

4. Chen, J., Nairn, R., Nelson, L., et al. Short and Tweet:
Experiments on Recommending Content from Information
Streams. Proc. CHI '10, ACM Press (2010).

5. Dakka, W. and Ipeirotis, P.G. Automatic Extraction of Useful
Facet Hierarchies from Text Databases. IEEE Data
Engineering '08, IEEE (2008).

6. Dumais, S., Cutrell, E., and Chen, H. Optimizing search by
showing results in context. CHI '01, ACM Press (2001).

7. Ehrlich, K. and Shami, N. Microblogging Inside and Outside
the Workplace. ICWSM '10, AAAI Press (2010).

8. Gabrilovich, E. and Markovitch, S. Computing semantic
relatedness using wikipedia-based explicit semantic analysis.
IJCAI '07, (2007), 6–12.

9. Havre, S., Hetzler, E., Whitney, P., and Nowell, L.
ThemeRiver: visualizing thematic changes in large document
collections. IEEE Trans. Vis. and Comp. Graphics 8, 1 (2002),
9-20.

10. Hearst, M.A. and Rosner, D. Tag Clouds: Data Analysis Tool
or Social Signaller? HICSS '08, (2008), 160-160.

11. Hearst, M.A. Clustering versus faceted categories for
information exploration. CACM 49, 4 (2006), 59.

12. Hearst, M.A. Search User Interfaces. Cambridge University
Press, 2009.

13. Honeycutt, C. and Herring, S.C. Beyond Microblogging:
Conversation and Collaboration via Twitter. HICSS '09, IEEE
(2009).

14. Hulth, A. Improved automatic keyword extraction given more
linguistic knowledge. EMNLP '03, ACL (2003), 216-223.

15. Java, A., Song, X., Finin, T., and Tseng, B. Why We Twitter:
Understanding Microblogging Usage and Communities.
WebKDD '07, ACM Press (2007), 56-65.

16. Kammerer, Y., Nairn, R., Pirolli, P., and Chi, E.H. Signpost
from the masses: learning effects in an exploratory social tag
search browser. CHI '09, ACM Press (2009), 625–634.

17. Käki, M. Findex: search result categories help users when
document ranking fails. CHI '05, ACM Press (2005), 131-140.

18. Leskovec, J., Backstrom, L., and Kleinberg, J. Meme-tracking
and the dynamics of the news cycle. KDD '09, ACM Press
(2009), 497-506.

19. Naaman, M., Boase, J., and Lai, C. Is it Really About Me?
Message Content in Social Awareness Streams. CSCW '10,
ACM Press (2010).

20. Paley, W.B. TextArc: Showing Word Frequency and
Distribution in Text. Ext. Proc. IEEE InfoViz, IEEE (2002).

21. Ramage, D., Dumais, S., and Liebling, D. Characterizing
Microblogs with Topic Models. ICWSM '10, AAAI Press
(2010).

22. Sahami, M. and Heilman, T.D. A web-based kernel function
for measuring the similarity of short text snippets. WWW '06,
ACM Press (2006), 377-386.

23. Salton, G. and Buckley, C. Term-weighting approaches in
automatic text retrieval. Information Processing and
Management 24, 5 (1988), 513-523.

24. Shamma, D.A., Kennedy, L., and Churchill, E.F. Tweet the
debates: understanding community annotation of uncollected
sources. Multimedia '09, (2009).

25. Wattenberg, M. and Kriss, J. Designing for social data
analysis. IEEE Trans. Viz. and Comp. Graphics 12, 4 (2006),
549-57.

26. Yee, K., Swearingen, K., Li, K., and Hearst, M. Faceted
metadata for image search and browsing. CHI '03, ACM Press
(2003), 401-408.

27. Zhang, J., Qu, Y., Cody, J., and Wu, Y. A case study of micro-
blogging in the enterprise: use, value, and related issues.
Proc., ACM Press (2010), 243-252.

