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ABSTRACT

Realtime crowdsourcing research has demonstrated that
it is possible to recruit paid crowds within seconds by
managing a small, fast-reacting worker pool. Realtime
crowds enable crowd-powered systems that respond at
interactive speeds: for example, cameras, robots and in-
stant opinion polls. So far, these techniques have mainly
been proof-of-concept prototypes: research has not yet
attempted to understand how they might work at large
scale or optimize their cost/performance trade-offs. In
this paper, we use queueing theory to analyze the re-
tainer model for realtime crowdsourcing, in particular its
expected wait time and cost to requesters. We provide an
algorithm that allows requesters to minimize their cost
subject to performance requirements. We then propose
and analyze three techniques to improve performance:
push notifications, shared retainer pools, and precruit-
ment, which involves recalling retainer workers before a
task actually arrives. An experimental validation finds
that precruited workers begin a task 500 milliseconds af-
ter it is posted, delivering results below the one-second
cognitive threshold for an end-user to stay in flow.

INTRODUCTION

Crowdsourcing is no longer constrained to slow, offline
tasks. Just as traditional programming evolved from
offline batch processes to realtime results and interac-
tion, crowdsourcing is now transitioning from wait times
of hours (Ipeirotis 2010) to seconds (Bernstein, Brandt,
Miller & Karger 2011). Techniques that place workers
on active retainer can now recruit crowds in two sec-
onds (Bernstein et al. 2011), complete traditional crowd-
sourced votes in five seconds, and maintain continuous
control of remote interfaces (Lasecki, Murray, White,
Miller & Bigham 2011). These realtime crowds open the
door to deployable applications that react intelligently,
including smart cameras, robot navigators, spreadsheets,
and on-demand graphic design.

However, existing realtime techniques have largely been
prototypes aimed at demonstrating feasibility—they did
not attempt to understand how these approaches would
work at large scale or to optimize cost/performance
trade-offs. We focus on the retainer model, which pays
workers a small extra wage to be on call while they pur-
sue other tasks, then respond quickly when a realtime
request arrives (Bernstein et al. 2011). Currently, the
retainer model is not optimized for cost or performance,
nor do requesters have any analytic framework to under-
stand the relationship between retainer pool size, cost,
and response time.
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This paper analyzes the retainer model using queueing
theory (Gross & Harris 1998) to understand its perfor-
mance at scale, in particular the trade-off between ex-
pected wait time and cost. We introduce a simple algo-
rithm for choosing the optimal size of the retainer pool
to minimize total cost to the requester subject to the re-
quester’s performance requirements: maximum expected
wait time or maximum probability of missing a request.
We then propose several improvements to the retainer
model that reduce expected wait time. First, retainer
subscriptions allow workers to sign up for push notifica-
tions for recruitment, which reduces the length of time
it takes to recruit new workers onto retainer. Second,
combining retainer pools across requesters leads to both
cost and wait time improvements. Large retainer pools
can then be made more effective by using task routing
to connect appropriate workers to the tasks that need
them. Third, a precruitment strategy recalls workers
from retainer a few moments before a task is expected
to arrive, dramatically lowering response time. We per-
form an early empirical evaluation demonstrating that
precruitment results in median response times of just
500 milliseconds.

Our analysis carries several benefits. First, realtime
tasks can now directly minimize their cost for a given
performance requirement. Second, the retainer subscrip-
tions allows workers to register for the tasks they like
best and have them delivered, rather than constantly
seeking out new work. Third, we demonstrate empiri-
cally that these techniques can overcome previous limits
of “crowds in two seconds” to deliver the feedback to
the user within 500 milliseconds—finally under the one-
second cognitive threshold for an end-user to remain in
flow (Nielsen 1993).

We begin by surveying related work on realtime crowd-
sourcing and wait times in crowdsourcing systems. We
then describe the retainer model and use queueing the-
ory to analyze and optimize wait time and cost. We
introduce our improvements to the model—retainer sub-
scriptions, global retainer pools, and precruitment—and
integrate them into our analysis. Finally, we discuss
limitations of our approach and point to future work
realizing the vision of realtime crowds.

RELATED WORK

Crowdsourcing researchers have a strong interest in fast
task completion times. Paying more will lead to more
work completed (Mason & Watts 2009), but not at re-
altime speed. QuikTurKit introduced two techniques
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to improve response time: repeatedly posting tasks so
as to stay visible in the recent task list, and keeping
workers primed through old tasks until a new task is
ready (Bigham, Jayant, Ji, Little, Miller, Miller, Miller,
Tatrowicz, White, White & Yeh 2010). The retainer
model builds on QuikTurKit by paying workers a small
fee and notifying them when work is ready, recruiting
crowds in two seconds (Bernstein et al. 2011). Workers
can also maintain continuous realtime control of an inter-
face by electing temporary leaders (Lasecki et al. 2011).
We contribute a more thorough analysis of the tech-
niques in these systems and an algorithmic approach to
helping these systems achieve target wait times at min-
imum cost.

Accurate models of crowdsourcing platforms help us un-
derstand the underlying processes and predict behavior
when parameters change. Queueing theory has been
used to estimate throughput and wages on Mechanical
Turk (Ipeirotis 2010). Survival analysis is another pop-
ular model for predicting task completion time, espe-
cially in non-realtime scenarios (Faridani, Hartmann &
Ipeirotis 2011). We model crowdsourcing task arrival
processes as Poisson; empirical data suggests that the
Poisson approximation is accurate when parametrized
by time of day (Faridani et al. 2011).

RETAINER MODEL

The retainer model is a recruitment approach for real-
time crowdsourcing. This model was introduced for real-
time interfaces like instant feedback votes and a crowd-
sourced camera shutter (Bernstein et al. 2011). It pays
workers a small wage to be on call and return quickly
when a task is ready. These workers accept the task in
advance and are paid extra to keep their browser window
open. While they wait for the task to arrive, workers are
free to work on other tasks. There are many methods
for recalling the worker; Bernstein et al. (2011) used a
modal dialog and an audio alert. Evaluations demon-
strated that workers messaged in this way begin work in
two to three seconds.

QUEUEING THEORY ANALYSIS

In this section, we investigate a mathematical model of
retainers. This model allows us to predict how long real-
time tasks will need to wait. To begin, suppose each task
type has its own set of retainer workers. When a task
comes in, a worker leaves the retainer pool to work on
the task and the retainer system recruits another worker
to refill the pool. The goal is to maintain a large enough
pool of retainer workers to handle incoming tasks. In
other words, we want to minimize the probability that
the retainer pool will be empty (no retainer workers left),
subject to cost constraints. The risk is that a burst of
task arrivals may exhaust the retainer pool before we
can recruit replacement workers.

We will model this problem using queueing theory. In
queueing theory, a set of servers are available to handle
jobs as they arrive. If all servers are busy handling a

job when a new job arrives, that job enters a queue of
waiting tasks and is serviced as soon as it reaches the
front of the queue. In our scenario, tasks are jobs, and
retainer workers are servers.

In this paper, we will consider a class of algorithms that
set an optimal retainer pool size. Suppose the retainer
pool is ¢ workers. As jobs come in and remove workers
from the retainer pool, assume that the system always
puts out enough requests for new workers to bring the
pool back to ¢. That is, if there are ¢y workers in the
pool, the system has issued ¢ — ¢y outstanding requests.
If, when a job arrives, the pool is empty, the system
sets it aside for special processing: it directly recruits
a worker, not for the pool, but for that job. In effect,
a user with a diverted job is immediately alerted that
the system is over capacity and the job will be handled
out-of-band after a short delay. This final assumption
may not accurately reflect how a running system would
work, but it provides an upper bound on expected wait
time and makes it easier to analyze the probability that
a task will be serviced in realtime.

Suppose that tasks arrive as a Poisson process at rate A,
and retainer workers arrive after they are requested as
a Poisson process at rate u.! Then, the empty spots in
the retainer pool, each of which will become filled when
a worker arrives, can be thought of as busy machines
occupied with a job whose completion time is a Poisson
process with rate p. In our setup, we also divert jobs
that arrive when all machines are busy.

In other words, this is an M/M/c/c queue where jobs
arrive at rate A and have processing time p. A ba-
sic M/M/1 queue assumes Poisson arrival and comple-
tion processes, a single server, and a potentially infinite
queue. An M/M/c/c queue has ¢ parallel machines in-
stead of one, and rejects or redirects requests when there
are no servers to immediately handle the incoming re-
quest (Gross & Harris 1998). Imagine a telephone sys-
tem, for example, that gives a busy signal if all ¢ lines
are busy. The meaning of p has changed slightly to indi-
cate worker recruitment time instead of a job completion
time, but the mathematical analysis is the same.

To optimize performance, we need to understand the
probability that all workers are busy, since that is the
case where a job has to wait (for expected time 1/u).
We also need to understand the cost of having a retainer
pool of size ¢. Since the system pays workers propor-
tional to how long they are on retainer without a job,
the total cost is proportional to the average number of
idle machines—these are the ones representing workers
waiting on retainer. Finally, we will eventually need to
integrate worker abandonment into our model, since not
all workers respond to the retainer alert.

!These assumptions are perhaps overly ideal. Job arrivals on
Mechanical Turk are heavy-tailed (Ipeirotis 2010). However,
much of our analysis is independent of the arrival distribu-
tion, and systems can always substitute empirically observed
distributions and solve numerically.
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Probability of an Empty Pool

The probability that a job must wait can be derived
using Erlang’s loss formula (Gross & Harris 1998). We
set p, the traffic intensity, to be the percentage of system
resources that are are required to service newly incoming
tasks: p = A/p. In M/M/c/c queueing systems, as we
will demonstrate, p < c is necessary for the system to
keep up with incoming requests.

The probability of an empty retainer pool (all ¢ “servers”
busy) is Erlang’s loss formula:

") =l W

A remarkable property of Erlang’s loss formula is that
this relationship requires no assumptions about the dis-
tributions of job arrival time or worker recruitment time,
in particular whether they are Poisson. It only depends
on the means p and A.

Expected Waiting Time
For some applications, the probability of a task needing
to wait is less important than the expected wait time
for the task. The two quantities are directly related.
The expected wait time is the probability of an empty
retainer pool multiplied by the expected wait time when
the pool is empty, or %LTF(C)S
< /el
Loy =1Ll @)
K B g Pt/
This expression gives us a direct relationship between
the size of the retainer pool, the arriving task and worker
rates, and the expected wait time.

As a sanity check: when A — 0 (few arrivals) we have
p — 0 in which case 7(c) — 0.2 In other words, we are
very unlikely to have an empty pool so the expected wait
time also goes to zero. This relationship is visualized in
Figure 1(c).

Expected Cost
Once we understand expected waiting time, we can ana-

lyze the retainer model’s cost characteristics. Bernstein
et al.’s (2011) experiments suggested that workers could
be maintained on retainer for $0.30 per hour at a rate of
%(t per minute, but this analysis is fairly simplistic. To
understand cost more completely, we need to know the
expected number of workers on retainer.

The probability of having ¢ busy servers in an M/M/c/c
queue is a more general version of Erlang’s loss formula:

i) = = ®

2 Actually, 7(c) — p°/c!

We can derive the closed form expression of the expected
number of busy servers:

Bl = S
ngmm
Z;:O pt/i!
= p(1 —7(c)) (4)

In steady state, we need to pay all retainer workers who
are not busy. That is, we expect to have ¢ — p(1 — 7(c))
workers waiting on retainer. If our retainer salary rate
is s (e.g., s = 3¢), we would pay s(c — p(1 — 7(c))) per
unit time on average.

Visualizing the Relationships

While these equations give us precise relationships, they
may not convey intuitions about the performance of the
platform. Figure 1 plots these relationships for several
possible values of p. These figures show a knee in the
curve at ¢ = p for getting a good probability of response.
A pool size ¢ > p means that an empty pool’s overall rate
of recruitment of workers, cp, exceeds the arrival rate of
tasks. In other words, we begin to catch up and rebuild
a set of available workers.® On the other hand, if ¢ < p,
then even an empty queue will not recruit workers fast
enough to cover all arriving tasks, so it will stay empty.*

Figure 2 visualizes the relationship between the re-
quester’s cost and the probability of waiting. We derive
this parametric curve by choosing values of ¢, then find-
ing the cost and probability of waiting given that value.
Paying more (i.e., for a larger pool) always improves the
probability that the system can immediately handle a
request. However, for small values of p, e.g. p <1, pay-
ing 1-1.5¢ per minute brings the probability of waiting
near zero. When tasks arrive quite quickly, 2.5¢ or more
is necessary to achieve similar performance.

OPTIMAL RETAINER POOL SIZE

A queueing theory model allows us to determine the
number of workers to keep on active retainer. The size
of the retainer pool is typically the only value that re-
questers can manipulate, and it impacts both cost and
expected wait time. Requesters want to minimize their
costs by keeping the retainer pool as small as possible
while also maintaining a low probability that the task
cannot be served in realtime. In this section, we present
techniques for choosing the size of the retainer pool.

Our goal is to find an optimal value of ¢, given 1) the ar-
rival rates A and p, and 2) desired performance, in terms
of the probability of a miss 7(c) or total cost. We assume
that the requester knows A and p either through empir-
ical observation or estimation. We also assume that A

3When p/c — 0, the number of free workers goes to ¢ — p(1 —
p¢/cl), or effectively c.

“As p — 0o, the number of free workers goes to ¢ — pc/(p +
¢)=c(1—p/(p+c)) which goes to 0.
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(a) Cost of retainer

(b) Probability of waiting

(c) Expected wait time
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Figure 1. Graphs that visualize the relationships between retainer pool size, traffic intensity, and (a) cost, (b) probability
of a task waiting, and (c) expected wait time. In the graph of expected wait time, we set A =1, so u = p~'. When p > ¢,
there are often not enough workers on retainer to service all tasks. As a result, wait time goes up, but cost goes down.
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Figure 2. By calculating cost and the probability of a

task needing to wait for integer values of ¢ € [1,15], we can
visualize the relationship between the two values.

and p are constant, but it is enough just for them not to
change too quickly.

One approach to finding c is to specify the maximum al-
lowable expected wait time for a task, or (equivalently)
the maximum allowable probability that an incoming
task will not be served in realtime. The intuition for
this approach can be seen in Figure 1(b): if p = .5, for
example, and the requester wants a less than 5% proba-
bility of any given task needing to wait, then ¢ = 3 is the
smallest retainer pool that can make such a guarantee.

Algorithmically, if ppax is the maximum desired proba-
bility of a task not being served in realtime, we want to
minimize ¢ subject to 7(¢) < pmax. To find the solution,
we use a binary search over possible values of c.

A more interesting version of the problem is for the re-
quester to attach a dollar value to each task that cannot
be serviced in realtime. For example, some pizza deliv-
ery companies do not charge the customer for the pizza
if they cannot deliver it within thirty minutes. A miss
then costs the company the value of the pizza plus the
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Figure 3. By assigning a dollar value to missed tasks, we
can visualize the relationship between retainer size and
total cost. Assuming traffic intensity p = 1 and retainer
wage s = 1, these curves demonstrate the trade-off be-
tween more missed tasks on the left part of the graph
and higher retainer costs on the right.

deliveryman’s wage spent delivering the late pizza. A
requester might similarly offer the service for free if it
is not completed in realtime, or they might decide that
the bad experience of a non-realtime result is worth $1
in lost potential revenue from that user.

It now becomes possible to directly minimize the re-
quester’s total cost. Let Cioqi be the expected total
cost to the requester and Cy,sr be the loss if a task is
not completed in realtime. Then Ciyiq; is the sum of
the expected task cost—zero if addressed in realtime, or
Chask otherwise—and the wage for the retainer workers
derived from Equation 4:

Ctotal = Ctaskﬂ-(c) + S(C - p(l - W(C)» (5>

We can minimize this total value. Figure 3 shows this
curve for several possible values of Cy,sp when p = 1.
The minimum value on the y axis for each curve is the
optimal retainer size.
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WORKER ABANDONMENT

Queueing theory models assume that a server will al-
ways begin a job once it is assigned. However, workers
will sometimes leave the computer, close the window,
or otherwise not respond to the retainer alert. Empir-
ically, Bernstein et al. (2011) found that about 10-20%
of workers on active retainer never responded.

Our model can be adapted to capture worker abandon-
ment. Let a be the percentage of workers who abandon
the task, that is, they do not return after the retainer
alert. A straightforward edit is to add the constant a to
the probability that a task will not be serviced in real-
time, so that probability is now a + w(c). The response
to this would be to increase ¢ to cover the difference and
recall 1/a workers for each job instead of 1. However,
this is a conservative approach.

A more cost-effective approach would be to alert another
worker if the first worker does not respond quickly. If
the mean worker response time to an alert is R, choose
a scalar o and wait until aR for the worker to respond.
If the worker has not responded by then, the platform
immediately alerts another worker and waits another
aR seconds before issuing a third request. There is a
constant probability of a worker responding within time
aR, so the expected number of alerts before getting a
response will likewise be a constant.

Unfortunately, queueing theory cannot easily accommo-
date this kind of approach. A model including server
breakdown is a close match, except that server repair
recruits another worker, which means that task arrivals
are correlated and no longer Poisson. To bound the ex-
pected cost within the queueing theory framework, we
envision a more complicated construction, which would
be unlikely to be used in a running system. A sketch
of the proof follows. We maintain several tiered retainer
pools. If a worker in tier ¢ does not respond within time
aR, we alert a worker in tier ¢ + 1. Task arrivals to each
queue are now Poisson, since a constant fraction of the
requests to tier ¢ will pass through to i+ 1. For example,
we might choose a such that half of the requests will
respond in time. Then, if tier ¢ has task arrival rate A,
tier ¢ + 1 would have arrival rate A/2. We would see a
sequence of geometrically decreasing pool sizes, meaning
the total cost, a geometric sum, will be a small multiple
of the first-tier cost, which we have already analyzed.

IMPROVEMENTS TO THE RETAINER MODEL

So far, we have analyzed the original form of the retainer
model. However, by extending it, we can improve its
performance considerably. In this section, we introduce
three changes to the retainer model and analyze their
impact: retainer subscriptions, globally shared retainer
pools with task routing, and predictive recruitment.

Retainer Subscriptions
The worker arrival rate p is a limiting factor of the
retainer model: previous experiments on MTurk saw

s %, or 1 worker every 6 seconds. A small arrival
rate means that the retainer pool can take a long time
to fill, which is particularly problematic for large bursts
or tasks that need multiple simultaneous workers.

One way to increase u is for the platform to put together
a panel of retainer subscribers who can be directly no-
tified when the retainer pool needs to recruit a replace-
ment. The insight behind this approach is to change
from a pull model of crowdsourcing, where workers seek
out tasks, to a push model, where tasks offer themselves
to workers. Workers could subscribe to a task type, so
that when the platform needs a retainer worker for a task
of that type, the platform could send a dialog notifica-
tion to one or more subscribed workers and offer them
the opportunity to complete one task in the next few
minutes. Workers who accept are now on retainer, can
continue working on other tasks, and will be interrupted
whenever the realtime task arrives.

A push notification is likely to reduce the time it takes
to recruit a worker onto retainer, thereby increasing pu.

Global Retainer Pools

In the previous analysis, each requester maintained their
own retainer pool. In this section, we analyze how shar-
ing one global retainer pool across requesters improves
performance. We also investigate how to route tasks to
workers in a globally pooled retainer.

Global Pool Analysis

Another way of writing Equation 1, the probability of
a missed task, is m(c) = w(0) - p/cl, where w(0) =
(Yo p"/il)~t (Gross & Harris 1998). Recall Stirling’s
approximation that ¢! = v/2wc(c/e)¢. Also note that
the sum that defines 7(0) is decreasing geometrically,
so we can approximate 7(0) ~ e ”, a constant. This
approximation gives us:

7(c) ~ e~PV/2me(ep/c)” (6)

If we have k different tasks each with traffic intensity
p and queue size ¢, the probability of an empty pool is
roughly km(c) ~ ke ?v2mc(ep/c)¢: we multiply by k
because each requester independently suffers.

Now suppose we bring all the retainer pools together,
creating one “superpool” of size kc. The task arrival
rate \ increases by k but the rate at which we recruit one
worker g remains unchanged. Thus the traffic intensity
increases by a factor of k to kp. So, the probability of
an empty pool with combined retainers is

e "\ 2rke(ep/c)*e = V2rke (e_p(ep/c)c)k (7

Ignoring the square root factor, we see the main term
being exponentiated by a factor of k. In other words,
the loss rate declines exponentially with the number of
retainer pools we bundle.

We can look at some approximations for these results.
Suppose we set ¢ = (1 + €)p, just above our ¢ & p knee
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in the curves from Figure 1. Then, with a single retainer
pool, 7(0) is about

e P\ 2me(ep/c)® ~ e Pe/(1 + €)) 1P
= e /(1 +¢)1FoP

() o

This is the same quantity as shows up in the typical
analysis of the upper tail of the Chernoff bound. There,
we generally approximate this quantity as e=<’r/ 3, which
is reasonably accurate for any € < 1. In short, the prob-
ability of an empty pool is roughly e~ #/3.

Using this approximation, we can ask what retainer pool
size in the globally shared case will yield the same empty-

pool bound e=<’P/3 as we found in the singular case.
As we argued above, moving to the globally shared case
multiplies p by a factor of k. Since the exponent we
care about proportional to €2p/3, we can decrease € by

a factor of vk and end up with the same bound as the
singular case. In other words, the fraction € of “buffer”
workers that we need in our retainer pool is proportional
to vk, as compared to the factor k in the singular case.
We thus need many fewer extra workers per extra task:
much like standard error decreases by a square root fac-
tor as sample size increases, we have less uncertainty in
arrival rates as more requesters join together.

Task Routing

Shared retainer pools introduce speed and cost improve-
ments, but workers will subscribe to multiple realtime
task types and can only work on one realtime task at a
time. This situation immediately raises the question of
how to decide which worker should be assigned to each
retainer pool when a spot opens up. Market forces like
task pricing will help solve this problem, but microtask
markets like Mechanical Turk are very clustered on a
small number of prices (often 2 — 5¢). Inefficient task
routing could lead to logjams where certain tasks can-
not find workers. In this section, we demonstrate that
a straightforward approach like uniform randomization
could lead to extremely slow response times, and we in-
troduce a linear programming solution that optimizes
response times across tasks.

Suppose we have a set of task types T' = tq,...,t,, and
tasks of type t; arrive with Poisson distribution and rate
Aj. Not every worker can complete every task: workers
may have only signed up to be on retainer for particular
task types, or they may not have the qualifications for
all task types. We split workers into groups wu, ..., Wy,
that are uniquely identified by the tasks that group can
complete. So, for example, w; might represent all the
workers who are on retainer for ¢y, t2, and t3. We say
that W is the set of all worker types (W = w1, ..., wn),
and that each w; has a Poisson arrival rate p;.

Task arrival
rate 7\j

Figure 4. A task routing scenario where a typical ran-
domized approach would lead to poor results. t; would
receive relatively few workers. Depending on the values
of u;, each task type could find itself in this starved state.

Given a set of task types T, a set of worker types W,
and arrival rates for each, our goal is to assign workers
to tasks to maximize the throughput of the system. To
do so in steady state, we need to decide how many worker
arrivals—more precisely, what portion of the overall ar-
rival rate—from each group should be assigned to each
task. Let us say that the rate at which workers from
group w; should be assigned to tasks of type t; is a;;.
These assignments must sum to the total arrival rate of
the worker group: Z;n=1 a;; = p;. For example, in our
earlier example of wy, if u; = 1, one possible assignment
is ayl] = .5,&12 = .25,&13 = .25.

A standard approach would be to assign each worker ar-
rival randomly to one of the task types that he or she can
complete. (That is, a;; are equal for any i.) However,
this approach could result in slow completion times. In
Figure 4, w3 has four times the arrival rate of wy or wo.
Random assignment would send workers to t3 at rate
1/4+1=5/4, whereas t; would receive workers at just
1/2. Depending on which workers are online, each of the
task types could find itself in a similarly starved state.

Instead, a centralized system can route workers to min-
imize expected wait time. This goal can be described as
a linear programming problem, but in fact can be solved
using maximum flow, which is significantly faster than
general linear programming. The following constraints
suffice to define a linear programming problem — they
indicate that the incoming worker rate to each task type
is at least as high as the incoming task rate, and that all
the worker assignments from a worker group sum to no
more than the arrival rate of that worker group.

Z Qi > /\j for all j,

) (9)
Z Qg S 12 for all 3.

J

We can also choose to be more specific about the quan-
tity to maximize. For example, as we have seen above,
task wait times are typically a function of the ratio of
arrival rate and service rate (A/u), known as traffic in-
tensity p. We can define an analogous p here to be
the ratio of the incoming task arrivals to the summed
rate of arrivals from all worker groups for that task:
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p = A;j/ > a;;. We then minimize its worst case across
all tasks:

minimize p

subject to pZaij > \; for all j,
i (10)

Zaij < u; for all 4.

J

By merging retainer pools, the platform can thus help
guarantee fast results for all tasks.

Scaling

One practical difficulty with this approach is estimating
; as the number of task types grows. If there are |T|
different task types, there are 2/7! different combinations
of task tyFeS that a worker can sign up for, and thus
|W| = 271, This set is an extremely large number of ar-
rival rates to try and estimate accurately, and will make
the linear program hard to solve because there will be
an exponential number of constraints.

However, the problem of efficient feature representation
is a common one in machine learning. There are many
approaches to this problem. We may find that in practice
only a small number of task type combinations can occur.
We can also enforce this, for example by setting a ceiling
on the number of task types a worker can subscribe to
at once. With a limit of two subscriptions, |W| = |T|?
instead of 2/71.

Precruitment: Predictive Recruitment

Previous research was limited by the length of time it
took a worker to respond to the retainer alert. However,
our model suggests that even this limit of “crowds in two
seconds” (Bernstein et al. 2011) is unnecessary, and that
crowds could be recruited effectively instantaneously.

The insight behind our solution is precruitment: noti-
fying retainer workers before the task actually arrives.
The queueing theory model involves estimating 1/, the
expected length of time before the next task will arrive.
If 1/ is about the length of time it takes to recall a re-
tainer worker, we can recall a retainer worker and expect
to have a task by the time the worker arrives. As we will
demonstrate, workers are also happy to wait at a “Load-

”

ing...” screen even if the task is not ready immediately.

Workers take 2-3 seconds to arrive (Bernstein et al. 2011)
and will wait for roughly ten seconds afterwards (Nielsen
1993). The Poisson task arrival process has rate A, and
Poisson distributions have standard deviation v/A. So,
the platform can precruit A + v/A workers per second
for upcoming requests, where 3 is a slack variable that
controls how many extra standard deviations to precruit
for safety. Any workers who do not have tasks within
a predetermined wait time would need to be paid and
dismissed. However, as the platform becomes large, the
standard deviation will become proportionally smaller
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Figure 5. The median length of time between the mole
image appearing and the workers moving to click on it was
0.50 seconds. So, a platform can recall retainer workers
early and get crowds in half a second instead of waiting
for the workers to respond to the retainer alert.

relative to the mean, making it possible to waste very
little money on extra workers.

In fact, the entire precruitment system can be repre-
sented as its own M/M/c/c queueing system. Many of
the same techniques introduced earlier can be applied to
help optimize the size of a precruitment pool in relation
to the standard retainer pool.

Evaluation

We ran a study on Mechanical Turk as a proof-of-concept
for precruitment. In the study, we followed the protocol
of Bernstein et al. (2011) by offering three cents for a one-
minute retainer task: a game of Whack-a-Mole. After
waiting on retainer for one minute, workers responded
to the retainer alert and were asked to quickly click on
the picture of a mole randomly placed in a 3x3 grid of
dirt mounds. However, after responding to the alert and
before the mole appeared, workers needed to wait for
a randomly selected length of time between 0 and 20
seconds while a “Loading...” indicator displayed.

We measured the length of time between the appear-
ance of the mole and: a) mouse movement in the di-
rection of the mole, and b) the click on the mole. We
discarded any responses where worker clicked on a dirt
mound instead of the mole or where the browser did not
record millisecond-precision timing. After filtering, our
dataset consisted of fifty workers who completed N=373
Whack-a-Mole tasks. One limitation of our design is that
Whack-a-Mole is a relatively enjoyable task, and workers
might not be so attentive for less game-like tasks.

The median length of time between the mole’s appear-
ance and the worker moving the mouse toward the mole
to click on it was 0.50 seconds across all wait times (mean
0.86, std. dev. 1.45, Figure 5). The median length of
time before clicking on the mole was 1.12 seconds (mean
1.87, std. dev. 2.23). There is a negligible correlation be-
tween wait time and mouse movement delay (R? = .001),
suggesting that workers react roughly as quickly right
after they arrive as they do twenty seconds later.

We can use the same dataset to compare precruitment
to the retainer approach presented in Bernstein et al.
(2011). This comparison is possible because a “Load-
ing...” delay of zero seconds is the exact same worker
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experience as the standard retainer model. We are in-
terested in the lag time between the task arriving and
mouse movement to whack the mole. Here, a new task
results in an alert being sent to the worker, so we start
our timer with the alert. Without precruitment, the me-
dian time between task posting and mouse move was
1.36 seconds (mean 1.41, std. dev. 0.30).

This result suggests that, had we used a standard re-
tainer model with this task, we would have seen mouse
movement typically after 1.36 seconds. Using precruit-
ment, we get mouse movement in 0.5 seconds. Precruit-
ment finally breaks through the sub-second cognitive
barrier that keeps users in flow (Nielsen 1993).

DISCUSSION

Our model has several limitations. One limitation is that
an M/M/c model may be a better match for certain re-
tainer implementations where the idea is to handle tasks
FIFO and not immediately give up on realtime response
for tasks when the pool is empty. Second, worker recall
delays depend on the length of time the worker has been
waiting on retainer (Bernstein et al. 2011), but our anal-
ysis ignores this fact. Third, our model assumes that it
can always recruit new retainer workers into the pool,
but the retainer population is limited in practice. How-
ever, we believe that these observations can be integrated
into our optimizations.

One empirical question we have not addressed is the
number of workers that need to be on a crowdsourc-
ing platform to make sure that requesters can maintain
full retainer pools. This number also depends on the
percentage of workers who are willing to sign up for re-
tainer tasks. Since the retainer model pays more than
batch tasks, we anticipate that this percentage will be
high. On Mechanical Turk, our experience is that it is
not difficult for a single requester to get twenty or thirty
workers on retainer simultaneously. However, as more
requesters use retainers, these dynamics may shift.

While realtime retainers are the motivating example in
this paper, the entire Mechanical Turk platform can be
thought of as a large retainer system where workers are
paid zero retainer wage and the worker recall rate is ex-
tremely slow, since workers return on their own initiative
rather than by recall. Precruitment is another kind of
retainer model queue where workers are recalled before
the task even arrives. All three queues could be analyzed
together as a queueing network in order to more effec-
tively understand the entire system. However, it is also
possible to bound the probability of a slow task response
via the probability that any of the retainer pools are
empty. Supported by our results so far, we suggest that
queueing theory can be applied for many other problems
in the space of realtime crowdsourcing as well.

Our analysis suggests that paid crowdsourcing platforms
could integrate a globally-managed retainer into their
design. This will not only change the types of crowd-
sourcing that are common, but will also introduce new

elements of worker reputation. We suggest two new
reputation statistics. First, a worker’s median response
time characterizes how quickly they respond to the alert
and begin working on a retainer task. Requesters pre-
fer workers with low response times. Second, workers
are tagged with a response rate: the percentage of the
time that they successfully respond to a retainer alert.
If a worker does not respond to the alert within a given
length of time (e.g., five seconds), the system finds an-
other person and the worker is not paid.

CONCLUSION

In this paper, we have analyzed and optimized the re-
tainer model for realtime crowdsourcing. We applied
queueing theory to demonstrate specific relationships be-
tween task and worker arrival rates, the size of the re-
tainer pool (workers waiting for a task), cost and ex-
pected wait time. We introduced a technique for choos-
ing the optimal retainer pool size given a requester’s
needs, and for integrating abandonment into the queue-
ing theory model. Finally, we described three new tech-
niques that improve the performance of the retainer
model: retainer subscriptions, shared retainer pools, and
precruitment, or recalling retainer workers before the
task arrives. These techniques suggest directions for
future platform development, and have already shown
promise in returning results to users in 500 milliseconds.
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