

GUI — Phooey!: The Case for Text Input

Max Van Kleek, Michael Bernstein, David R. Karger
MIT CSAIL

32 Vassar Street,
Cambridge MA 02139

{emax, msbernst, karger } @ csail.mit.edu

mc schraefel
Electronics and Computer Science

University of Southampton
 Southampton, UK, S017 1BJ

mc+uist @ ecs.soton.ac.uk

ABSTRACT
Information cannot be found if it is not recorded. Existing
rich graphical application approaches interfere with user
input in many ways, forcing complex interactions to enter
simple information, requiring complex cognition to decide
where the data should be stored, and limiting the kind of
information that can be entered to what can fit into specific
applications' data models. Freeform text entry suffers from
none of these limitations but produces data that is hard to
retrieve or visualize. We describe the design and imple-
mentation of Jourknow, a system that aims to bridge these
two modalities, supporting lightweight text entry and
weightless context capture that produces enough structure
to support rich interactive presentation and retrieval of the
arbitrary information entered.
ACM Classification: H5.2 [Information interfaces and
presentation]: User Interfaces. - Graphical user interfaces.
General terms: Design, Human Factors
Keywords: Personal Information Management, input, text,
structured text, lightweight input

INTRODUCTION
Too often, even the best information retrieval tools cannot
help us find what we are seeking, because the information
we want was never recorded. Sometimes, we simply do
not recognize that the information might be needed later
[18]. At other times, the perceived cost to launch and
navigate through applications to capture the information
seems too high for the currently perceived value of the
data. Still other times, our intention to record information
can be defeated when trying to capture information which
has no single, natural, “home” within our existing organ-
izational strategies – either because there too many poten-
tial places to put it, or because it is of a new, or rare type
[7].
Many of these problems vanish if we turn to a much older
recording technology: text. Recording a fragment of text
simply requires picking up a pen or typing at a keyboard.
When we enter text, each (pen or key) stroke is being used
to record the actual information we care about – none is

wasted on application navigation or configuration. The
linear structure of text means there's always an obvious
place to put anything – at the end. And the free form of text
means we can record anything we want to about anything,
without worrying whether it fits some application schema
or should be split over multiple applications. All of this
means that we have to do less to record text, which makes
it more efficient and also less of an interruption and dis-
traction than using complex applications.
While text is an outstanding solution for recording infor-
mation, its weakness lies in retrieval. Text's fixed linear

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
UIST’07, October 7–10, 2007, Newport, Rhode Island, USA.
Copyright 2007 ACM 978-1-59593-679-2/07/0010...$5.00.

Figure 1: The Jourknow interface displaying the set of
textual notes, which we collectively refer to as the codex.
In addition to the text, Jourknow’s side panels provide fa-
cilities for quickly scanning notes through episode thumb-
nails and navigating non-linearly by filtering notes accord-
ing to facets that characterize their contents. The current
context display (bottom right) provides a preview of how
the current editing session will be later portrayed in epi-

d

form reduces us to scanning through it for information we
need. Even with electronic text, the lack of structure
means we cannot filter or sort by various properties of the
information. When we aren't sure what we want, a blank
text search box offers few cues to help us construct an ap-
propriate query [34]. The shorthand we use to record in-
formation in a given context can make it both hard to find
and incomprehensible when we return to it later without
that context [19]. Furthermore, only text we explicitly en-
ter is recorded, without any of the related contextual infor-
mation (such as a timestamp) that might be known to a
sophisticated application.
In this paper we argue that it is possible and desirable to
combine the easy input affordances of text with the power-
ful retrieval and visualization capabilities of graphical ap-
plications. We present Jourknow, a personal journal that
“knows what you mean” when you write things. That is, it
supports lightweight text input to be used for capturing
richly structured information for later retrieval and naviga-
tion in variety of interfaces. Jourknow provides the follow-
ing facilities:
• Entry of information by typing arbitrary scraps of text

(with all the text-input benefits mentioned above)
• Inclusion of structured information in the text through a

simple and user-extensible shorthand we call pidgin
• Extraction of structured information from scraps of

text, identifying entities and relationships between them
• An arbitrarily flexible data model to record whatever

structure a user considers important
• Association of automatically-measured context with the

information being recorded
• Search and faceted browsing based on tags, entities,

and relations for finding relevant text scraps
• Automatic routing of relevant pieces of the entered in-

formation to traditional PIM applications such as calen-
dar, address book, and web browser so that it can be re-
trieved and visualized using those domain-specific
tools.

In order to deliver these interactions, we had to solve sev-
eral challenges: capturing structure from text not entered in
a windowed form, modeling capture of desktop state for
appropriate association with a scrap, supporting interpreta-
tion and retrieval of individual text scraps, and integration
of captured data for use with existing applications. In the
following sections, we present related work, followed by a
detailed description of Jourknow’s design, addressing both
the interaction and implementation challenges just de-
scribed. We conclude our paper with discussion of feed-
back from a pilot study, and our immediate plans for a lon-
gitudinal deployment study.

RELATED WORK
In this section, we describe both motivational work that
inspired the need for Jourknow, as well as influential work
surrounding its design and implementation.

Efficiency versus fidelity
In order for personal information management (PIM) tools
to be useful and useable, they need to be both efficient and
provide high fidelity, accurate information. These needs
were articulated by Kalnikaite et al. [17], whose investiga-
tion of personal note-taking tools revealed that input effi-
ciency (amount of effort required to add notes) was a pri-
mary predictor of whether the tool was used initially, while
the fidelity of the resulting notes were predictive of notes’
perceived utility, and as to whether notes were ever re-
consulted. They discussed how these goals were often at
odds because, the less users were required to organize and
precisely specify their information, the less they tended to
do so, resulting in less organized information. Our primary
goal for Jourknow, thus, was to satisfy both needs simulta-
neously --- for low-effort (lightweight) input and that for
rich information- (structured) output.

Challenges of structured input
Regardless of how it is entered, the mere requirement to
specify information precisely and unambiguously can be
burdensome to users. For instance, primary work by Bel-
lotti et al. [3] and Blandford [6] each found that people
naturally use partial, incomplete, or often vague descrip-
tions of data in their personal notes, while PIM tools often
require rigid, formal and exact specifications.
Ross and Nisbett [29] identified some of these impediments
as channel factors, "small but critical facilitators" that
could dramatically impact a person's actions. Channel fac-
tor analysis has identified how even simple intervening
steps to a task such as needing to explicitly assign a name
to a file at time of its creation or requiring complex naviga-
tion of a set of GUI widgets on an input form will impact a
user’s decision to attempt the task to begin with. These
findings have led us to try to identify and minimize such
factors whenever possible, and informed the design of the
instant “anywhere” capture, and multi-category tagging
features in Jourknow.

The need for structure
Despite our resistance as users to current UI mechanisms
like form-filling to associate structure with information as
found in calendar and address book applications, without
structure information becomes difficult to utilize effi-
ciently. Indeed, a large number of applications we use
every day from our music players to our productivity and
groupware applications [12] have well-defined structured
models to drive their user interfaces. Structured data is the
lingua franca of these applications. These structures can
then be applied to support the user's needs, such as through
activity management [11, 18, 26], and data manipulation
and transformation [19, 31]. Unfortunately, the tremen-
dous information management benefits offered by rich
graphical user interfaces over richly structured data are
entirely lost if the cost of entering information into those
applications deters people from doing so. [3]

Information Extraction
The field of information extraction (IE) [25] has focused
on the general problem of automatically identifying struc-
tured, relational information in free text. Much of the work
in IE, however, has surrounded analyzing either proper
well-formed written or transcribed spoken natural lan-
guage, which, as we have found [5] differs in form signifi-
cantly from the abbreviated, idiosyncratic, and often un-
grammatical forms people use in their information scraps.
Techniques for mining information from these highly indi-
vidualistic, abbreviated forms (which often contain less
syntactic and grammatical structure) are significantly less
well understood, and corpora of such text are yet unavail-
able. Therefore, we have examined mostly simple, deter-
ministic extraction strategies, instead of corpus-based sta-
tistical approaches. As describe in the Implementation
section, Jourknow incorporates a simple context-free se-
mantic grammar parser, and allows the user to easily ex-
tend the grammar to new forms.

(Re)use of data/structure: contexts
In order to help recover entered data, Jourknow has also
been informed by studies of remembrance habits, which
show that data is often indexed by information extrinsic to
the bits themselves, such as relevant people [9], the path to
the information, or temporal aspects [22, 28]. There is evi-
dence to support the use of such virtual markers: Sellen et
al. has shown that even arbitrary pictures automatically
taken at intervals by a camera strapped to the user's body
can effectively prime a person's memory to help them recall
specific events in their daily lives [33]. Recently, Kalni-
kaite observed that automatically capturing and associating
information with notes (such as audio records) can help
people remember facts and meanings associated with per-
sonal notes, which otherwise fade within a month [17].
Such life logging has also been explored in the personal
notebook space. Dumais et al.'s Stuff-I've-Seen [9] demon-
strates that context pertaining to when users last viewed
documents can be used to ease their re-finding. Pepys [21]
and the Remembrance Agent [27] incorporate location and
the identity of nearby persons to retrieve notes created in
similar contexts. MyLifeBits has also sought to build a life-
time personal information store that computes spatial and
temporal correlations among resources for retrieval tasks,
such as searching for documents based on co-occurring
events, co-located items, and time of access [10].

INTERACTION
In this section, we describe the design of our system, as
depicted in Figure 1. The goal is to create an effective
bridge between rapid, low-cost, unconstrained input based
on text and automatically captured low-level context, and
effective retrieval and output based on a structured data
model and rich GUI. Our design achieves this end through
the following means.
Unconstrained text entry. Information is entered as free
text in a small text widget that can be invoked anywhere by
a keystroke.

Entity recognition. Jourknow spots named entities in the
entered text and associates the entered information with
them. New entities can be defined as needed.
Structure recognition. Jourknow uses simple subject-
oriented grammars (or pidgins) about defined concepts
such as meetings, dates, and locations for parsing struc-
tured information in text fragments; e.g. "meeting with joe
at 5pm in G592", or "add milk to shopping list". Users can
change what forms Jourknow recognizes by example, as
described later, including extending the grammar to handle
new types of information, such as, for example, names and
properties of stamps in a user’s collection.
Context capture. Jourknow watches what a user is doing
and where they are doing it, and records that information
with input text to assist in later retrieval.
Application integration. Jourknow provides access to en-
tered text containing information that aligns with structured
applications directly through these applications, such as
calendar, address book, and web browser, so that the in-
formation can be used easily when they are needed, and
can be organized using those rich domain-specific tools.
First-class text fragments. Jourknow treats its input, not as
one big blob of text, but as a large collection of text scraps
and entities that can be retrieved individually. This ap-
proach offers a much finer grain of retrieval than other sys-
tem, so that user can home in on exactly what they need.
Structured retrieval. Jourknow offers search and faceted
browsing based on tags, entities, and relations for finding
relevant text scraps and entities.
In the remainder of this section, we offer more detail on the
mechanisms listed above.

Text: Lightweight Input of Information
To address light-weight data entry, Jourknow provides a
simple unrestrictive text input in which the user may type
notes in any way he or she pleases. Specifically, data entry
into Jourknow divides the user’s text buffer into notes that
may be freely rearranged. The set of all a person's notes
and their contents in Jourknow is called the codex. To re-
duce the cost of switching applications to add notes to
Jourknow, Jourknow provides a number of shortcut hot-
keys that make it possible to interact with it while other
applications have focus. The "toggle visibility" hotkey
instantly brings Jourknow into focus, and dismisses it from
view when pushed a second time. A "paste" hotkey se-
quence sends any selected text from any application di-
rectly into a new Jourknow note and brings it into view,
while a "bookmark" hotkey, if pressed while viewing any
document or web page, adds the document's title and link
to a new Jourknow note. Similarly, text may be simply
dragged and dropped or pasted into an existing or new note
from another application, rearranged within a note, or
moved between notes.
Notes in the codex can be categorized by adding tags,
which by default are identified syntactically as a single
word starting with the '@' symbol. Notes may have any

number of tags. Additionally, tags may optionally have
values, which by default are identified with a colon follow-
ing a tag. For example, class notes for an algorithms
course could be tagged just as "@class", both "@class"
and "@algorithms", or alternatively,
"@class:algorithms". These tags may be later used to
quickly select subsets of notes to be viewed, as described in
Filtering, Exploration, Finding and Reminding. Tags are
scoped to the entire note, and thus all text and subtext (de-
scribed next) in the note inherit the tag. The syntax used to
recognize tags may be changed in Jourknow's preferences.
Beyond unstructured text and tagging, Jourknow provides
two mechanisms by which users can express structured
information to the system in a way that Jourknow will be
able to understand. The first is a simplified language or
pidgin [32] which allows users to express structured data
items more naturally for particular predefined domains,
such as for events, meetings, or address/contact informa-
tion. Our goal is for our pidgin to automatically capture
common kinds of structured data entry that are entered in
unstructured form. The second mechanism is the use of a
lightweight triple syntax based on Notation3 [4], a domain-
generic grammar with which the user may make statements
to express arbitrary structural properties and relationships
among entities, without having to predefine pidgin for the
domain or ontology. Examples of each are illustrated in
Figure 2. When Jourknow's pattern recognizers (described
in System Implementation) identify either type of struc-
tured information, Jourknow creates subtext for it:
structured entities that reflect its interpretation of what was
written.

If a user wishes Jourknow to recognize new pidgin phrases
for new domains not covered by the Jourknow’s base
grammars for events, addresses and to-dos, Jourknow al-
lows the user to do so. The user can use a pidgin means
expression anywhere in their codex, which, when inter-
preted, creates a subtext structure (described in the follow-
ing section) representing a new grammar that the pidgin
language processor can then use to recognize the new
forms. An example of a means expression to handle pidgin
forms such as “new cafe Diesel at Davis Sq wifi yes” into
subtext would be “‘new cafe Diesel at Davis Sq wifi yes’
means :Diesel a :cafe; :at_location “Davis Sq”;
:has_free_wifi ”yes” .” , where the expression after
“means” represents the intended structure expressed in
Notation3. Jourknow’s pidgin language processor matches
values in the left hand side of the means expression with
those on the right, to identify “slots” (e.g., “Diesel”, “Davis
Sq” and “yes” in the above expression) which an take other
values on new instances of the expression type. The proc-
essor tries to guess appropriate types for slots by coercing
values to a set of known types, and resorts to storing values
as strings if coercing fails.

Subtext: the structure within the codex
The subtext consists of instantiations of any structures de-
scribed in the codex. Once instantiated, these structures
can be “brought to life” and manipulated like objects in
traditional PIM applications, used to set reminders, or
sorted and filtered by property or value. To maximize their
availability and utility, Jourknow exports a view of subtext
structures that represent PIM data types such as events,
contacts, and to-do items to the user's standard PIM appli-
cations. Edits via these external representations are re-
flected in the subtext, and are made visible in the codex
through a revision indicator. We describe how this is done
in System Implementation.
For example, the pidgin "mtg at Luna Cafe @ 5pm w/ Ake-
mi cell 617-xxx-yyyy re:camping this weekend” translates
to a subtext which encodes the fact that there is a meeting
that is happening at a location known as the “Luna Café”,
at 5pm today, with a person named “Akemi”, whose cell
phone number is “617-xxx-yyyy”, on the topic of “camp-
ing this weekend”. Instantiation of this subtext causes an
event to appear in the user's calendaring application with
the appropriate date, time and subject, as well as contact
information to appear (if one didn't already exist) for a per-
son named “Akemi” with the appropriate phone number, in
the user's address book.
Note that ambiguity with resolving names of places and
people to records is in general a significantly difficult prob-
lem. For example, if the user already has several contacts
with a name "Akemi", it would be impossible for Jourknow
to tell (from the example above), which Akemi the user
was referencing. Jourknow deals with this by first attempt-
ing to find an exact match for an identifier among the
names of all the entities in the subtext. If an exact match is
unavailable, Jourknow presents a list of near misses with
edit distances less than 20 percent of the identifier's length.

Figure 2. Jourknow supports combinations of tags and
unstructured text (top), pidgin grammars (middle), and
Notation3 (bottom).

If the user does not choose one of the presented alterna-
tives, Jourknow resorts to creating a new subtext item to
represent the structure being mentioned.
Such ambiguous naming situations can be avoided in sev-
eral ways. First, the user can add nicknames to various
entities by adding a nickname pidgin expression, which
creates a subtext structure that causes the nickname to be
functionally equivalent to the original form when match-
ing. For example, "AK means Akemi Kuromasa" generates
a subtext that establishes the phrase "AK" as equivalent to
“Akemi Kuromasa” when searching for a subtext element.
Users can add additional names explicitly to specific sub-
text entities through either pidgin or Notation3 expressions,
such as “:AK :name Akemi-chan.", which is a Notation3
expression attaching the name Akemi-chan to the subtext
entity identified as :AK, causing any subsequent references
to Akemi-chan in any pidgin expressions to resolve to :AK.
More details on named entity matching are described in
System Implementation.
As soon as a structured data item is recognized, Jourknow
provides visual feedback of how the expression was inter-
preted, by indicating groupings of words into clauses as
parsed, boldfacing headwords, and underlining values for
recognized data types (see Figure 2). This feedback is im-
portant because as described later, many pidgin grammars
are ambiguous; therefore, it may not be possible for Jourk-
now to select the correct parse. If Jourknow chooses an
incorrect parse, the user may hit a button to cycle through
alternative parses, or failing that, correct the interpretation
manually. Similarly, this feedback gives the opportunity for
the user to see what entities Jourknow has matched in the
pidgin expression, if any, and to allow the user to correct
its name resolution if necessary.
Clicking on any entity that Jourknow has recognized in a
text fragment conjures a view of the subtext known as the
structure editor, which allows the user to directly view and
manipulate a subtext element's properties and values (Fig-
ure 3). When the user completes editing of the subtext,
Jourknow then updates the text to reflect the user's changes

to ensure that the codex always maintains a correct view of
the subtext.

Context: the activity and environment of the data
The context consists of information describing the circum-
stances under which a particular note was created or edited.
The purpose of this information is to be useful as a "hook"
to help quickly re-find a piece of text, or for reminding the
user about the text's meaning, by priming recall of the ac-
tual situation in which the note was written. Specifically,
Jourknow captures two types of situational context around
the time a piece of text was edited: the user's desktop ac-
tivities and aspects of their physical environment.
Examples of the former are files and web pages the user
was examining or editing, applications the user was using,
and with whom the user was communicating. Examples of
the user’s physical context include their location, the iden-
tity of people detected nearby, and photos of the user from
the user's laptop's web cam. Our goal is to make these
available geo/temporal/activity contexts serve in the same
way that physical contexts help re-finding of physical
notes.
We make the captured context visible to the user by means
of episodes attached to each note (Figure 4). Intuitively, an
episode should correspond to a continuous period of time
that was characterized by one activity. Jourknow has the
ability, however, to segment time according to different
criteria, to support the multitude of ways we think about
our activities. Example segmentations involve simple
time-based approaches such as by hour, time of day (morn-
ing/afternoon/evening) or those defined according to par-
ticular phenomena observed in the context, such as the us-
er's location, times during which certain music was being
played, or stretches of uninterrupted activity in a particular
application. For each episode that such segmentation de-
fines, Jourknow consolidates and summarizes all the con-
text observations that intersect with the time interval for
which that episode was defined, into an episode context
view (Figure 4).
To explore the detailed captured context of a Jourknow
entry, the user can view a selection of the most relevant
information surrounding the writing on the note by expand-
ing the context panel attached to each note. This view in-
cludes desktop screenshots, photos of the user and his or
her surroundings, the most active documents and web pag-
es, and location information (including an interactive map).
If the user edited a note over several different sessions, a
tabbed interface allows the user to view all of the relevant
gathered contexts.

Filtering, Exploration, Finding and Reminding
There are various ways a person may wish to access infor-
mation once it has been captured in their codex. For ex-
ample, when in class, a student may wish to "focus" on a
subset of their codex consisting of all the notes for that
particular class, ordered chronologically, or by topic.
Therefore, users may wish to filter or order notes based on
some aspect of their content, such as those tagged a certain

Figure 3. Clicking on text which has associated sub-
text displays the structure editor, a form-like view of
the subtext structure that allows the user to quickly ver-
ify and update values for properties, similar to a tradi-
tional form-based user interface

type, containing certain text or entities, or a piece of struc-
tured data. A user may also wish to select subsets of notes
that meet criteria concerning the situation(s) in which they
were created, viewed, accessed or edited, such as being
edited at a particular place or time. In Jourknow, we
sought to facilitate both types of criteria for filtering, in
order to facilitate focusing on a particular subset of notes,
exploration, and re-finding. Using data contained in the
text, subtext, and context, and the correspondences that
Jourknow maintains between them, it became possible to
unify all of these different axes for filtering into a single,
simple interface. For Jourknow, we have chosen a mecha-
nism of incremental search that combines faceted browsing
[12] with keyword search. Facets allow the user to
quickly filter notes based on either content- or context-
based features or combinations thereof, such as tags, tags
with values, structure therein contained, access time, loca-
tion, by associated resources. Users first select the facet
with which they wish to filter their codex, and then are
presented list of values they can select from for that facet.
Keyword search lets you further refine or directly jump to
notes containing a particular word or phrase.
After the desired subset of notes is achieved, using episode
views it becomes possible to explore relationships among
the contextual factors surrounding a note to answer ques-
tions such as: where was I exactly and what was I doing
exactly when I came up with those great ideas?
Finally, beyond exploring information in an ad hoc way,
the user may wish to set up information to surface to the
foreground of the desktop in a certain situation in the fu-
ture, such as "tell mc about this when i'm in her office."

Bellotti describes this kind of information foregrounds as
supporting the "in the way property" of reminding [3].
Jourknow's tagging and pidgin enables these kinds of re-
minders to be triggered currently by any part of the context
such as time, location or application state.
SYSTEM IMPLEMENTATION
The key technical challenges surrounded supporting the
following functionality:
1. Unconstrained textual input,
2. Flexibility in how information can be structured; with-

out requiring people to predefine (or adhere to prede-
fined) ontologies,

3. Interfacing with desktop applications; specifically,
alignment of subtext with applications' data ontologies,

4. Extraction of subtext from unconstrained text; particu-
larly supporting incomplete grammatical input, partial
phrases, and informal language,

5. Capture of context, and subsequent selection and pres-
entation of relevant contextual events for supporting
effective re-finding and memory priming,

6. Maintaining appropriate correspondences among the
user’s text, extracted subtext, and captured context.

In this section, we describe our solution to these six chal-
lenges; Figure 5 illustrates the design of Jourknow.

Data Model: Three Representations
Text
Jourknow maintains three different knowledge bases (KBs)
to hold the structures that become the text, subtext, and
context components introduced earlier. The text KB main-
tains what the textual contents of the codex, specifically
what is needed to construct each of the notes and their re-
spective contents. Instead of saving and overwriting snap-
shots of the notes as most text editors do today, the text KB
preserves the entire history of edits the user made, similar
to log-structured file systems [16]. Maintaining a complete
edit history in this manner enables Jourknow to identify
exactly when each character was created, edited or auto-
matically generated in response to an external edit to un-
derlying subtext, as well as to recreate the state of the jour-
nal at any arbitrary point in the past. Being able to identify
the time of creation efficiently for each character in the
codex is critical to Jourknow's functionality, because it is
the key by which Jourknow establishes a correspondence
among text, subtext, and the context chronology. To facili-
tate fast creation time lookup of characters, Jourknow
maintains (in memory) a data structure which packs the
character creation time (represented to millisecond granu-
larity) into the data structure used to represent each charac-
ter in the buffer. Note that there is no scalability issue here,
as the complete set of text typed by an individual cannot
fill an appreciable portion of current memory. This crea-
tion time is kept with the character for the entire duration
of its existence, and follows each character as it moves due
to edits to surrounding text. New characters assume the

Figure 4. The expanded view of context summarizes
the user’s activities during the time interval specified
by the episode. The salience heuristics used to select
events to be shown to generate the summaries are de-
scribed in section Implementation. Tabs at the bottom
allow users to see past episodes for notes that have been
edited in multiple episodes.

current time, and characters that are cut or copied from one
location in Jourknow and pasted elsewhere gain additional
timestamps corresponding to each paste. This makes it pos-
sible to “manually re-plant” context associated with a note
simply by moving appropriate text between notes. These
time signatures of text are used to establish correspon-
dences with subtext and context elements, described in the
next two sections.
Subtext and application integration
Entities in the subtext KB are represented as graphs in RDF
[13]. Subtext that originates from pattern extractors such
as the pidgin parser or the Notation3 processor are
grounded in the PLUM and Jourknow ontologies which are
mapped to standard RDF ontologies, such as iCalendar [7]
for events and vCard [15] for contacts. Use of these stan-
dard ontologies makes it possible to use existing tools [23]
to help with ontology alignment to schemas used by exter-
nal sources, simplifying the process of importing subtext
such as events from atom/RSS feeds, contacts from the
user's LDAP server or IMAP e-mail account, and book-
marks from the user's web browser. Importing subtext
items can assist the name ambiguity problems mentioned
earlier by providing additional information with which to
identify people, places and things mentioned in the codex.
Similarly, when manifestations of the user’s subtext
(“shadows”) are exported to the user's applications, ontolo-
gies must first be aligned with the target application's
schema. Unfortunately, establishing a good mapping from
instances grounded in the rich, expressive ontologies of the

semantic web, to rigid schemas of PIM applications often
requires somewhat arbitrary decisions regarding determin-
ing which fields best align (e.g., should "about" correspond
to "comment" or "description"?). As more applications
adopt flexible data representations in the future, we hope
better mappings will become possible.
In order to effectively maintain the illusion of a single uni-
fied data model across the user’s PIM applications, Jourk-
now stores explicit bidirectional pointers between each
subtext item and all its exported shadows. Some external
APIs such as GData [1] already generate unique IDs for
identifying elements; in this case, these IDs are used as-is;
in other cases, Jourknow generates an identifier and stores
this both with the subtext item and in a miscellaneous field
of the shadow. Once this correspondence is established,
maintaining synchronization is simple; Jourknow periodi-
cally polls applications using its data transfer API, and ex-
amines all items that are tagged with a subtext identifier.
For each such item, it casts it back to the Jourknow repre-
sentation, and compares field values; if values have
changed, this indicates that the user has edited the subtext
externally. Likewise, when the user updates the subtext via
the codex, Jourknow first determines whether the subtext
already has exported shadows; and if so, updates these sha-
dows with new values. If a conflict is detected (which
should be very rarely the case, as Jourknow propagates
updates externally immediately after they occur) this con-
flict is indicated as a correction in the codex. Jourknow
currently exports shadows to Google Calendar via the
GData API, and Apple's iCal and Address Book via Ap-
plescript.

Context
The context KB consists of a chronology of observations
made of the user's desktop state and actions, and of their
situation/environment, which is created and maintained by
PLUM [34]. PLUM executes a sequence of observer know-
ledge sources at a regular frequency (usually 2-3Hz) that
call various facilities in the underlying operating system to
yield observations. Examples of activities currently ob-
served by PLUM knowledge sources include the identity of
the application that has focus at each moment, the names
and locations of any documents or web pages being viewed
or edited, the user's activity in chats, writing emails, or mu-
sic listening, as well as periodic desktop screen captures
and the user's activity/idle state. Examples of environ-
ment/situational state captured by observers include the
user's location (as perceived through Placelab [20]) and
web cam snapshots of the user. Observations each have an
associated "validity" time interval, which represents the
largest contiguous time interval for which, according to the
observer, the observed phenomena remained unchanged.
All observations made by knowledge sources are encoded
as RDF graph structures (for representational flexibility),
grounded in the PLUM ontology.
Episodes and saliency heuristics
In order to find the set of episodes associated with particu-
lar text in the codex, Jourknow finds all the episodes whose

Figure 5. Architecture of Jourknow, illustrating how
components of the data model (codex, subtext, and
context) interact.

intervals intersect the creation times of the text. Once as-
sociations are made between text and episodes, Jourknow
extracts observations relevant to each episode by finding
all observations that overlap with each relevant episode's
interval. However, there may be a great number of obser-
vations; in order to prevent inundating the user with a re-
cord of their activities, we have designed saliency heuris-
tics to select observations that are likely to be memorable
and relevant to the user. These heuristics include, for each
type of context observation, most recently observed, most
frequently observed, and longest total duration. We addi-
tionally defined an "outlier" saliency heuristic inspired by
TF-IDF [30] which weights context proportionally to its
total observed duration during a particular episode, and
inversely proportionally to its total frequency observed
across episodes. This latter heuristic has proven useful in
filtering out routine visits to commonly revisited web sites,
as well as intermediary pages that consumed little face
time.
Structure extraction from text
To support the various modes of input described in the
Interaction section, Jourknow provides three types of tex-
tual pattern analysis: simple syntactic forms (i.e., regular
expressions), recursive-descent parsing, and Notation3
interpretation. As the recognition process can be computa-
tionally intensive (particularly for the recursive-descent
parsing), Jourknow runs recognizers only on regions con-
taining changed text, and executes recognizers asynchro-
nously and independently on their own threads.
The syntactic recognizer uses a standard regular expression
engine to find syntactically structured elements in the text,
including tags, file paths, and URLs. The Jourknow pidgin
language processor (PLP) expands the scope of Jourknow's
extraction capabilities to context-free languages. We have
thus far designed pidgin grammars to handle the most
common found types of PIM data: events, contacts, and to-
dos. To implement PLP, we extended NLTK_lite's rdpars-
er, [2] a simple deterministic top-down parser for context-
free grammars. Our modifications involved allowing the
inclusion of regular expression as terminals, which we de-
fined to match if and only if the regular expression
matched the entire token. This modification greatly simpli-
fied the recognition of tokens by syntactic form (such as
dates) without a separate lexical analysis phase, and en-
abled us to add "wildcards" to the grammars, to stand in for
words or combinations of words that could not be known a
priori. This occurred frequently in our pidgin grammars,
such as with names of people, locations, or the topics of a
meeting.
While enabling wildcard terminals greatly enhanced the
expressiveness of our grammar language, it also dramati-
cally increased parse ambiguity. Modifying the grammar
to not requiring phrase headwords (usually prepositions
such as "at" or "with") made the number of ambiguous
parses combinatorially larger, but also dramatically im-
proved usability of the grammars, as we observed [5] that

prepositions were often omitted in people’s information
scraps. Fortunately, we were able to tackle the complexity
of parse ambiguity resolution in three ways. First, inter-
leaving wildcard token matching into parsing made it pos-
sible to “wrap” lexical ambiguity problems into parse am-
biguity resolution, greatly simplifying handling from both
an implementation and user-experience standpoint. Sec-
ond, because the recursive descent automatically returned
all possible parses for a particular sentence under the gram-
mar, it reduced the problem of ambiguity resolution to
choosing the correct parse tree from the returned set of
possible parses. Finally, we devised a simple heuristic that
worked well in most cases: to choose the parse tree that
was broadest at its base. This corresponded to the parse
tree that recognized the greatest number of separate
clauses, and attached them closest to the root. This elimi-
nated the most common source of incorrect parses, the con-
sumption of clauses by wildcard terminals, as evidenced by
errors such as interpreting the meeting pidgin expression
“meeting with Michael at Stata” as a meeting with a person
named “Michael at Stata” rather than a meeting with a per-
son named “Michael” at a location named “Stata”. Jourk-
now allows the user to easily override the heuristic’s choice
through manual selection of the correct tree.
Associating text with subtext: Timeprints
When a pattern extractor first identifies a previously un-
seen structure in the text, it generates a new subtext entity
to represent the item. To allow future edits of the original
text to properly update the correct subtext entities, it is nec-
essary for Jourknow to be able to uniquely identify a text's
corresponding subtext. To effectively and reliably support
this lookup, we tag each new extracted subtext with a "time
fingerprint", computed by taking the set of creation times
of the source text. Jourknow maintains a hash of such fin-
gerprints to corresponding subtext entities, and when the
source text changes, the corresponding subtext's timeprint
is updated to reflect the change. Unique mentions of the
same text can therefore correspond to different subtext en-
tities, and will appear as separate “shadows” (each linked
to its respective note) in legacy PIM applications as de-
scribed earlier.

INITIAL USER FEEDBACK
We demonstrated Jourknow to five people to solicit initial
informal reactions to Jourknow’s design and features.
With this demonstration, we sought only to get an over-
view of whether people could easily understand how the
various features of Jourknow related to one another, and
second, to gain an impression for the features they thought
were useful and/or desirable towards their own information
organizational practices. As discussed in the next section,
we have plans to up this work with a formal study of the
system, both to measure the suitability of specific aspects
(such as pidgin language recognition) as well as a longitu-
dinal usage study to evaluate the system as a whole.
Demonstration participants were given a tour of the inter-
face, and invited to interact with the prototype for 20 min-
utes. Overall reactions were very positive, and all ex-

pressed enthusiasm for the text-input interface, with which,
as computer scientists, they seemed immediately comfort-
able. They also seemed to be universally enthusiastic about
the capture and association of context capture with notes.
Opinions were split about whether the tagging functionality
would be useful for retrieval, as opposed to using only
keyword search. Three participants expressed a desire to
be able to easily associate non-textual information items
with the notes kept in Jourknow, such as pictures, docu-
ments, music, and presentation slides. One participant was
impressed by the ability to edit Calendar entries bi-
directionally (i.e., either by editing their note directly, or
via their Google calendar interface). Another expressed a
desire to be able to automatically publish notes in Jourk-
now to his blog, and to be able to selectively share notes
with their friends. We are considering these suggestions in
the design of the next revision of our prototype.

DISCUSSION
Our work is situated between two extremes of textual in-
formation input. On the one end, we have the natural lan-
guage used by everyone to communicate, with all its flexi-
bility, inefficiency, and ambiguity. On the other end, we
have the rigid, concise, unambiguous programming lan-
guages and data syntaxes used by programmers to commu-
nicate information to machines. While folklore tells us that
most people cannot program and do not want to, that only
rules out an extreme of the spectrum. There is lots of room
in the middle. Individuals already seek conciseness (and
precision) in the notes they jot to themselves. We hypothe-
size that current input mechanisms, such as forms, avoid
data entry ambiguity by placing a significant navigational
burden (and significant input limitations) upon the user.
Essentially, the computer is passing the buck to the user to
parse the input for them. We speculate that requiring users
to obey the strictures of a relatively natural pidgin may be
less of a burden. We believe that a restricted, pidgin vari-
ant of natural language can be simultaneously natural
enough for people to adopt and unambiguous enough for a
computer to understand, particularly since we allow input
text to "detour" into arbitrary unstructured language at
need. While most people may not be able to become as
precise in their input as programmers, people’s current use
of forms demonstrates that they have the incentive and ca-
pability to accept limited constraints on how they express
information so that a computer can understand it.
A potential criticism of our approach is that it is simply
"NLP-lite" – that as soon as we solve the problem of rec-
ognizing arbitrary natural language, our approach will not
be needed. But there are several reasons to pursue our ap-
proach. First, a complete NLP solution remains distant at
this time, and is more than is needed for the simple data
capture we are supporting. Thus, our approach offers many
of the benefits of NLP input, sooner. Second, we note that
individuals’ jotted notes are generally not in natural lan-
guage. They include abbreviations, ungrammatical con-
structions, and a variety of other language hacks to make
entry more efficient. Users do not want to waste time craft-

ing grammatically complete sentences to record informa-
tion fragments. While NLP might ultimately be able to
handle this unnatural language as well, note that shorthand
is highly individualistic, requiring a solution that learns for
each user differently – an even more challenging problem
than standard NLP. Third, our approach emphasizes the
value of bridging from a more naturalistic input framework
to a traditional GUI output environment, in contrast to
many natural language systems that assume natural lan-
guage is the right modality for both directions.
Our dispatch of captured subtext to existing applications
reflects a compromise strategy. While these applications
provide good domain-specific interactions, one of our ma-
jor arguments in favor of text is that it saves the user from
having to choose a domain for the information they enter,
and instead create domain-crossing collections of informa-
tion that they feel are connected. It is unfortunate, then,
that at retrieval time the user must again make domain-
choices based on application boundaries. It would be bet-
ter for the user to be able to create rich GUI visualizations
that cross domains to aggregate any objects users consider
connected and exploit their structure to display them well.
This goal has been pursued in the Haystack system [19]
among others. We believe it will combine fruitfully with
the lightweight input mechanisms described here.

CONCLUSION/FUTURE WORK
The information management benefits offered by rich
graphical user interfaces over richly structured data are
entirely lost if the cost of entering information into those
applications deters people from doing so. In this paper, we
have argued that we may not have to choose between light-
weight input and sophisticated retrieval and output. Text
provides an excellent lightweight input mechanism that can
express arbitrary information but can also express rich
structure through individualistic shorthand; that structured
information and related contextual information can be navi-
gated and retrieved through rich interfaces while providing
breadcrumbs to help a user locate the less structured parts.
We have outlined the design of a system that minimizes the
work of text entry, and uses a variety of techniques to cap-
ture subtext (structure in the entered information) and con-
text (situational metadata about the entered information)
for use in retrieval and presentation. We have also de-
scribed the implementation of a system that meets the de-
sign. Our plan now is to use the affordances of Jourknow
as an evaluation platform to study which features work in
which contexts to best support lightweight capture of struc-
tured data.

ACKNOWLEDGEMENTS
This work was a collaboration between MIT, Nokia Re-
search Center Cambridge, and U. Southampton, under the
Web Science Research Initiative. It was also supported by
an EPSRC Overseas Travel Grant, EP/E035930, and a
Royal Academy of Engineering Global Research Award.

REFERENCES
1. Google Data API.

2. Natural Language Toolkit.
3. Bellotti, V., Dalal, B., Good, N., Flynn, P., Bobrow,

D.G. and Ducheneaut, N., What a to-do: studies of
task management towards the design of a personal task
list manager. in Proc. CHI 2004, ACM Press, Vienna,
Austria, 2004.

4. Berners-Lee, T. Notation3 (N3), A Readable RDF
Syntax.

5. Bernstein, M., Kleek, M.V., Karger, D. and schraefel,
mc. Information Scraps: How and Why Information
Eludes our Personal Information Management Tools.
In submission to ACM Transactions on Information
Systems.

6. Blandford, A.E. and Green, T.R.G. Group and Indi-
vidual Time Management Tools: What You Get is Not
What You Need. Personal Ubiquitous Comput., 5 (4).
213-230.

7. Connolly, D. RDF Calendar - an application of the
Resource Description Framework to iCalendar Data,
2005.

8. Czerwinski, M., Horvitz, E. and Wilhite, S. A diary
study of task switching and interruptions. Proc. CHI
2004, ACM Press, Vienna, Austria, 2004.

9. Dumais, S., Cutrell, E., Cadiz, J.J., Jancke, G., Sarin,
R. and Robbins, D.C. Stuff I've seen: a system for per-
sonal information retrieval and re-use Proc. SIGIR
2003, ACM Press, Toronto, Canada, 2003.

10. Gemmell, J., Lueder, R. and Bell, G. The MyLifeBits
lifetime store Proceedings of the 2003 ACM SIGMM
workshop on Experiential telepresence, ACM Press,
Berkeley, California, 2003.

11. Harrison, B.L., Cozzi, A. and Moran, T.P. Roles and
relationships for unified activity management Proceed-
ings of the 2005 international ACM SIGGROUP con-
ference on Supporting group work, ACM Press, Sani-
bel Island, Florida, USA, 2005.

12. Hearst, M.A. Clustering versus faceted categories for
information exploration. Commun. ACM, 49 (4). 59-
61.

13. Herman, I. and Swick, R. Resource Description
Framework, 2007.

14. Hudson, J.M., Christensen, J., Kellogg, W.A. and
Erickson, T. "I'd be overwhelmed, but it's just one
more thing to do": availability and interruption in re-
search management. Proc. CHI 2002, ACM Press,
Minneapolis, Minnesota, USA, 2002.

15. Iannella, R. Representing vCard Objects in
RDF/XML.

16. Jambor, M., Hruby, T., Taus, J., Krchak, K. and Ho-
lub, V. Implementation of a Linux log-structured file
system with a garbage collector. SIGOPS Oper. Syst.
Rev., 41 (1). 24-32.

17. Kalnikaite, V. and Whittaker, S., Software or Wet-
ware? Discovery When and Why People Use Pros-
thetic Memory. in CHI, ACM Press, San Jose, CA,
2007.

18. Karger, D.R. and Jones, W. Data unification in per-
sonal information management. Commun. ACM, 49
(1). 77-82.

19. Karger, D.R. and Quan, D. Haystack: a user interface
for creating, browsing, and organizing arbitrary semis-
tructured information CHI '04 extended abstracts on
Human factors in computing systems, ACM Press, Vi-
enna, Austria, 2004.

20. LaMarca, A., Chawathe, Y., et al.. Place Lab: Device
Positioning Using Radio Beacons in the Wild. in Per-
vasive 2005, Munich, Germany, 2005.

21. Lamming, M., Brown, P., Carter, K., Eldridge, M.,
Flynn, M., Louie, G., Robinson, P. and Sellen, A. The
design of a human memory prosthesis. The Computer
Journal, 37 (3). 153-163.

22. Lansdale, M. and Edmonds, E. Using memory for
events in the design of personal filing systems. Int. J.
Man-Mach. Stud., 36 (1). 97-126.

23. Lanzenberger, M. and Sampson, J., AlViz - A Tool for
Visual Ontology Alignment. Proc. International Con-
ference on Information Visualisation (IV'06), 2006.

24. Mark, G., Gonzalez, V.M. and Harris, J. No task left
behind?: examining the nature of fragmented work.
Proc. CHI 2005, ACM Press, Portland, Oregon, USA,
2005.

25. McCallum, A. Information Extraction: Distilling
Structure from Unstructured Text ACM Queue.

26. Moran, T.P., Cozzi, A. and Farrell, S.P. Unified activ-
ity management: supporting people in e-business.
Commun. ACM, 48 (12). 67-70.

27. Rhodes, B. and Crabtree, I.B. Wearable Computing
and the Remembrance Agent. BT Technology Journal,
16 (3). 118-124.

28. Ringel, M., Cutrell, E., Dumais, S. and Horvitz, E.
Milestones in Time: The Value of Landmarks in Re-
trieving Information From Personal Stores INTERACT
2003, ACM Press, 2003.

29. Ross, L. and Nisbett, R. The Person and the Situation:
Perspectives of Social Psychology. Temple University
Press, 1991.

30. Salton, G. and Buckley, C. Term-weighting ap-
proaches in automatic text retrieval. Inf. Process.
Manage., 24 (5). 513-523.

31. schraefel, m.c., Smith, D.A., Owens, A., Russell, A.,
Harris, C. and Wilson, M. The evolving mSpace plat-
form: leveraging the semantic web on the trail of the
memex Proc. Hypertext and Hypermedia 2005, ACM
Press, Salzburg, Austria, 2005.

32. Sebba, M. Contact Languages: Pidgins and Creoles.
Macmillian, 1997.

33. Sellen, A., Fogg, A., Aitken, M., Hodges, S., Rother,
C. and Wood, K., Do Life-Logging Technologies Sup-
port Memory for the Past? An Experimental Study Us-
ing SenseCam. Proc. CHI 2007, San Jose, CA, 2007.

34. Van Kleek, M. and Shrobe, H., A Practical Activity
Capture Framework for Personal, Lifetime User Mod-
eling. User Modeling 2007, Corfu, Greece, 2007.

