
Information Scraps:
Understanding and Design

by

Michael Scott Bernstein

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2008

© Massachusetts Institute of Technology 2008. All rights reserved.

Author.
	 Department of Electrical Engineering and Computer Science
	 May 23, 2008

Certified by.
	 David R. Karger
	 Professor of Electrical Engineering and Computer Science
	 Thesis Supervisor

Accepted by.
	 Terry P. Orlando
	 Chairman, Department Committee on Graduate Students

2

3

Information Scraps:
Understanding and Design

by

Michael Scott Bernstein

Submitted to the Department of Electrical Engineering and Computer Science
on May 23, 2008, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract
In this thesis I investigate information scraps – personal information whose content
has been scribbled on Post-it notes, scrawled on the corners of sheets of paper,
stuck in our pockets, sent in e-mail messages to ourselves, and stashed into miscel-
laneous digital text files. Information scraps encode information ranging from
ideas and sketches to notes, reminders, shipment tracking numbers, driving di-
rections, and even poetry.

I proceed by performing an in-depth ethnographic investigation of the nature
and use of information scraps, and by designing and building two research sys-
tems designed for information scrap management. The first system, Jourknow,
lowers the capture barrier for unstructured notes and structured information
such as calendar items and to-dos, captures contextual information surround-
ing note creation such as location, documents viewed, and people corresponded
with, and manages uncommon user-generated personal information such as res-
taurant reviews or this week’s shopping list. The follow-up system, Pinky, further
explores the lightweight capture space by providing a command line interface
that is tolerant to re-ordering and GUI affordances for quick and accurate entry.
Reflecting on these tools’ successes and failures, I characterize the design process
challenges inherent in designing and building information scrap tools.

Thesis Supervisor: David R. Karger
Title: Professor of Electrical Engineering and Computer Science

4

5

Acknowledgements

When I came to MIT I was, frankly, quite a bit lost. Many thanks to my advisors, David Karger,
Rob Miller, and mc schraefel, for helping me find my place, define my interests, and develop
as an academic. I am also indebted to electronic Max for being a constant travel companion in
this journey. Thanks to members of the Haystack and User Interface Design groups, for listen-
ing to my crazy ideas and giving me many new ones: David Huynh, Greg Little, Max Goldman,
Vineet Sinha, Adam Marcus, Robin Stewart, Chen-Hsiang Yu, Mihir Kedia, and Harr Chen. I
would like to thank colleagues at Nokia Research Cambridge (Deepali Khushraj, Ora Lasila)
and the University of Southampton (Paul André, Daniel Alexander Smith, Max Wilson). And
finally, thanks to the extended research community who have listened, understood, critiqued,
and contributed.

Few things in this line of work are as rewarding, or as challenging, as wrestling with tough
questions. Unfortunately, social circles hear mostly about the challenges. Thanks first to Adi,
who has stood by me and supported me through more than she should ever need to endure. I
love you. Also love to my parents and sister, who single-handedly, or in fact sexta-handedly, got
me to where I am today. (Sitting in front of a computer — they’d be so proud.) And finally, to
my friends who have supported me through the past two years: thank you.

Boston: your weather’s not as good as California, but I suppose you’re alright.

6

7

Contents
1.	 Introduction. 13

1.1	 What is an Information Scrap? . 15

1.2	 Information Scraps and Personal Information Management. 15

1.3	 Contributions. 16

1.4	 Thesis Outline . 18

2.	 Related Work. 21

2.1	 Psychological Foundations. 21

2.2	 Information Scraps in Studies of Specific Data Types 23

2.3	 Organizational Practice. 25

2.4	 Information Scrap Solutions . 27

3.	 Ethnography. 29

3.1	 Goals. 30

3.2	 Method. 30
3.2.1	Information Scrap Operationalization 	 31
3.2.2	Triangulation Method	 32

3.3	 Results. 35
3.3.1	What do Information Scraps Contain?	 35
3.3.2	Scrap Encoding, Composition and Layout	 40
3.3.3	Use of Language in Scrap Text	 42
3.3.4	Tools and Locations 	 42
3.3.5	The Information Scrap Lifecycle	 47
3.3.6	The Psychopathology of Information Scraps 	 50

3.4	 Analysis. 52
3.4.1	Common Information Scrap Roles	 52
3.4.2	Organization and Fragmentation	 54
3.4.3	Constraints	 55
3.4.4	Caveats in Our Findings	 56

3.5	 Implications for Design . 57
3.5.1	Lightweight Capture	 59
3.5.2	Flexible contents and representation	 61
3.5.3	Flexible usage and organization	 62
3.5.4	Visibility and Reminding	 63
3.5.5	Mobility and Availability	 64

3.6	 Future Work . 65

8

3.7	 Conclusion . 65

4.	 Jourknow: Information Scrap Capture,	
	 Management and Re-finding. 67

4.1	 Jourknow’s Design and Research Contributions 70
4.1.1	Notebook Interface	 70
4.1.2	Capture: Lightweight unstructured and structured entry	 73
4.1.3	Manipulation: structure exploitation and inspection	 76
4.1.4	Re-finding: Faceted Browsing and Context-based re-finding	 78
4.1.5	Mobility: Unique design needs in mobile scenarios	 80
4.1.6	Visibility and Reminding: Desktop Dashboard,
	 Importance Indicator and Alarms	 82

4.2	 Implementation. 82
4.2.1	Data Model: Three Representations	 85
4.2.2	Episodes and saliency heuristics	 87
4.2.3	Structure extraction from text	 87
4.2.4	Jourmini: Simplified Data Model	 89
4.2.5	Synchronization	 89
4.2.6	Caching to Obtain Interactive Speeds	 90
4.2.7	Object-Oriented RDF Programming	 91
4.2.8	Saving and Transactions	 92

4.3	 User Study . 92
4.3.1	Study Results	 93

4.4	 Discussion. 96

4.5	 Conclusion . 96

5.	 Pinky: Personal Information Keywords. 99

5.1	 Motivation. 99

5.2	 A Command Line for PIM. 100

5.3	 Design of a GUI Keyword Command Line. 102
5.3.1	Commands	 102
5.3.2	Feedback	 103
5.3.3	Running a Command	 104

5.4	 Personal Information Keyword Commands. 106
5.4.1	Organizing Multiple Interpretations	 106
5.4.2	GUI Widgets for Command Arguments	 107

5.5	 Web Clips . 108

5.6	 Implementation. 111
5.6.1	Keyword Command Interpreter	 111
5.6.2	Web Clippings	 113

5.7	 Evaluation. 113

9

5.8	 Future Work . 115

5.9	 Pidgin and Keyword Commands: Lightweight Data
	 Capture Mechanisms . 116

5.9.1	Language Axes	 116
5.9.2	Design Axes	 117
5.9.3	Pidgin Languages and Natural Language Processing (NLP)	 117

5.10	Conclusion . 118

6.	 Design Processes for Information Scraps. 119

6.1	 The Design Process . 120
6.1.1	Early Ideation and Design Space Exploration	 120
6.1.2	Involving Related Work, Functional Prototyping	 121
6.1.3	Expert Feedback	 122
6.1.4	Needfinding and Ethnography	 122
6.1.5	Scoping and Research Specification	 123
6.1.6	Jourknow Client Redesign	 123
6.1.7	Development	 125

6.2	 Study Design and Execution . 126
6.2.1	Method	 126
6.2.2	Study Results	 127
6.2.3	Symptoms of a Wicked Design Process Failure	 128

6.3	 Reflection on Practice: What Went Wrong? 129
6.3.1	Considering the Obvious Solutions	 129
6.3.2	Breakpoints: Process Inspection Points	 130

6.4	 Outcomes for Design Methodology. 134

6.5	 Conclusion . 135

7.	 Conclusion and Future Work. 137

8.	 Bibliography . 139

10

11

A Note on Collaboration

This research has been a highly collaborative enterprise. In the year and a half since I identified
information scraps as a topic of interest for my research, this work has involved three graduate
students, a terminal masters student, five undergraduates, and three faculty members. The core
team has featured myself and Max Van Kleek as the primary student researchers, and David
Karger and mc schraefel as faculty advisors.

It is difficult if not impossible to tease out exact individual contributions on projects like
Jourknow, so I have not endeavored to do so in this thesis. I designed and coded much of the
user interface for Jourknow; Max helped. Max designed and coded the bulk of the context-
capture mechansims and RDF data model; I helped. Neither would be of much use without the
other.

So, rather than confuse this thesis with contribution language throughout, I have simply
chosen to tell the story that I wish to tell. My story is that of information scraps: understanding
why they exist and designing new systems to help us manage them. Naturally, this story places
weight on the problems I find interesting and solutions I am particularly proud of. Thus, this
thesis focuses on the ideas that I take particular stake in or ownership over. It glosses over many
issues that Max will take up with great zeal in his Ph.D. thesis.

But if you found a bug in Jourknow, it’s definitely Max’s fault.

13

Introduction1.	

Despite the number of personal information management tools avail-
able today, a significant amount of our information remains out of their
reach: the content is instead scribbled on Post-it notes, scrawled on the
corners of sheets of paper, stuck in our pockets, sent in e-mail messages to
ourselves, and stashed into miscellaneous digital text files. This scattered
information ranges from ideas and sketches to notes, reminders, ship-
ment tracking numbers, driving directions, and even poetry. It may never
make its way into our usual applications – yet we carry it around with us,
decorate our desks with it, and often even make sure to archive it. For a
category of personal information with so little traditional support, it is all
but ubiquitous in our lives.

I refer to these pieces of personal information as information scraps
(Figure 1.1). The term suggests several images: notes that are written on a
scrap of paper, that are incomplete, or that have been separated from our
primary personal information tools.

This thesis focuses on information scraps as a topic of understand-
ing and design. Why are information scraps so often held outside of our
traditional locations and instead on scraps of paper or in text files? What
kind of tools can support the lightweight capture and freeform expres-
sion common to information scraps? My goal in this research is to open
an investigation of information scraps, so that we might begin answering
these questions.

1. Introduction

14

Figure 1.1. Information scraps live in our digital and physical worlds; they
are recorded on envelopes, in text files, and in a myriad of other locations.

1. Introduction

15

What is an Information Scrap?1.1	

An information scrap is an information item that falls outside all PIM tools de-
signed to manage it. This definition suggests that canonical information
scraps include items such as address information not in the address book,
electronic communication not in the e-mail client, and to-dos not in a to-
do manager. It intentionally includes information items for which no PIM
tools currently exist, as well as information items stored and managed in
general-purpose (e.g., non-PIM) information tools. For the purposes of
our work, we choose to include in the set of general purpose tools artifacts
such as notebooks, spreadsheets, and text editors/word processors because
they tend to be catch-alls for PIM data. Our definition also intentionally
makes no distinction between paper and digital PIM tools. To illustrate,
here are some examples of information scraps from our research:

Note of how to make a call abroad saved as a text file in a “Miscel-•	
laneous” folder
To-do on a Post-it note •	
Photo of a whiteboard from a discussion kept on the computer desk-•	
top
Meeting notes in a general-purpose notebook •	
Serial number for an application saved in an e-mail to yourself •	
A friend’s phone number written on a piece of scratch paper •	
Cooking recipe kept in a personal wiki •	
Song lyrics and guitar tabs taped on the wall •	
Copy of academic transcript saved in a text file•	

By this definition, information scraps are the personal information
items that have fallen between the cracks of our PIM tools. An informa-
tion scrap is evidence that there is no appropriate tool at a time of need;
the user deliberately chooses a tool with affordances designed for other
forms of information. In analysis, I treat the existence of such items as
evidence of PIM design failures and thus suggestive of unfulfilled design
opportunities.

Information Scraps and 1.2	
Personal Information Management

Personal information management (PIM) as a research field is concerned
with the processes of capture, organization, re-finding and use of the in-
formation we deal with in our daily lives [79]. PIM’s research challenge
is to understand existing information practice and leverage that under-

1. Introduction

16

standing to deliver a set of tools that give us the affordances we need and
desire.

Information scraps are largely a new domain of focus for PIM. I have
targeted a type of personal information with many unanswered questions
— one that highlights the ad-hoc, unorganized underbelly of personal
information. Information scraps are highly personal, since they are often
barely understandable to third parties. They are also inextricably tied to
our personal spaces of information, living side-by-side with our files and
often depending on them for meaning. Yet computers have thus far failed
to provide compelling support for information scraps, forcing us to adopt
coping strategies such as e-mailing ourselves or using free text files.

Contributions1.3	

In this thesis, I contribute knowledge in the domains of information scrap
practice and information scrap manager design. These contributions
are:

Characterization of existing information scrap practice and needs. I
undertake an in-depth ethnographic study of information workers’ use of
information scraps. I describe the types of information contained in scrap
form, tools commonly used, and common roles for information scraps.
I derive design needs for information scraps: lightweight entry, uncon-
strained content, flexible use and adaptability, visibility, and mobility.

Design of an information scrap manager. I introduce Jourknow (Fig-
ure 1.2), an information scrap manager with design elements catering to
context-based re-finding of notes, fast capture of structured information,
and mobile capture and synchronization.

Design of a sloppy command line-style interface to reduce the need
to create information scraps. A surprising amount of common personal
information types such as to-dos and calendar items wind up as infor-
mation scraps because applications require prohibitive time and effort
to enter the data. To ameliorate this problem and prevent information
scraps from being produced, I introduce Pinky (Figure 1.3), a command
line-style interface for quick entry of personal information.

Challenges with Design Processes for Information Scrap Managers.
Through the process of designing and implementing Jourknow, I have
identified several design process issues particularly challenging when
creating an information scrap manager: scope, prototyping techniques,

1. Introduction

17

Figure 1.2.
Jourknow is our
prototype informa-
tion scrap manager. It
provides support for
information scraps
through lightweight
capture, context-
based re-finding,
pushing information
to relevant applica-
tions such as the
calendar or to-do
manager, and a mo-
bile client.

Figure 1.3.
Pinky is a keyword
command line for
personal information.
By speeding up the
information capture
process, Pinky may
reduce the need to
create information
scraps in the first
place.

1. Introduction

18

evaluation techniques, and continuous population contact. In this section
I discuss these issues, as well as possible solutions.

Thesis Outline1.4	

Following this introduction, Chapter 2 surveys related work, beginning
with known psychological principles informing our use of information
scraps (§2.1). It then covers studies bearing on specific tools or informa-
tion scrap types (§2.2) and research on cross-tool organizational practices
(§2.3). The related work section closes by canvassing existing tools and re-
search systems which informed my work on Jourknow and Pinky (§2.4).

Chapter 3 is an in-depth discussion of existing information scrap
practice – the most comprehensive one to date. It begins by describing a
novel methodology for locating information scraps in practice (§3.2) and
outlines the goals for our cross-tool study. I detail the information types
[79] stored in scraps, the constitution of scraps, tools used in support of
information scrap work, and the information scrap lifecycle (§3.3). I de-
rive a characterization of the typical roles that information scraps serve
in personal information practice (§3.4) and the needs that information
scraps serve in support of these roles (§3.5).

The thesis then shifts to the design of novel information scrap man-
agement systems. Chapter 4 introduces Jourknow, an information scrap
management system following a notebook metaphor. Jourknow contains
support for context-aided re-finding, lightweight structured input, and
mobile capture and retrieval. The chapter begins with a motivational de-
scription of Jourknow’s design decisions, details the Jourknow interface
(§4.1), and reports on a weeklong evaluation of the prototype (§4.3 –
§4.4). Implications of the (failed) rollout are discussed in Chapter 6.

Chapter 5 refocuses from general information scrap management to
specific techniques for lightweight capture and reducing the need to cre-
ate information scraps. I introduce Pinky, a keyword command engine for
entering and querying personal information. Pinky includes flexible syn-
tax (§5.3.1), GUI affordances (§5.3.2, §5.4.2), and contextually relevant
information (§5.5) in support of fast, lightweight capture of common per-
sonal information types.

By referencing two major iterations on the Jourknow prototype and
one on Pinky, Chapter 6 investigates the considerable design process
challenges faced by designers of information scrap managers. These chal-
lenges include scoping the design, selecting a user study population and

1. Introduction

19

maintaining contact with that population, and effective prototyping pro-
cedures.

Chapter 7 concludes the thesis with a discussion of future directions
and a reprisal of my contributions through this endeavor.

21

Related Work2.	

Information scraps cross many boundaries in PIM – they are a cross-tool,
cross-information type phenomenon that serve many purposes in our
wide range of daily information-related activities. In this chapter I situate
the study of information scraps among the rich body of research already
surrounding PIM-related activities. I begin by reviewing related research
on the psychological underpinnings behind information scrap practice.
Then, I canvas general personal information management practices as
they bear on information scraps, and specific practices related to indi-
vidual information scrap types such as to-dos.

Psychological Foundations2.1	

There exists extensive psychological literature surrounding our motiva-
tions for creating and manipulating information scraps. Perhaps the sim-
plest framing of the problem was done by Ross and Nisbett in what they
termed channel factors, the “small but critical facilitators or barriers” to an
action [118]. Ross and Nisbett demonstrated the amplified effects that
small difficulties or facilitators will have on human action, just as a pebble
placed at the fork of a stream can dramatically divert the course of the
water. Seemingly small time and effort requirements such as booting up a
laptop might thus be perceived as enough of a burden to cause us to use
other means of capture such as writing on our hands.

2. Related Work

22

There are many such channel factors that encourage us to create in-
formation scraps. Lansdale was the first to relate psychology to the study
of personal information management [96]; in his work, he noted clas-
sification, or filling, as a cognitively difficult activity of special note. This
result suggests that information scraps may be created when the cost of
filing a piece of information is perceived to be too high – whether choos-
ing a point in a folder hierarchy or deciding which of several related ap-
plications to use. Csikszentmihalyi identified humans’ desire to maintain
a state of flow where uninterrupted concentration is highest [53]; Beder-
son translated this concept into interaction design principles in support
of the flow state [29]. When the user is in a flow state, Bederson and Csik-
szentmihalyi argue that unrelated thoughts and ideas may be undesirable,
explaining why we may attempt to write them down as quickly as possible
before our original thought was lost.

Information scraps often serve as a memory prosthesis [95] or exoso-
matic memory, later used to remind us of the original thought. Scraps
can help us index into our memory via a variety of cues. Location is a
very powerful memory primer [57, 81, 116, 138]; a combination of know-
ing what and when can also effectively aid recall of the rest of a memory
[134]. We are also able to recall a variety of contextual information about
our documents to potentially aid in re-finding, such as textual content,
visual elements, file type, or implicit narratives around file creation [28,
40, 65]. However, many information scraps do not include such metadata;
it is unknown whether the highly abbreviated contents of many informa-
tion scraps (e.g., “Joe the attorney” [30]) are more powerful memory cues
than those above.

Often, we fail to create memory prostheses such as information scraps
even when they might later be useful. We are habitually overconfident in
our own knowledge and memory [98], potentially leading to conscious
choices not to commit something to memory that later becomes valuable.
These results imply that we may choose not to record critical information
in an information scrap which later becomes necessary for re-finding or
comprehension. Further, even if we chose to write down or make an ef-
fort to remember, we do not always utilize this information when recall
is needed. Our memory’s faulty yet quick access is often preferred over
accurate but slower external memory aids [66, 67, 86]. Such a prefer-
ence suggests that many information scraps may only be deliberately re-
accessed when our own memory has failed.

2. Related Work

23

Information Scraps in Studies of 2.2	
Specific Data Types

Information scraps take many forms, and researchers have noted their
existence across a number of type-specific studies. Here I review the rel-
evant work by information type.

Perhaps the most canonical information scrap is the self-note. Through
a series of semi-structured interviews, Lin et al. arrived at a model of such
notes’ lifecycles: trigger, record, transfer or maintain and refer, complete,
discard or archive [99]. Campbell and Maglio identified salient charac-
teristics for what they termed notable information, including transience,
visibility, mobility, ability to post, transferability, short length, and ease
of both creation and destruction [50]. The authors further observed a
trend for personal notes: a strong preference for paper-based media over
digital media. Dai investigated this preference by interviewing expert us-
ers of PDA memo applications to suggest future design directions; users
were typically most hindered by a lack of organizational support for their
digital notes [56]. Hayes et al. studied the phenomenon of short important
thoughts, uncovering a strong need for ubiquity and mixed-initiative sys-
tems in the support of such information [70]. Strikingly, 73% of partici-
pants reported regularly transcribing such notes onto another medium,
suggesting transfer as an especially potent pain point for personal notes
and thus some information scraps.

Professional fields often encourage similar practices via engineering
logbooks and meeting notes. Paper engineering logbooks, long a common
practice for professional engineers to use for recording notes and ideas,
were found to most commonly serve as reminders of work in progress and
as a personal work record for future reference [104]. Meeting notes cre-
ated by professional information workers contain a large number of facts
(e.g. names, phone numbers, technical details, and procedures) and action
items [90]. The degree to which these practices translate across other
logbook-intense professions such as in the sciences [120] is not yet clear.

E-mail is now not just a tool but an entire habitat, an ecology in which
we embed much of our personal information [59]. As a result of this
embedding, we see e-mail used for a variety of information scrap pur-
poses. E-mails are deliberately marked as unread or left unorganized in
the inbox to serve as reminders or to-dos, and half-completed messages
are saved along with notes for what to include [32]. Venolia et al. sug-
gest that such coping strategies are due to the sheer volume of incoming
messages [133]; other research suggests a complementary hypothesis that

2. Related Work

24

they may also be the result of information scraps being archived in the
inbox. For instance, Whittaker and Sidner’s early study found that 35%
of folders contained only one or two e-mails [136], suggesting that many
of these e-mails may have had no natural application and required small,
artificial homes to be created. More recently, we have learned that nearly
a third of all archived e-mail is actually sent by the owner to herself [63,
83] – another common information scrap pattern.

The ubiquity of to-dos, scattered in unorganized locations across the
physical and virtual workspace, suggests that they might constitute a par-
ticularly common form of information scrap. Bellotti et al. undertook the
most rigorous investigation of to-do practice to date [30]. Their findings
suggest that to-dos (and thus information scraps) will be created by ex-
pending as little effort as necessary, and “only elaborated enough to pro-
vide a salient clue” to the original author (e.g., a to-do with only, “Joe the
attorney”). To-dos are often integrated as resources into ongoing work,
incorporating state or links to other artifacts. Bellotti’s investigation un-
covered a large number of separate tools (average 11.25 per person) being
used to manage to-dos, noting that often they are intentionally placed not
in a typical organization but instead in the way of a typical routine to pro-
mote visibility. These fragments or notes are very much in keeping with
our definition of attributes of information scraps: they are deliberately
not kept in an application like a to-do list; they are in a specific “elsewhere”.
These locations might include the backs of hands, scraps of paper, un-
structured text files, and post-its [41].

	
Calendaring tools also display many of the characteristics of infor-

mation scrap work. Users keep a plethora of non-appointment (but still
time-based) information scraps in their calendaring tools: notes of which
week of the semester it is, pointers from a diary entry to supporting ma-
terials, reminders, reports of how time was actually spent, and notes of
prospective but not finalized events, among others [41]. In their studies
of e-mail and task management, Bellotti et al. also noted that participants
would create calendar events as reminders [31].

The consideration of web and Internet material raises further issues.
The Keeping Found Things Found (KFTF) project has investigated the
means by which users keep web information [46, 82, 83]. Use of book-
marks and browser history are relatively anemic; participants instead
e-mailed themselves URLs with comments, saved web pages to disk, or
printed out information.

Camera phones have opened up new opportunities for information
scrap collection and recording. Ito [77] describes the cameraphone’s abil-
ity to elevate the mundane – allowing us to take photos of the seashell we

2. Related Work

25

find on the beach, the street sign that will allow us to relocate a new
restaurant, or other objects that are simply “interesting” in some way.
Such one-off photos may fall into the domain of information scraps,
especially as the mundane objects can be difficult to categorize or be
of predictable utility. These scrap pictures may be numerous, as well:
images captured for “personal reflection or reminiscence” were the
most numerous of those indexed by Kindberg et al. [91].

Organizational Practice2.3	

Physical office organizations reveal many qualities that are common
to information scraps, including an aversion to filing and an affinity
for paper media. Malone’s seminal paper on office organization [102]
directly examined the existence of unorganized piles in office work.
He noted that while most workers’ desks were piled rather than filed,
computers of the time required users to file rather than pile. I note
this trend here, as the often uncategorizable nature of information
scraps suggests that information scraps are particularly prone to pil-
ing. Whittaker and Hirschberg [135] discovered that working notes for
current projects constituted 17% of the paper archives maintained
across an office move – many of these were handwritten and irreplace-
able, a population with likely overlap with information scraps (e.g.,
meeting notes and brainstorms). In The Myth of the Paperless Office
[123], Sellen and Harper detail numerous reasons for the continued
prevalence of paper in the workplace, including its ease of annotation,
flexible navigation, spatial reorientability and support for collabora-
tion. Many of these same forces are at play when we choose to use
paper to record our information scraps.

There is a similar antipathy to filing scrap-like information in the
digital realm. In parallel to Whittaker and Hirschberg’s description
of working papers, Barreau and Nardi detail what they term ephem-
eral information – that which has a short shelf life. Many information
scraps exhibit the characteristics and difficulties of ephemeral infor-
mation: they are “loosely” filed or not filed at all, and difficult to man-
age in large quantities [27]. Boardman and Sasse noted that their par-
ticipants tended to combine filing and piling strategies based on item
priority, regularly filing items of high perceived value but otherwise
leaving their collections to spring cleaning or no organization at all
[42. Boardman and Sasse further reported that 3% of files, 41.6% of
e-mail, and 38.8% of bookmarks remained unfiled over their longitu-
dinal study – again, the forces driving these artifacts to remain unfiled
will likely also exist for information scraps.

2. Related Work

26

Folder structures for scraps, when they do exist, may likely remain
ad-hoc and relatively flat. Jones investigated folders in the service of on-
going projects [85], and found that folders’ semantics were continually
adapted to reflect each participant’s “evolving understanding of a project
and its components.” This result will likely hold for information scraps as
well, whose boundaries are less clearly delineated than project folders.
Similarly, Barreau and Nardi [27] investigated digital file hierarchies an
discovered that most participants’ hierarchies were surprisingly flat due to
low perceived future usefulness of complex archives. Rather, digital hier-
archies were structured in the service of what they refer to as location-based
finding: navigating to a directory of interest and proceeding to browse.
This result is remarkable in that users preferred to depend on their own
cognitive capacities for recognition of documents rather than ensure that
everything is elaborately filed, suggesting that information scraps may be
recalled in the same manner.

Generating accurate and personally relevant filing schemas for infor-
mation scraps can be a cognitively difficult process. Malone’s participants
complained of the difficulty of accurately filing paper information [102];
Bowker and Star [45] expand this point to the digital realm: “A quick scan
of one of the author’s desktops reveals eight residual categories repre-
sented in the various folders of email and papers: ‘fun,’ ‘take back to of-
fice,’ ‘remember to look up,’ ‘misc.,’ ‘misc. correspondence,’ ‘general web
information,’ ‘teaching stuff to do,’ and ‘to do.’ We doubt if this is an un-
usual degree of disarray or an overly prolific use of the ‘none of the above’
category so common to standardized tests and surveys.” [45 p. 2]

Information fragmentation [78] of information scraps occurs across de-
vices, applications, and media. In a cross-tool study, Boardman [43] re-
ported on three consequences of fragmentation: 1) file compartmental-
ization across tools, 2) lack of ability to coordinate work activity between
tools, and 3) inconsistent design vocabularies. Fragmentation leads to
undesirable effects such as an inability to gather all information about
a single person or topic, or to effectively link such data [88]. Informa-
tion scraps can be particularly susceptible to fragmentation, as similar
information may be scattered across multiple tools. While fragmentation
mainly occurs between applications, mobile situations have fragmentation
instead across devices such as cell phones, laptops, notebooks and other
mobile devices [108]. Information scraps are susceptible to mobile frag-
mentation, as freeform, unsync’ed data inevitably becomes isolated from
related data on other devices. Data unification is viewed as an eventual
goal to remedy this situation [34, 43, 84, 88, 87].

2. Related Work

27

Information Scrap Solutions2.4	

There are a growing number of commercial products and research
systems aimed at information scrap management, allowing the user to
capture unstructured notes. Here I discuss a few particularly illustra-
tive products — a more complete list is maintained at http://people.
csail.mit.edu/msbernst/papers/pim-tools.htm.

The most straightforwardly relevant class of products are those
which adopt a notebook or free-text metaphor in their user interface,
selling themselves as digital equivalents of the pocket notebook. These
tools may be designed as such, such as Microsoft OneNote [17], Post-
It Digital Notes [18] or Yojimbo [24], or they may be co-opted general
purpose programs such as Notepad, emacs [6], or the e-mail client.
There are a number of useful axes on which to compare the basic
designs of these products:

Does the tool discretize notes in the interface, or does it choose •	
coarser units of granularity such as the page — or even no dis-
cretization at all?
Are notes organized in any kind of hierarchy or tagging sys-•	
tem?
Is the tool desktop, web, or mobile-based? What kind of usage •	
scenarios is the tool thus assuming will be particularly relevant?

Many tools aspire to more than simple note saving. Automatic rec-
ognition of structure embedded in the note text is common; this struc-
ture can be text used in searches [5, 17], people and places for orga-
nization [22], or (outside the notebook metaphor) dates and times for
calendaring and reminding [7, 12]. Digital notebooking often involves
linking or copy-paste; thus, tools such as Google Notebook [9] auto-
matically embed source information whenever possible. This source
data allows the user to re-find the information in its original context.
By drawing on the ubiquitous Post-It note, specifically its constant re-
minding presence and its small form factor, designers have introduced
tools with small desktop fingerprints such as Post-It Digital Notes [18].
Finally, we see tools experimenting with different input modalities.
Jott [13] is a popular voice-to-text service; pen input is often cited as
‘killer apps’ of digital pens (e.g., Anoto [1]) and tablet computers (e.g.,
OneNote [17]).

Research programs have begun developing tools as well. Bederson
instantiated his ideas of interface flow in NoteLens [29], providing a
large number of keyboard shortcuts to keep the user’s experience as
noninvasive as possible. The Cepher tool [71] addresses synchroniza-

2. Related Work

28

tion and ubiquity issues associated with notetaking by synchronizing notes
across multiple devices using a personal server. Lifelogging research at-
tempts to capture context the user may not have otherwise digitized, such
as pictures, sound, viewed web pages and GPS location. This information
may be refound later for interest (e.g., Stuff I’ve Seen [60], SenseCam
[73], MyLifeBits [64]), or embedded into notes to aid memory (e.g., Chit-
tyChatty [86]).

29

As a class of personal information, we have much still to learn about infor-
mation scraps. What similarities exist among scrap features and manage-
ment practices? Why are information scraps so often held outside of our
traditional PIM locations and instead on scraps of paper or in text files?
Why do we manage other scraps by co-opting our traditional PIM appli-
cations against their intended modes of use, such as by composing e-mails
addressed to ourselves? If these unorganized bits truly indicate the limits
of our PIM tools, how might we begin to build better tools?

In this chapter, I investigate the nature and use of information scraps.
I contribute a cross-tool methodology for studying existing information
scraps, and apply this methodology to an investigation of information
scrap practice. In the study, I investigate the information types [79] stored
in scraps, the constitution of scraps, tools used in support of information
scrap work, and the information scrap lifecycle. The artifact investiga-
tion reveals a large diversity of information types encoded in informa-
tion scraps, contributing an appreciable percentage of the total scraps
investigated. Through analysis of these results, I derive a characterization
of the typical roles that information scraps serve in personal information
practice: temporary storage, cognitive support, reminding, information
archiving, and recording of unusual information types. These roles sug-
gest a set of unmet design needs in current PIM tools: lightweight entry,
unconstrained content, flexible use and adaptability, visibility, and mobil-

Ethnography3.	

Work presented in this chapter is a collaboration with Max Van Kleek, David Karger and
mc schraefel. It is in press, ACM Transactions on Information Systems [35].

3. Ethnography

30

ity. Finally, I describe approaches that I believe will be the most successful
in the information scrap management of tomorrow.

Goals3.1	

I have targeted a type of personal information with many unanswered
questions – one that highlights the ad-hoc, unorganized underbelly of
personal information. My focus is on understanding why information
scraps exist, what kinds of information they hold, why they end up in the
tool or medium they do, and how they evolve through their lifetime. I
entered this study hoping to understand to following:

Characterization of the phenomenon. •	 What is, and is not, an infor-
mation scrap? Can we improve our intuitive understanding into a
more precise characterization of the phenomenon?
Type variety.•	 What kind of data will be encoded in information
scraps? How much variety will there be, and which information
types will be the most popular?
Structure and expression. •	 How does a calendar item as an infor-
mation scrap compare to a similar item in a digital calendar such
as Outlook? Will the information scrap carry less information, or
express it in a different way?
Tools.•	 Information scraps are by definition held in inappropriate
or general-purpose tools. What tools are these, and why do we use
them? How do we adapt the tools to hold information they may not
have been designed to carry? To what extent does fragmentation
take place across tools, and does this fragmentation inhibit later re-
finding or re-use?
User needs. •	 What needs do information scraps serve? Why are they
used in preference to other PIM tools?

Method3.2	

We conducted a study consisting of 27 semi-structured interviews and arti-
fact examinations of participants’ physical and digital information scraps.
From our initial work [39, 131] it was clear that information scraps are
a cross-tool phenomenon, so we chose a cross-tool study inspired by the
cross-tool work of Boardman and Sasse [42]. This study design allowed
us to examine information scraps in many locations rather than a single
(possibly sparse) one. As our questions primarily surrounded information
scrap content, organization and location, and lifecycle, we chose to focus
on examining the scraps themselves rather than the capture or retrieval

3. Ethnography

31

process. Diary studies and experience sampling studies would have
also allowed us to record information scraps as they were generated,
but we were concerned that the additional time and energy burden
on participants would have conflicted with the overriding importance
participants place on ease and speed when capturing scraps – par-
ticipants may have simply chosen not to record the scrap to avoid the
effort associated with writing in their diaries.

We carried out the interviews with participants from five different
organizations, following a five-person pilot study in our lab. Three of
the organizations we visited were information technology firms, focus-
ing on mobile communication, interactive information retrieval, and
wireless communication. One was small (start-up), another medium
sized, and the third a large multinational corporation. The fourth or-
ganization was an Internet consortium, working internationally in a
highly distributed fashion. The fifth was an academic research lab. We
interviewed 7 managers (MAN), 7 engineers (ENG), 6 administrative
or executive assistants (ADMN), 2 finance workers (FIN), 2 usability
professionals (UI), 1 technical writer (WR), 1 campus recruiting offi-
cer (REC) and 1 industrial researcher (RES). There were 13 males and
14 females; the median and mode age range was 30-35. Educational
level ranged between some college (4), college degree (11) and gradu-
ate degree (12). This population was a diverse group of professional
knowledge workers with a skew toward those vested in information
technology.

Interviews were performed at each participant’s main computer,
located at his or her typical place of work. For privacy reasons, par-
ticipants were free to refrain from sharing any particular piece of
personal information. During the interviews, we did not use the term
information scrap; rather, we asked participants to tell us about informa-
tion that they had that was not formally recorded in a proper place,
like a calendar or project folder. Participants then provided us with a
stream of examples which we noted as they discussed these exemplar
artifacts. Our questions focused on revealing the purpose of the item,
the reason it was recorded the way it was, as well as where it fit in any
context or process of use.

Information Scrap Operationalization 3.2.1	

As discussed in the introduction, the term information scrap can be dif-
ficult to define. However, for purposes of internal validity, and lacking
a rigorous definition at the time of our study, we required an opera-
tionalization of the term that would allow us to identify which artifacts

3. Ethnography

32

to record. We used this operationalization to decide which artifacts were
in scope; we did not generally attempt to convey this definition to the sub-
jects of the study. Throughout the discussion of the study, we refer to an
information scrap as a piece of personal information that:

Is in a tool with no explicit support for •	
that information’s schema, or

e.g., a phone number on a Post-it
note

Has no tool specifically designed to •	
handle that kind of information, or

e.g., an application serial number

Is in a tool that does not seem par-•	
ticularly well suited to the information
type.

e.g., a to-do with a “where to re-
mind me” field shoehorned in to the
details field

The following are examples of artifacts that we excluded from our cap-
ture: e-mail serving a communicative purpose, word processor documents
with papers or full essays, and contact information in the computer ad-
dress book. This definition carries a connotation that what is and is not an
information scrap depends on each participant’s tools, needs, and prac-
tices. Based on the results of this study, we later refined our definition of
information scraps to the one found in Chapter 1.

Triangulation Method3.2.2	

Information scraps are distributed among tools and locations, and strat-
egies vary from person to person. We faced a challenge in our artifact
examination – specifically, that we might not uncover some classes of each
participant’s information scraps. We could canvas the space by asking
about all known tools – but what if the participant used a tool we didn’t
know about, or used a common application in a way we did not think to
investigate? We could instead query by location, such as Desktop or Mis-
cellaneous folders – but what if the data lived in an application rather
than a folder? We could ask how participants dealt with common scrap
types such as how-to guides and URLs – but certainly there would be
types we might leave out.

Our solution was to fashion a methodology by which we would look
for information scraps along all three axes: tool, location, and type. By ex-
ploring along each axis with participants, we would be able to zero in on,
or triangulate, the location of an appropriate artifact. We first inquired
after tools (typically the most prolific approach), continued with location
and finally type. To our knowledge, this methodology is novel. We began
by running a pilot study (5 participants) to generate a broad set of tools,
locations, and types that we used as a seed list for our final study. Partici-
pants were free to generalize to other tools as they desired. We recorded
information scraps that were digital, physical, and mobile. Table 3.1 lists a
sample of the script we followed.

3. Ethnography

33

Table 3.1. The three categories of Tools, Locations and Types character-
ized the main starting points for our artifact study.

Triangulation
Perspective

Examples What was targeted

Tools E-mail Messages that do not serve communica-
tion purposes: e-mails sent to oneself, in the
Drafts folder, or archived in the inbox.

Calendar Calendar entries that did not correspond to
actual events; use of the “details” field.

Bookmarks Bookmarks carrying information beyond
just a pointer to a web page – for example,
“todo” or “toread” bookmark folders.

Physical Notebooks All available data (this location commonly
holds information scraps).

Physical Post-it
Notes

All available data (this location commonly
holds information scraps).

Notetaking
Applications

All available data (this location commonly
holds information scraps).

Freeform text files “todo.txt” or “todo.doc” files containing per-
sonal notes, to-dos, and other data.

Locations Computer Desktop Documents of short-term interest and notes
to self.

Physical Desktop Freeform notes and documents of short-
term interest.

“Miscellaneous”
Folder

Data that was difficult to categorize.

Office wall and
whiteboard

Participant-authored decorations or anno-
tations.

Types Reminders and
To-dos

To-dos not in the to-do manager or that did
not fit the to-do manager’s schema.

How-to guides All examples (no known application to orga-
nize this information).

URLs of interest or
quotes from web
sites

Examples not held in a bookmarking utility.

Contact information Examples not held in a contact utility.

Notes All examples (common information scrap).

Short pieces of
data (e.g., phone
numbers, passwords,
serial numbers,
thank-you note lists)

All examples (common information scrap).

As the participant or interviewers pointed out information scraps in
each tool, location or information type, the interviewers performed an
artifact analysis and a semi-structured interview focused on techniques

3. Ethnography

34

surrounding the items of interest. One of the interviewers, performing
the artifact analysis, probed for as many specific instances of the class of
information scrap as feasible given the time constraints. For each artifact,
the following were recorded:

Information type: the information type as described by the partici-•	
pant (e.g., to-do, URL, shopping list).1
Tool: the tool used to author and edit the information scrap. •	
Presence of material not directly created by the author: a binary •	
variable, true if the information scrap contained any content that
was copied into the scrap rather than authored directly.
Content encoding: four binary variables, each true if the informa-•	
tion scrap contained the particular kind of content:
Text: written or typed text or words •	
Photographs •	
Pictorial Drawings: representative drawings; drawings intended to •	
look like a particular object, as in a design sketch
Abstract Drawings: non-representative drawings; graphs, arrows, ab-•	
stract visual layouts, diagrams

Multiple items were often coded from a single tool, as distinguished
from each other by the participant. The interviewers guided the interview
so as to try and get a representative sample of information scrap from a
variety of tools, skewing for breadth rather than depth, though we did
spend extra time investigating tools with large numbers of scraps. At the
conclusion of the study, we consolidated similar information type catego-
ries. To consolidate, we began with the specific types recorded by one of
the interviewers and verified by the other. The two researchers then acted
as coder/aggregators, consolidating types as aggressively as possible with-
out sacrificing the participant’s original intent with the scrap.

At the conclusion of the artifact examination the interviewers con-
tinued the semi-structured interview, following up on topics of interest.
Interviews typically lasted sixty minutes.

1 The data type was recorded as per the participant’s primary classification of the artifact,
even if it contained multiple data types. Thus, even though many to-dos included names
of people, places to be, times of events, and so on, they were nonetheless coded as “to-do”
if the participant viewed the overall artifact as a to-do.

3. Ethnography

35

Results3.3	

What do Information Scraps Contain?3.3.1	

In our artifact analysis, we coded each of the 533 information scraps for
its information type, and then consolidated similar categories. The results
can be seen in Table 3.3 and Figure 3.1.

Common information scrap types 3.3.1.1	

The four most common information types we found in scraps were
to-dos (92 instances), meeting notes (44 instances), name and contact in-
formation (38 instances), and how-to guides (25 instances):

To-dos.•	 Information scraps containing lists of items participants
wanted to accomplish. Action items, traditional to-do lists, and other
information interpreted as a to-do fell into this category.
Meeting Notes.•	 Notes taken down while the participant was in a
meeting or discussion. These ranged from notes taken at formal
meetings to hallway conversations.
Name and contact information.•	 Typical contact information: name,
address, phone number or e-mail address.
How-to Guides.•	 Recipes noting how to perform certain tasks, kept
for future reference. Examples included UNIX shell commands,
login procedures for remote servers, and international calling/ship-
ping/faxing instructions.

It is notable that two of these top four categories (to-dos and contact in-
formation) are easily managed by many PIM applications. §3.3.5.1, dis-
cussing the capture stage, will give possible reasons why this information
still may end up in scrap form.

Diversity of Data Types and the Long Tail 3.3.1.2	

Another compelling view of information scrap forms appears when one
focuses on the least frequently occurring items. Figure 3.1 illustrates the
frequency of each information type we found within all participants’
scraps, ordered from most to least frequent. Immediately noticeable is the
fast drop in the histogram after the most common types described above,
and the large mass of types with few occurrences. Furthermore, as can be
seen in Table 3.2, the least frequently occurring types (the tail of the dis-
tribution) comprised a significant percentage of the information stored in
all the scraps; in particular, forms that occurred only once comprised 13%

3. Ethnography

36

Table II. Table 3.3. We noted large numbers of scraps containing as to-dos, meeting
notes, contact information, and how-to guides. However, there is was also a group of scrap

types that only occurred once or twice across our entire investigation, highlighting the wide
variety of personal information encoded in information scraps.

Occurrences Types with the Given Number of Occurrences

92 To-Do

44 Meeting Notes

38 Name And Contact Information

25 How-Tos

16 Work-In-Progress

14 Directory, File Path Or URL

13 Desired Items

12 Login/Password

9 Brainstorm, Calendar Or Event Details, Event Notes

8 Progress Report, Receipts And Confirmations

7 Computer Repair Status, Conversation Artifact, Correspondence (Chat), Financial Data,
Products Of Interest, Reminder

6 Calendar Or Event List, Correspondence, Debugging Notes

5 Archived E-Mail, Computer Address, Ideas, Pre-Emptive Calendar Scheduling

4 Account Number, Airplane Flight Information, Annotations, Design Layout, People Of
Interest, Plans And Goals, Timeline, Airplane Flight Information, Archived Document

3 Agenda, Configuration Settings, Jobs And Classifieds, Math Scratchwork, Project Notes,
Shipping Information, Template E-Mail Response, To Read, Whiteboard Capture

2 (Mixed type), Academic Record, Bug List, Changelog, Company Organization Chart,
Debugging Program Output, Favorite Quote, File Backup, Frequent Flier Information,
Hotel Information, Performance Tracking, Room Setup Diagram, Tax Information,
Template Text, Time Log, To Share

1 (No Memory of Meaning), Announcement, Application Instructions, Architecture, Ar-
chived Document, ASCII Art, Baseball Schedule, Blue Chip Stocks, Book Margin Com-
ments, Book Outline, Calculation Chart, Car Supply Shops, Citation, Class Assignments,
Client ID Number, Concert Tickets, Correspondence (E-Mail), Credit Card Information,
Deadlines, Decorative Drawing, Definition, Demographic Breakdown, Documentation,
E-Mail Lists Of Interest, Employee Desires And Goals, Event Planning, Expense Report,
Fantasy Football Lineup, File Transfer, Flow Diagram, Funding Options, Gift Certificate,
Guitar Chords, Gym To Join, Insurance Claim, Kayaking Resources, Library Number,
Moving Plans, Network Diagram, Newsletter Outline, Notes From Old Job, Parking Lo-
cation, Part Number, Patent Information, Phone Payment Statistics, Picture Of Car, Pic-
ture Of Poster, Pictures Of Team Members, Planned Trip (Map), Presentation, Price List,
Project Overview, Public Notice, Puzzle Answers, README File, Rebate UPCs, Recipe,
Resume, Room Location, Salary Calculation, Serial Number, Sign Out Sheet, Song Lyr-
ics, Talks Given, Travel Agent, Word To Spellcheck

3. Ethnography

37

of all scraps; twice or less, 18% of all scraps. Information scraps encode a
wide variety of personal information.

This result suggests that the distribution of information types con-
tained with scraps exhibits the long-tail property of statistical distributions,
where the scraps containing rarer forms cumulatively rival the number of
occurrences of commonly occurring forms. Our result is consistent with
a variety of other natural occurrences distributed as power laws, patterns
known variously as The Pareto Principle and Bradford’s Law. These prin-
ciples suggest that a large percentage of our information will fall into a
small number of categories, and that a large diversity of unpopular cat-
egories will make up the remainder.

Table 3.2. Information types that appeared only once make up ap-
proximately one eighth of all information scraps. The 50% threshold is

crossed at nine occurrences out of 533 recorded information scraps.

Upper Bound on
Number of Occurrences
of an Information Type

% of all Information
Scraps

1 12.8%

Figure 3.1. This visualization of Table 3.3 demonstrates the span of the
long tail of personal information in information scraps. The ordering is
identical to that in Table 3.3.

3. Ethnography

38

Upper Bound on
Number of Occurrences
of an Information Type

% of all Information
Scraps

2 18.4%
3 24.0%
4 29.3%
5 33.0%
6 36.4%
7 44.3%
8 47.3%
9 52.4%

We uncovered a large number of rarely-occurring information types,
including book wish lists, application serial numbers, expense reports, re-
sumes, guitar chords, and information about kayaking. All of these types
could benefit from an application tailored to their semantics (e.g., com-
paring kayaking in Cambridge and Palo Alto, sorting resumes by years of
experience, or finding the most similar expense reports); however, unlike
information types like to-dos, for the majority of these rarely occurring
types, such applications are either nonexistent or unpopular.

In addition to looking at the distribution of types for all scraps as a
single group, we also looked at each individual’s scrap distributions, to
gain a sense for comparison. In doing so, we observe a similar distribution
for individuals’ scraps, which implies that individuals use scraps to keep a
large number of infrequently occurring information types themselves; see
Figure 3.2a and Figure 3.2b. This result is again consistent with The Pa-
reto Principle and Bradford’s law, which state that subsets of the general
population also follow similar power laws.

Figure 3.2b provides an interesting link between the global (i.e. in-

ter-participant) and personal distributions: ENG3’s most popular item is
notes on the repair status of the computers he managed; however, he was
the only participant to record such information. Thus, even though com-
puter status notes are in the head of ENG3’s personal distribution, the
form still exists in what is globally the tail of the distribution. Several other
participants exhibited such behavior, as well: ADMN1 maintained a set of
artifacts she needed to share with her superior, ENG2 keeps an extensive
set of personal progress reports, MAN6 has a sizable folder of documents
to read in his free time, and so on. Yet each of these patterns was minor
when averaged over the entire sample.

3. Ethnography

39

a)

b)

Figure 3.2. a) FIN1’s information form distribution, which also follows a long
tail. Here the histogram closely mirrors the accumulated distribution across
all participants. b) ENG3’s information form distribution, evidencing a large
number (7) of computer status note scraps. Though these notes are in the
head of his distribution, he was the only participant to collect such data, so
when accumulated the computer status notes fall into the long tail.

3. Ethnography

40

Scrap Encoding, Composition and Layout3.3.2	

The predominant method of encoding information in scraps was text,
typed or handwritten. However, it was not uncommon for information
scraps to also contain abstract drawings (Figure 3.3). Such drawings in-
cluded arrows, graphs or timelines, stars, organizational lines and boxes,
and markings indicating emphasis. We coded our data to record the num-
ber of information scraps that contained text, abstract drawings, pictorial
drawings, or photographs. We found 96% of our information scraps to
contain some sort of text (95% of the digital scraps, 96% of the physical
scraps), 5% to contain abstract drawings (1% digital, 10% physical), 2%
to contain pictorial drawings (no digital examples, 4% physical), and 2%
to contain actual pictures (4% digital, < 1% physical). In two-proportion
z-tests, the differences between digital and physical media for abstract
drawings, pictorial drawings, and actual pictures are significant (p < 0.01);
the difference for text was not significant. A small number of information
scraps contained other kinds of media, digital or physical attachments
such as laundry receipts.

Due to the varied nature of the types of information scraps, there
was a corresponding variation in scraps’ elements, such as phone num-

Figure 3.3. All three of these information scraps contain abstract draw-
ings, including arrows, boxes, and so on.

3. Ethnography

41

bers, e-mail addresses, or URLs. It was not uncommon to see several ele-
ments intermixed in a single information scrap or several unlike informa-
tion scraps together in one location – Figure 3.5b contains a URL, a PIN
number, two UNIX commands, and a phone number sequence, all mainly
unrelated. The information types were rarely labeled, which occasionally
made it difficult for the interviewers to understand the content of some
notes (Figure 3.4).

Information scraps were a common way to capture data that did not
match existing schemas. Underspecifying data was an important affor-
dance: “I don’t know exactly when [my visitor] will come today,” MAN3
explained about the calendar event in his to-do manager, “If we’ll agree
on the details later, I prefer to use a to-do.” Information scraps could also
capture data with more fields than applications knew how to handle; for
example, MAN maintained his own contact list where he could record
previous deals and other personal notes on each person he worked with.

Flexible content traded off the ability to manipulate the data in a
structured manner later. Thus, many participants were reduced to key-
word search or page flipping to re-find particular scraps. Groups of scraps
that had grown large enough sometimes established their own lightweight
structure to support manipulation, such as by using spreadsheet software
with headings.

Figure 3.4. Information scraps containing unusual data. Counterclock-
wise from upper left: guitar chords, an unknown string of numbers, and
answers to an online riddle.

3. Ethnography

42

Several participants who kept free text files on their computer uti-
lized this ability to mix types or lay out thoughts as they desired – even
creating ASCII art in the case of ADMN6. Paper and physical tools were
particularly preferred for their encoding flexibility, allowing participants
freedom over visual structure and sketching (fully 10% of physical scraps
involved some sort of drawing annotation).

While most information scraps were very short (a few words or lines
long), we observed several instances of scraps of approximately a hand-
written page in length, particularly meeting notes. This result indicates
more variation in length than we were originally expecting.

Use of Language in Scrap Text3.3.3	

We found that text written in information scraps used extremely terse
language; many scraps consisted exclusively of key words, such as lists of
names of people, places or objects, and raw bits of data, such as phone
numbers, addresses, passwords, and other strings. Figure 3.5 gives exam-
ples of text used in scraps. Scraps used as temporary storage locations in
particular exhibited short language, listing single words or pairs of noun-
object or noun-data value, often omitting the verb or relevant predicate,
as well as articles and particles. For scraps comprising notes, such as from
a meeting, class or brainstorming, phrase structure was more common.
We also noticed a tendency to omit the subject title or description of what
the data actually represented. Several participants, when sending e-mails
to themselves, intentionally left the subject field blank or wrote something
general such as “note to self.”

Tools and Locations 3.3.4	

We noted 51 different tools in use across our investigation, 33 digital and
18 physical. Figure 3.6 shows the distribution of the number of informa-
tion scraps we located in each tool or location. Again there is a power
law (Pareto Principle) pattern, beginning with a set of extremely popular
tools and trailing off to a large number of less popular ones. Participants
maintained a small set of main tools for capturing information scraps,
supplemented with a large number of less-used auxiliary tools.

The digital and physical world each held popular tools. E-mail was by
far the most dominant digital tool for recording information scraps (74
instances, 26.4% of digital scraps), followed by a text editor (47 instances,
16.8%; e.g., TextEdit or Notepad) and word processor (27 instances, 6.4%;
e.g., Microsoft Word). Demonstrating the use of text files in particular, a
few participants generated large, separate files of contact information be-

3. Ethnography

43

Figure 3.5. Information scraps we noted, focusing on typical examples
of minimal use of language in scraps: a) an envelope with several scraps:
guitar chords, stock ticker symbols, e-mail addresses, and an unknown
number, b) a web site address, password and helpful SSH commands in
a rolodex, c) use of the Outlook notes facility to maintain links of inter-
est and the outline of a blog entry, d) “CFP Meeting, ERCIM, didn’t use
database #’s, up in [incomplete],” meeting notes, e) a brainstorm on a
programming decision, f) “email to Leone w.r.t. 600.000 euros,” a re-
minder, g) several post-its on the laptop palm rest, reading “XIA HUA,”
“ANDREW talk,” and “Gopal’s cell #”, h) a reminder written on the partic-
ipant’s hand, a single word, i) text at the top of an e-mail the participant
received, condensing it into a few memorable words, j) an annotated,
copy/pasted chat transcript detailing a slightly arcane UNIX command.

3. Ethnography

44

cause they wanted to keep the information conceptually separate from
their contacts or needed data fields not available in the typical contact
manager.

In the physical world, paper notebooks (94 instances, 37.2% of physi-
cal scraps) and Post-its (60 instances, 23.7%) were the most popular choic-
es. Participants reported that paper notebooks were often an appropriate
choice because they were portable and more socially acceptable in face-to-
face meeting settings. Thus, paper notebooks were the most popular tool
for meeting note-keeping, and physical meeting notes were three times as
common as digital meeting notes.

Physical/Digital Divide3.3.4.1	

Overall, there was an approximate parity in the number of physical (253,
47.47%) and digital (280, 52.53%) information scraps we gathered. How-
ever, this statistic is slightly misleading, as participants adopted widely dif-
ferent strategies. A chi-squared test comparing the number of digital and
physical artifacts between each participant rejects the null hypothesis (p
< 0.01), indicating that there is some dependency between the partici-

Figure 3.6. There are a small number of tools and locations used fre-
quently, such as notebooks, e-mail, and post-its, and a large number of
locations used a small number of times.

3. Ethnography

45

pant and the distribution of their information scraps between digital and
physical tools. Figure 3.7 indicates what this connection might be: a bi-
modal distribution with most participants centered at the 50% mark and
a smaller group being almost entirely digital. These digital participants
tended to be technophiles or mobile workers, including two managers, an
engineer, an administrative assistant and a research scientist. Their exis-
tence is a somewhat surprising conclusion given previous research’s claims
that paper is still an overriding favorite for many information scraps [50,
99, 123].

Mobility3.3.4.2	

When the scenario called for information workers to go mobile, partici-
pants often generated information scraps to carry important data around
or to capture information as events occurred. A small number of infor-
mation scraps (22 instances) were in mobile digital form: primarily smart-
phones, but also PDAs, SMS messages and cameraphone pictures. ENG7
and MAN7 in particular used smartphones heavily for capture, and re-
lied on synchronizing functionality with their desktops. Though we were
unable to note which physical information scraps were used in mobile

Figure 3.7. Examining the number of participants at each level of digital
data, we see two groups: one centered around half digital, half physical,
and the other almost completely digital.

3. Ethnography

46

scenarios and which were not, our interviews suggested that paper in-
formation scraps were particularly useful in mobile scenarios. UI2 was
often mobile: she described how she would reference a note file on her
smartphone with relevant conference call numbers, and was likely to send
herself a voicemail or add a smartphone note file if the situation required.
In addition to mobile scenarios, social constraints came into play: when
laptops were not socially appropriate at meetings, paper notebooks were
used instead.

Tool Adaptation3.3.4.3	

Information scrap tools were characterized by an adaptivity to novel uses.
Post-Its are perhaps most illustrative of this fact: we observed Post-its stuck
on walls, on monitors, and inside notebooks; we saw them being folded up
and carried into other rooms, crossed out and annotated, and stuck on
to cell phones. The tools’ generality enabled a wide variety of adaptation
and innovation.

This adaptability enabled re-appropriation of the tools. For example,
ENG4 used a popular web-based software bug tracking tool as his person-
al to-do list because it afforded an organizational principle that he liked
(individual issues as commitments with deadlines), he could access it from
anywhere, and because he could easily update his list of commitments by
emailing the system. Similarly, MAN3, who stuck Post-It notes to the back
of his cell phone, took advantage both the availability of an unused area
on the back of his cell phone and Post-It notes of the right size to devise
a solution that worked around the physical impossibility of taking down
notes on the phone while using it.

Annotation and revision were also quite common – documents were
annotated with comments on what the recipient should do, calendar
events contained explanatory notes, and last-minute amendments were
appended to agendas. For example, ADMN5 printed out the day’s sched-
ule for her supervisor (produced using a calendaring tool) and marked it
up with physical notes.

We found that several participants attached commonly referenced
artifacts to highly visible objects, such as the wall or computer monitor.
Participants often depended on scraps’ visibility and in-the-way qualities
[30, 102]: for example, DOC left Post-Its with to-dos in an intrusive loca-
tion right next to her monitor until she finished them. Sometimes the
information was even attached to the item of interest; in Figure 3.8, ENG3
wrote on tape affixed directly to the computers he was attempting to an-
notate.

3. Ethnography

47

The Information Scrap Lifecycle3.3.5	

In this section we build on Lin et al.’s micronote lifecycle [99], revisit-
ing our results using the lens of the information scrap lifecycle. Here, we
discuss Capture, Transfer, Organization, and Re-use:

Capture:•	 the process of translating a thought into a physical or digi-
tal information scrap.
Transfer:•	 optionally translating an information scrap from one form
into another, either to put it in a more permanent form or enable
mobility.
Organization:•	 the addition of structures and metadata to aid re-
finding of scraps later.
Re-use — Reference, Retrieval and Recall:•	 the need to re-find
scraps (reference), the process of re-finding those scraps (retrieval),
and memory for scrap contents (recall).

Capture3.3.5.1	

One of the most commonly cited situations prompting information scrap
creation was the need to write something down quickly. Participants re-
ported that quick capture was often prompted by situations such as unin-
vited distractions or being away from their desks. Thus they were a com-
mon means to archive important thoughts before the ideas were forgotten

Figure 3.8. ENG3 wrote notes on masking tape, then affixed the infor-
mation directly to the computers of interest.

3. Ethnography

48

[70]. “Mind like water,” MAN6 explained, zenlike; getting the thought out
of the head and written somewhere as quickly as possible was the first pri-
ority. This offloading of data to the scrap freed our participants to focus
on their primary tasks, such as holding a conversation, paying attention to
a meeting, or even driving the car (as with MAN7).

When time and effort were at such a premium, the fastest tool would
often win out. Even seemingly minor difficulties or annoyances with tools
could have striking effects on behavior. “If it takes three clicks to get it
down, it’s easier to e-mail,” FIN1 explained. MAN3 would write notes on
Post-its and stick them to his cellular phone to transfer into Outlook lat-
er rather than enter the data directly into his smartphone, even though
the phone supported note syncing. When asked why not enter the note
digitally in the first pass, he responded, “Starting in Outlook forces me
to make a type assignment, assign a category, set a deadline, and more;
that takes too much work!” Similarly, paper notebooks were often chosen
instead of laptops because they require no time to boot up. The effect is
similar to the one described with mobile applications by Oulasvirta and
Sumari [108].

Even when data was implicitly structureable, such as with potential
calendar events, participants chose the faster, structureless route of re-
cording a scrap: for example, plain text such as mtg @ 5pm in cafe. In the
semi-structured interviews, participants explained that structuring the
data could often double or triple the time it would take to simply type the
information. Thus, there was a tension between the desire to capture the
information quickly and the desire for rich representation and structure,
often later achieved via the Transfer process.

We observed three major sources of information for information
scraps: directly authored material, automatically archived material, and
copy/pasted material. Directly authored material, the most common, was
intentionally written by the user in a direct effort to record information.
Indirectly authored material consisted of scraps that were created as the
result of some external action not initiated by the participant, such as re-
ceiving an e-mail or paper correspondence from someone else, and then
explicitly kept by the participant. Thus, e-mails received and then saved
in a “Miscellaneous” directory constituted indirectly authored material. In
our interviews, copy/pasted information included examples such as pho-
tocopies of a credit card in a notebook, pieces of an online FAQ pasted
into a text file, and internet chat transcripts manually saved. We coded
our data to examine how often participants included any material they
did not directly author in their information scraps. We found that 113 of
the 533 scraps (21.20%) overall contained portions copied from other
sources, breaking down as 28.93% of the digital scraps and 14.48% of the

3. Ethnography

49

physical scraps. In a two-proportion z-test, this difference between physi-
cal and digital was significant (p < 0.01).

Transfer 3.3.5.2	

Transfer is the process of moving an information scrap from one medium
to another after it has been captured. Information is moved from tool
to tool, from physical to digital media, or from digital to physical media.
Relatively few scraps were transferred; participants explained that those
that were transferred often held additional importance.

We discovered three major reasons for initiating transfer. The first
was to transform and re-interpret the information to fill in incomplete
details, making the notes appropriate for consumption by others or for
permanent archiving. For example, MAN4 religiously transferred all of
his handwritten meeting notes into e-mails to “fill in the gaps” and make
the notes “sixty-day proof” (ensuring they would be understandable sixty
days later). Second, transfer occurred when information was in a work-in-
progress state and needed to be available in a tool that offered additional
affordances or the ability to accumulate several information scraps into
one location. Third was mobility: scraps were sometimes transferred onto
other media to carry to another room, or sent in e-mail so that it would
be retrievable from home.

Organization 3.3.5.3	

Among scraps that were archived, techniques varied; some consolidated
scraps of similar types/purposes, while others situated scraps with other
scraps that were created at the same time, creating a chronological or-
dering. ENG1 in particular maintained three text files corresponding to
three different types of how-tos accumulated over several years.

Several participants expressed difficulty filing information scraps ac-
curately. This effect was especially powerful for single, unique thoughts: as
ENG3 jokingly complained, “where would you put the last two octets of a
MAC address?” REC concurred: “It’s too much work to decide which sec-
tion it should go in – because sometimes things don’t fit in just one, or fit
in multiple places. It’s hard to decide what to do.” When such difficulties
occurred, participants reported dedicating areas to unorganized informa-
tion scrap collection, ranging from a special e-mail folder, “Miscellaneous”
file folders, misc.txt text files, or a catch-all notebook.

We also noted that participants used ad-hoc solutions to circumvent
organizational barriers, replicating information scraps across multiple

3. Ethnography

50

digital tools. For example, several participants copied contents from e-
mails, wikis, bug tracking tools and groupware into their to-do list man-
agement tool or calendar. Participants reported this behavior was an
effective coping mechanism for linking information from one tool into
another which better fit their workflow. For example, ENG4 pasted emails
into job tickets and summarized them in one line at the top (Figure 3.5i),
because he wanted to keep all of the information relevant to an outstand-
ing ticket in one location. Similarly, ADMN5 copied relevant email threads
into calendar note fields when reminding her superior of a meeting so
that the superior would be able to reconstruct the context and purpose
of the meeting.

Reference, Retrieval, and Recall3.3.5.4	

Participants reported that few of their scraps were actually referenced
regularly. One group of information scraps, typified by the to-do list on
a Post-it, was referenced actively until its usefulness was exhausted, and
then was either archived or thrown away. A second group, including meet-
ing notes, was archived immediately without a period of active reference.
After archiving the scraps, participants reported not needing them except
for special occasions.

Because our study methodology directly located the information
scraps, we did not rigorously examine re-finding techniques; however,
participants often spontaneously recalled the existence of a particular
scrap and we could observe as they located it for us. When re-finding, par-
ticipants used a technique similar to the orienteering behavior described
by O’Day and Jeffries [107] and Teevan et al. [128]. That is, they would
directly navigate to a folder location thought to be relatively close to the
desired information scrap or sort the items in a useful manner, then take
small local steps to explore the results and their neighbors.

We found that participants exhibited good memory for the meaning
of almost all of scraps we uncovered. Out of the 533 information scraps
indexed, only one was ultimately left with the participant unable to identi-
fy its meaning. We did not investigate memory for the meaning of specific
details in each information scrap, only focusing on the gist; specific details
would likely have fared more poorly, due to human memory for meaning
outperforming memory for details.

The Psychopathology of Information Scraps 3.3.6	

During our study, we encountered a series of affective and psychological
dimensions of information scrap management more powerful than we

3. Ethnography

51

had expected. The most prominent factors will need to be accounted for
in any information scrap management system, so we report them here.

There was often perceived social pressure to be an organized indi-
vidual; admitting to the existence of information scraps ran directly coun-
ter to this perception. Similarly to as recounted by Boardman and Sasse
[42], participants often began the interview proud to demonstrate their
complex personal information solutions. However, when the interview-
ers began to inquire after those pieces of the workspace that were unor-
ganized, the same participants would often become uncomfortable and
embarrassed, much like as recounted by Bellotti and Smith [33]. Our par-
ticipants reported:

“I would like to have time to organize what I’ve captured, but this •	
never happens.” DOC adds that she wishes she were an adherent to
the Getting Things Done [25] methodology.
“By Friday, no stickies and no papers on the desk,” UI2 preemptively •	
excused the existence of information scraps on her desk.
“Ideally, I wouldn’t need this anymore,” ADMN2 says of the disorga-•	
nized notebook in which she keeps all of her important information.
(Clearly, it’s not going anywhere.)

Several participants apologized for the state of their office or computer
desktop.

Exceptions to the embarrassment trend were found both in partici-
pants who put extra time into organizing their lives, colloquially known as
lifehackers [16], and those who simply embraced the mess. MAN6, as a Get-
ting Things Done devotee [25], was quite proud to demonstrate his array
of tools. Several participants expressed pride in keeping a tight reign over
their information scraps. In contrast were those who had simply accepted
that their lives would be messy; ENG1 repeated to the interviewers what
had become an affirmation of her love for a messy notebook: “It’s OK to
have a notebook!”

Often participants were forced into a cognitive dissonance between
their perceptions of themselves as organized individuals and the messy
reality of their lives at the time of the interview. UI2 described her regi-
men of “always” transferring all her Post-it notes into Outlook tasks, but
when we noted that there were several such notes that had remained un-
transferred for some time, the response was defensive: “I’ve been too busy
lately.” Believing oneself to be an expert re-finder of information scraps
also seemed de rigueur. When asked about problems participants might
have re-finding information scraps later, responses were curt:

“I just remember.” (ADMN3) •	
“Generally, I remember where things are.” (RES) •	
“I remember things.” (MAN5) •	

3. Ethnography

52

In contrast to these reports, participants usually spent considerable time
while we observed them trying to re-find scraps they wanted to share with
us. Many participants thus overestimated their memory for scrap loca-
tions.

Analysis3.4	

Common Information Scrap Roles3.4.1	

We have consolidated a list of common information scrap roles (Figure
3.9):

Temporary Storage. Information scraps’ small, discardable presence
enabled their common use as temporary storage or exosomatic short-term
memory. ADMN2 kept Post-it notes on her laptop palm rest for just this
purpose, recording visitors’ names and contact information later to be
disposed of. Mobility came into play here, as information scraps could be
used to bring information along, for example driving directions written
on a Post-it. These scraps were self-regulating in number, as they tended
to be thrown away or to disappear in piles quickly after creation. Partici-
pants often expected this graceful degradation from temporary storage
scraps.

Cognitive Support. Our participants shared with us many works-in-
progress such as half-written emails, ideas for business plans, brainstorms,
and interface designs – scraps used to aid the process of thought. “Before
I put anything in the computer, I like to put it on the whiteboard first,”
ADMN4 explained of her newsletter layout design process. Information
scraps were commonly in cognitive support roles because scrap creation
tools supported, and even encouraged, messy information work.

Two such support functions were epistemic action and external cogni-
tion. Epistemic action is thinking-by-doing, similar to the benefits expert
Tetris players enjoy by rotating falling puzzle pieces to directly visualize
and interpret the result of the rotation action [92]. Information scraps
thus allowed authors to reflect on what they were doing, change text, cross
out ideas, and reposition elements simply to see the result. Information
scraps also served as external cognition, enabling our participants to of-
fload difficult thought processes onto the scrap. We observed a wide vari-
ety of information scraps being utilized in external cognition roles – for
example, ENG2 and ENG5’s in-progress notes taken down while debug-

3. Ethnography

53

ging, UI2’s sketches of interface designs, and a large number of work-in-
progress documents.

Archiving. In contrast to temporary storage scraps, which were in-
tended to have short lifetimes, many information scraps were intended to
hold on to important information reliably for long periods of time. For
example, many participants used information scraps to archive notes from
meetings – as well as information they could not rely on themselves to re-
member, such as passwords. Our participants expressed comfort knowing
the information had been safely saved.

Reminding. Participants took advantage of information scraps’ vis-
ibility and mobility by placing them in the way of their future movements
to create reminders for themselves. Participants used techniques such as
colored Post-its, unread or unfiled e-mails, and files left on the desktop,
reminding them to take action later or to return to a piece of information

Figure 3.9. The five main roles information scraps played were archiving,
temporary storage, work-in-progress, reminding, and a place to put in-
formation that wouldn’t fit elsewhere.

3. Ethnography

54

at a later date. To-dos were an extremely common type of information
scrap filling this role.

Unusual Information Types. This role was a catch-all for personal
information that did not quite fit existing tools’ expectations. Taking ad-
vantage of information scraps’ freeform nature, participants corralled
unique information types that might have otherwise remained unman-
aged. For example, ENG3 created an information scrap system to manage
a library-style checkout for his privately owned construction tools, and
MAN4 maintained a complex document of contact information anno-
tated with private notes on clients. This role was particularly prominent in
situations where the information did not quite fit existing tools’ expecta-
tions, such as calendar items with a date but no start time chosen.

Organization and Fragmentation3.4.2	

We may characterize information scraps of each type by the amount of
effort that participants have invested in organizing them. We use web site
passwords as illustrative examples:

Low Invested Effort: scraps that are •	
fragmented, unique, or separate from
similar data. This includes information
of a type that has not recurred often
enough to warrant collection in a spe-
cialized repository, or temporary infor-
mation such as might be encoded on a
Post-it.

Example: Web site passwords are
archived using whatever is handy:
e-mails, Post-its, or text files.

Medium Invested Effort: information •	
types with many instances archived to-
gether, but that remain unorganized.

Example: The user has made sure
that all of his or her passwords are
archived somewhere in the e-mail
inbox, though they are not tagged

or filed in any consistent way.

High Invested Effort: information •	
types with many instances archived,
and that the user has organized.

Example: Passwords are all kept in
the e-mail inbox in a special folder
called “passwords.”

Of the scraps we collected, a large proportion exhibited low effort –
once captured, they were allowed to remain where they were placed. This
placement was usually dictated by convenience of capture. In notebooks
or text files, this pattern resulted in a chronological stream of scraps as
new scraps were simply added to the beginning or end. For e-mail, par-
ticipants seemed to leave scrap e-mails (e.g., e-mails to self) in their inbox

3. Ethnography

55

rather than filing them away in a sub-folder. Our results support earlier
observations regarding engineers’ lack of organization in their logbooks
[104].

A fragmentation-like problem arose from participants’ voluntary
placement of scrap information in different places. The primary reason
participants cited for writing information of the same type at different
locations was convenience at time of capture. For instance, ADMN2 kept
contact information (names, phone numbers, addresses) in her main
notebook, a paper desk calendar, and a mini address book; and reported
that where any piece of contact information ended up was determined
by the location of the closest notepad. When asked about retrieval, she
reported having to “rummage around” when she didn’t remember where
something was placed, that this often took time, and that she re-copied
contact information between locations so that it would later be more easily
found.

Constraints3.4.3	

Information scrap practice exhibits particular physical, temporal, social
or structural attributes of a situation that may necessitate tool use. We
suggest that these conditions play a particular role in information scrap
generation that may not be as evident in tools that have a stronger cor-
relation between task and tool. One such strong correlation is checkbook
balancing: we typically open a personal finance application and start a
file; we do not create an information scrap. While paying bills, we are
fairly indifferent to the physical environment, time constraints, or social
conditions – the tasks of personal financial management predicate the
use of the recognized tool for that genre of information. We may each use
different tools for that task, but generally, we would agree there is a tool
that exists to support that task, and that’s the one we use when perform-
ing that task. There are also certain agreed social conventions around this
task. Writing a paper usually means that paper-writing is a primary task
in terms of one’s attention. It would be unusual to meet with a colleague
while trying to pay bills. As such, with such strong conventions and tool
support around a particular practice, we do not see information scrap
challenges in capture, storage and retrieval.

If we were to instead jot down thoughts on the paper while meeting
with a colleague about that paper, the temporal, physical and social con-
straints would have more of an effect our choice of tool. For instance, it
may be socially taboo to be seen either using a computer in this context,
or to take lengthy notes during the meeting. Either condition may predi-
cate quick gestures on the back of a note card. The social conditions of an

3. Ethnography

56

exchange may be such that it would break the flow of the conversation to
reach for a more formal mechanism than a scrap of paper. Likewise, one
may be on the move, so that not only is it awkward to use a more formal
mechanism for recording data, it may be that there is simply not the time
to engage in a detailed recording of an observation. So, currently, physical,
temporal, social and structural factors have particular bearing on the de-
vices selected and the kind of input generated with information scraps.

Caveats in Our Findings3.4.4	

The boundary between information scraps and the rest of our personal
information remains fuzzy, especially in the case of high organizational
effort. Once an amateur chef decides to collect all of her favorite recipes
on a private blog and tag them by cuisine type, are the individual recipes
still information scraps? In one sense, no – they have a place to reside and
are reliably indexed. However, we cannot help but think that a blog might
be a suboptimal method to collect and organize recipes, because it cannot
take natively take advantage of recipe-specific needs such as ingredient
filters or shopping list generation.

With regard to the variety of information types we catalogued, one
difficulty with analyzing the frequency distribution of information types
in scraps lies in drawing distinctions between similar information types.
It is inevitable to question whether the categories we list could have been
combined further, and thus the diversity lessened or erased. Our ap-
proach has been to group as aggressively as possible without losing the es-
sence of the scrap’s composition, attempting to find a rough lower bound
on the strength of this long tail effect. A less aggressive grouping strategy
produced results where ~25% of all scraps were unique types. Though
individual pairs of categories might be further merged, we believe that
the long tail effect is quite strong and worth noting.

Reflecting on our methodology, a clear limitation of our study stemmed
from our use of interview and artifact analysis instead of live observa-
tion via shadowing. We were thus unable to study, in situ, how informa-
tion scraps were used and created, but instead only how people reported
they used their scraps, along with evidence from their workspace and the
physical and digital artifacts we collected. The kind of statistics that our
procedure was unable to capture included the number of information
scraps participants generated each day and significant contextual associa-
tions. We observed that participants often exhibited a kind of confirma-
tion bias toward their own organizational skills by mainly acknowledging
well-organized work, so it is further possible that this also affected our
observations; for example, our participants may have ignored particularly

3. Ethnography

57

embarrassing examples of disorganization. The methodology’s strength
was that it allowed us to observe a broad number of information scraps,
more so than would have been possible in situ. We believe that an ethno-
graphic shadowing methodology would complement ours well; it could
objectively investigate many of the questions we could not.

Our triangulation method for locating information scraps was also
not a perfect lens. We found that it was successful in unearthing a large
number of information scraps in a variety of locations. On several occa-
sions, only the last of the three dimensions we attempted (tool, location,
and then type) successfully located a particular scrap. The triangulation
method’s strength lies in unearthing a wide variety of information; its
weakness is that the number of information scraps found can be too nu-
merous to examine thoroughly within the allotted time. In the future, we
suggest the triangulation methodology might be modified to serve as a
fast “tour” through a participant’s information scrap landscape, allowing
the investigators to then choose a small number of tools or locations to
focus on.

Implications for Design3.5	

In this section, we ask: what design affordances would enable digital
personal information tools to better serve these important and under-
served roles of personal information practice? Do there exist any designs
that support these affordances, and if not, how realistically can we expect
such affordances to be supported by current technology? To ground this
investigation, we discuss aspects of the design of Jourknow, our own note-
taking research tool designed to better support information scrap activity,
to be fully discussed in Chapter 4.

We derive these design opportunities to identify the design deficien-
cies in our current tools that most explain users’ preference for infor-
mation scraps in fulfilling the roles in §3.4.1. While we cannot predict
whether addressing these needs would cause the demise of unmanaged
scraps, we have evidence that addressing these needs would positively im-
pact daily practice.

Table 3.4 outlines the set of affordances we have identified, including
lightweight capture, flexible content, flexible organization, visibility and
reminding, and mobility and availability. In Table 3.4 we have contextual-
ized each affordance in terms of the activities and constraints that influ-
ence scrap generation.

3. Ethnography

58

Category Observed Behaviors and Constraints Derived Design Needs
Access Finding the easiest and fastest tool to use. Constrained by

effort required, limited time and attentional resources.

“If it takes three clicks to get it down, it’s easier to e-mail.”
- FIN2

Lightweight Capture: Record
information with minimal effort
or distraction.

§3.5.1

Adapting tool use to physical locations and social situations.
Constrained by available tools.

“At off-site meetings, I don’t have my infrastructure there,
and keeping notes on paper is less rude.” - MAN1

Mobility and Availability: dif-
ferent capture methods may be
necessary in different situations.

§3.5.5

Information scraps kept always in peripheral view, or in a
location to be tripped over the next time the information
would be relevant. Constrained by tools’ ability to be placed
in-the-way.

“If it’s not in my face, I’ll forget it. Like if it’s on the wiki –
I have no idea it’s there.”
- REC

Visibility and Reminding: infor-
mation appears in the right place,
at the right time.

§3.5.4

Content Scribbling, sketching, and annotation. In-progress, vague
and underspecified information. Constrained by tools’
expressiveness.

“Drawing is the way you really see it!”
- ADMN4

Flexible Content: record any
kind of data, at any level of com-
pleteness.

§3.5.2

Coping strategies when information does not fit other ap-
plications’ models, and collections of unusual information
types.

“There’s this problem: I wanted to assign dates to notes, but
Outlook would only allow dates on tasks.” - MAN3

Flexible Schema: information
may not fit existing molds.

§3.5.2

Organization Organizational strategies varying in degrees from complete-
ly disorganized to carefully filed, and avoidance of cogni-
tively difficult filing decisions.

“It’s too much work to decide which section it should go
in – because sometimes things don’t fit in just one, or fit in
multiple places. It’s hard to decide what to do.”
- REC

Flexible Categories: Support for
a variety of organizational strate-
gies, as well as for transforming
unfiled items into more struc-
tured, organized forms.

§3.5.3

Information scraps attached to or placed near related items.

“I can never remember which [computer] is which. So I
grabbed the gaffer’s tape and marked them!” - ENG3

Flexible Linkage: enable in-
formation to be linked to and
in view with arbitrary other
information

§3.5.3

Table 3.4. The major design affordances necessary for management of information scraps
derive from access, scraps’ contents, and organization.

3. Ethnography

59

Lightweight Capture3.5.1	

As described in §3.3.5.1, we found information scraps often to be gener-
ated in response to a need to capture data quickly. This need occurred
most commonly while the individual was performing some other atten-
tionally, socially, or physically engaging primary task. For this reason, low-
ering both the actual and perceived cost of cognitive, social and physical
effort may improve our tools. We see the following opportunities for re-
ducing effort required during capture:

Avoiding upfront decisions and postponing disambiguation. Since
information scraps are often captured at a moment when time, atten-
tion and cognitive resources are scarce, requiring individuals to make sig-
nificant upfront decisions might incur sufficient cost to impede capture.
Such decisions may include forcing the categorization of a new piece of
information, choosing a reminder time, or setting parameters ultimately
unimportant to the captured information. Thus, tools might aim to im-
mediately handle information in whatever form provided to them by the
user and postpone forcing user choices until a more appropriate time.

Avoiding task-switching, cognitive and navigational burdens. Navi-
gational and cognitive costs associated with launching or switching appli-
cations contribute significantly to the time elapsed between the moment
an individual forms an intention of writing something down and the mo-
ment they can actually start doing so. Since perceived time and effort
during this critical interval have been found to dictate which tool will be
chosen [66, 67, 86], we believe that minimizing navigational effort will im-
prove a tool’s capture rate and therefore overall usefulness to the user.

Supporting abbreviated expression of information. As described in
§3.3.3, we found idiosyncrasies in participants’ language – notes often
represented very little explicitly and instead served as memory primers.
Our finding contrasts considerably with most PIM applications’ require-
ments that users complete forms with formal expressions for properties
such as who, when and where. Our hypothesis is that tools can lessen the
time and effort associated with entering information by supporting in-
complete, informal capture methods.

Supporting diversity. If a tool is restrictive about the information
forms it will accept, individuals will inevitably resort to a coping strategy
– either imperfectly fitting the information into the tool, or fragmenting
information by encoding it in another tool. Since coping strategies incur
non-zero costs to devise and implement, and further lead to decreased
effectiveness of future retrieval, we believe it worthwhile to accommodate

3. Ethnography

60

whatever information the user wishes to express. We discuss further issues
with supporting diverse information forms in §3.5.2.

Capture from other tools. Given that a significant portion of the ar-
tifacts we examined originated from other applications and devices, (e.g.,
mobile phone, emails, web pages, IM conversations), we may reduce the
need to create scraps by making it easy to select and pipe the relevant
information from any application into an appropriate place. This desire
also pertains to the need for ubiquitous availability of capture tools, dis-
cussed in §3.5.5.

Tablet-based notetaking tools such as Microsoft OneNote [17] have
granted digital note-taking some of the expressive freedom of paper and
pen. OneNote in particular also allows a users to categorize their notes
post-hoc, such as by tagging to-do and contact items, thereby reducing the
upfront time to capture. However, the OneNote user interface is mono-
lithic and large, and therefore difficult to have “on the side” or to switch to
while in the middle of another task.

Natural language expression interfaces for intuitive expressions of
PIM information are another promising approach. These interface let us-
ers easily add information such as events, contact info and to-do remind-
ers to their calendars and online PIM apps. Specifically, Google’s Quick
Add [7] and I Want Sandy [12] have demonstrated potential for advan-
tages in terms of navigational burden and efficiency over form-based GUI
equivalents.

A number of cross-application launchers have recently gained popu-
larity by turning common application launch and navigation activities into
reflexive keyboard actions. The Quicksilver interface for MacOS X [20],
for example, can be summoned from any application using a hotkey trig-
ger, employs a small, unobtrusive interface to avoid obscuring the display
of one’s main task display, and adaptively re-ranks to ensure that the most
frequently used commands are easily accessible. However, these tools are
generally application launch tools rather than information capture tools;
they quickly land the user in the desired application and delegate infor-
mation capture to the application interface.

Finally, with respect to tool integration, “snippet-keeper” application
Yojimbo [24] facilitates cross-application content grabbing by letting the
user simply select the content they want grabbed and pressing a hotkey.
Users can immediately tag their grabbed items or choose to defer orga-
nization; the items are then added to collections in the person’s own tag-
based Yojimbo repository.

3. Ethnography

61

While general-purpose drawing tools and word processors are poten-
tial candidates for information scrap management because they afford
fast, unconstrained input of text or drawings, they are not ideal for sev-
eral reasons. First, the design needs for creating published documents
and free drawings differ significantly from those of scraps, especially
in creation, use and semantic/structural characteristics. As discussed in
§3.3.2, information scraps are often implicitly structured but sketchy and
rough, whereas word processors and drawing tools are designed to create
published or shared documents and illustrations. These tools thus fore-
ground design affordances that are important to publishing but relatively
useless for scrap creation. Also, these tools are not optimized for handling
a large number of small data items: we observed a number of participants
compiling large collections of scraps into a single text or word processor
document in order to circumvent the overhead of creating and managing
many documents (§3.3.5.1).

Flexible contents and representation3.5.2	

Our artifact analysis in §3.3.1.2 revealed that information scraps were
considerably more diverse and irregular than the commonly considered
set of PIM information types. Information often did not match expected
schemas: some properties were missing, and others were introduced. Par-
ticipants also commonly combined information types inside of a single
scrap. These behaviors resulted in scraps such as contact items consisting
of a name and a phone number, a time indicating when to contact the in-
dividual, and driving directions to the person’s house – but no last name.
Furthermore, as the distribution of types discussed in §3.3.1.2 suggests,
there is a very large potential set of truly personal data types that collec-
tively make up a significant portion of all information scraps but that do
not fit at all in PIM applications today.

These observations indicate a potential need for more flexible repre-
sentations of PIM data. Some PIM tools such as Microsoft Outlook have
started to blur distinctions in PIM types, e.g., to-do items with calendar
entries. Research tools such as Haystack [87] have taken a more radical
approach, in which a general relational model called RDF [21] is used as
a basis of representation. In such a representation, rather than having
disparate collections of data records of particular fixed schemas, instanc-
es are defined in terms of how they link their atomic data components
(e.g., dates, times or names), and linking is possible among arbitrary data
components. Thus, under such a model it becomes possible to create and
represent the (often implicit) meanings implied by the freeform scraps we
found in the study.

3. Ethnography

62

A remaining challenge surrounds developing a means by which the
user can utilize this expressiveness. Current interfaces for directly speci-
fying instances using similarly rich vocabularies (e.g., [19]) carry high
comprehension and execution overheads. Another option would be to
automatically extract semantics; however, in practice this is a challenging
problem because the language used in scraps (§3.3.3) is often incomplete,
ungrammatical, and highly personalized. The difficult nature of the prob-
lem is reflected in the fact that personal notes are often ambiguous and
unintelligible to people other than the author.

Controlled naturalistic languages such as those first proposed for da-
tabases [112] provide a possible solution. In a simplified natural language,
user are informed that the system can only interpret a restricted set of
simple, common phrasings for information (or using some fixed syntactic
convention) but that they are free to express anything they wish to us-
ing this language. This technique trades off expressiveness for perceived
naturalness of expression.

Flexible usage and organization3.5.3	

The tool adaptations described in §3.3.4.3 are particularly interesting
because they reveal individuals’ needs: participants devised new custom
organizational systems out of existing tools to better fit their needs, for ex-
ample ENG4’s re-appropriation of a bug-tracking tool as a personal to-do
list and MAN3’s use of Post-it notes on the back of his cell phone as a cap-
ture solution. Our study also revealed several instances where tools had to
be adapted in order to accommodate information that didn’t fit, such as
when an application failed to provide free-text annotation capabilities.

Re-appropriation requires tools to be sufficiently flexible to accommo-
date novel use of their affordances or data. Many high-functionality infor-
mation tools (e.g., emacs [6] and Eclipse [4), have long allowed scripting
and extension facilities for customization. The practical difficulty associ-
ated with developing application-specific plug-ins was such a high barrier
to entry that few users attempted it. However, the past few years have
seen a new trend in the popularization of open web-based APIs to data
services. These APIs and reusable widgets have allowed web developers to
combine functionality from multiple online applications into their own
custom applications, spawning the phenomenon of mash-ups. Tools such
as Intel’s MashMaker [61] and Dontcheva et al.’s card metaphor [58] have
attempted to make this process even more accessible to end users.

Participants also devised a rich set of organizational techniques and
strategies, as summarized in §3.3.4. Some of these behaviors are already

3. Ethnography

63

well supported in digital information tools, while others are poorly sup-
ported. For example, unlike notes written on physical media, digital PIM
tools are good at automatically organizing collections of information re-
cords. However, these tools are generally less capable of adapting to novel
organizational strategies, so our participants tended to use spreadsheet
software if they needed to manage or sort novel fields. We propose three
potential solutions: letting users manually specify organizational rules,
learn organizational rules by example [69], or dynamically construct fac-
eted views by combining of a simple set of operators (e.g., [75, 139]) in a
user interface familiar from online commerce.

Capturing physical organizational strategies in the digital realm has
been more challenging. Visual layout systems involving stacks and piles
[103, 116] enable 2- and 3-dimensional layouts and implicit Gestalt group-
ing. Other possibilities include visual wear and tear on heavily-used items
[72] and time-based metaphors [62].

Visibility and Reminding3.5.4	

Nearly all participants employed a strategy of physically situating scraps in
places where they could serve as references or reminders. As described in
§3.3.4.3, the desire to be able to reference useful information frequently
easily inspired participants to place items in prominent, always-visible lo-
cations, for example sticking Post-Its to their workstation monitor or writ-
ing information in the corner of whiteboards. For prospective reminding,
several participants reported strategically placing notes in locations where
they knew they would later serendipitously “trip over” them at the right
time.

It is difficult to support these behaviors in digital tools because we
cannot easily situate pieces of information in particular locations of easy
access or strategic significance. The problem of physically situating digi-
tal information is still solved most straightforwardly by first converting
the information to physical form (i.e., printing it) and then sticking the
physical version in the appropriate place. Display technologies could con-
tribute to making it easier to physically situate digital information, includ-
ing low-cost electronic displays such as e-ink [3], multisensory ambient
displays [48, 55], and pervasive displays such as the EveryWhere Display
[110]. An alternative approach is to build location sensors into portable
displays and to display information grounded at the user’s location; ef-
forts in this vein include the Remembrance Agent [114] and augmented
reality research (e.g., [2]). Still other work [74] has sought to reproduce the
kind of passive reinforcement that occurs when we shuffle through our

3. Ethnography

64

notes or flip through the pages of our physical notebooks while looking
for something else.

A separate reminding problem surrounds reminding individuals of
what their notes mean. As we discussed in §3.3.2, the brief, incomplete
nature of scraps meant that they were not necessarily future-proof, al-
though memory for the general gist was strong. One participant, MAN4,
strongly expressed a desire for helping him remember the significance
of notes: “The thing I want the most in a note-taking tool would be to
be able to ask it – Who? What? ‘Why?’ – ‘Why’ is absolutely crucial. If my
sticky-note could answer this for me I’d be golden.” Research surrounding
ways to support long-term recall of events includes Stuff I’ve Seen [60],
which attempts to contextualize events in terms of other more memorable
events, or features by long-term video transcripts [54], or images taken at
random from a wearable camera [122]. These projects have demonstrated
substantial gains in duration and fidelity of recall of routine workplace
situations and events. We believe that similar recall effect would occur
for the meaning of notes, as well as for helping in the re-finding of lost
notes.

Mobility and Availability3.5.5	

Information scraps are often closely tied to mobile scenarios (§3.3.4.2).
Social constraints may dictate the availability or appropriateness of tools
in certain settings (§3.4.3). In response, many of our participants resorted
to carrying legal pads, day planners or pocket sketchbooks whenever they
were away from their desks.

To support capture in a mobile context, nearly every mobile smart-
phone and personal digital assistant (PDA) provides some basic PIM and
freeform notetaking functionality. However, adoption varies widely among
users [56]. Our study elicited two major impediments to the use of such
devices for notetaking and personal information management: 1) a choice
between fragmenting information across devices and synchronizing the
mobile device, and 2) the difficulty, time and attention costs associated
with mobile information entry.

 Fragmentation can be ameliorated by synchronization, and the syn-
chronization problem is mainly an engineering one. One option is for
web- or desktop-based tools to offer mobile-accessible capture and access
interfaces, as is the case with Google Calendar [7] and Microsoft OneNote
Mobile [17]. Increasingly high-bandwidth wireless networks have opened
the door for automatic synchronization [Nokia], though automatic syn-
chronization is not standard practice as yet. Another choice is for interme-

3. Ethnography

65

diary clients to pass information between the mobile client and the desk-
top: for example, Jott [13] translates phone voice commands into calendar
appointments, to-dos, etc. via an API agreement with web services.

With respect to the barrier of data entry, two options are innovation in
text entry methods and innovation in mobile capture modalities. A variety
of keypad form factors are exploring the former option, for example plac-
ing full QWERTY keyboards on phones or implementing text prediction
as with the iPhone [11]. However, alternative approaches to notetaking
incorporating paper-and-pen are also gaining traction in products [10]
and with additional functionality in research circles [126, 140].

Future Work 3.6	

An important next step for this work is to extend our artifact and inter-
view study by observing scrap creation and re-finding in situ. We have fo-
cused thus far on understanding scraps’ contents, tools and organization,
examining artifacts after they have been created and before re-finding
was needed. Our research does not paint a complete picture of creation
and re-finding as they occur. What exactly triggers the need to record
or reference an information scrap? What kind of information is recalled
about each scrap at intervals after its capture? What are the most typical
re-finding procedures, and how might we support them? A shadowing
study would likely elicit many interesting (and likely unexpected) answers
to these questions.

Conclusion 3.7	

In this chapter we examined the phenomenon of the information scrap:
personal information that does not make its way into our current per-
sonal information management tools. Information scraps are pervasive
– our participants shared with us an impressive number of scraps, both
physical and digital, scattered over diverse parts of their information en-
vironments. We analyzed the wide variety of information types held in
scrap form, underlining the criticality of supporting unusual or unique
types in information scrap work. By examining the composition and life-
cycle of information scraps, we have identified a set of user needs for in-
formation scrap management: lightweight capture mechanisms, freeform
and potentially unstructured data representation, flexible organizational
and usage capacities, visibility and the in-the-way property, and mobility.
These strengths drive a set of typical information scrap roles, including

3. Ethnography

66

temporary storage, cognitive support, reminding, archiving, and capture
of unusual information types.

Our goal with this work is dualistic and somewhat contradictory: we
want to understand and support information scraps, so that we can reduce
their number. Information scraps are an outcome – the result of a coping
strategy – rather than an outright goal. The needs driving information
scrap creation will remain constant, as we will always require lightweight
capture, support for unusual data and flexibility. The scraps, however, can
be reduced, eliminated or redirected by carefully considered redesigns of
our personal information management tools.

The wide variety of information encoded in information scraps is gal-
vanizing, as it suggests an opportunity for PIM to engage new types of
information. The data indicates that a significant percentage of our per-
sonal information is beyond the reach of our current generation of tools,
and furthermore will likely remain so without a significant recalibration
of our goals. We identified over 125 information types from our sample
of participants, and surely there are others. The diversity suggests that it
may not be tractable for each of these information types to be managed by
its own tool. Instead, we suggest that the future of personal information
management may lie in finding a flexible, unified platform to corral as
much data as the user cares to support [88]. First steps have been made in
this direction (for example, [84, 87, 131]), but we have much distance yet
to cover. Data flexibility will be in tension with a clear demand for rapid
capture, driving a need for novel methods for capture and organization.

Taken in sum, these conclusions specify a set of problems that will be
challenging at best. Yet the challenge is necessary, even revolutionary. For
PIM to move beyond its current limitations, it must venture beyond its es-
tablished boundaries – and into the world of the information scrap. This
is the world we enter in the following chapters.

67

This chapter details a novel scrap keeping program called Jourknow (Fig-
ure 4.1, Figure 4.2). Jourknow attempts to re-envision the entire informa-
tion scrap lifecycle: from capture to organization, transfer and retrieval.

Jourknow’s goal is to be an information scrap catalyst of sorts, ensur-
ing that scraps reach a more useful state without extra effort on the user’s
part. If the user is willing to use a quick-launch command to capture a
thought, we can attach contextual information to it in order to aid re-
finding. If the user is willing to add some lightweight structure to the text,
we can then provide further support by pushing the information into the
appropriate application or providing structured retrieval mechanisms. As
a result, Jourknow attempts to manage an incredibly broad range of per-
sonal information, from calendar events and to-dos, to guitar tabs, comic
book collections, and wholly freeform notes. It approaches this broad de-
sign space via designs catering to different subsets of this information.

At its core, Jourknow is a text-based notebooking tool for computer
desktops and laptops. Text is an appropriate capture mechanism in such
environments; when we enter text, each stroke is being used to record the
actual information we care about – none is wasted on application naviga-
tion or configuration. The linear structure of text means that there is

Jourknow: 4.	
Information Scrap Capture,
Management and Re-finding

Work presented in this chapter is a collaboration with Max Van Kleek, David Karger and
mc schraefel. It is published in UIST ‘07 [131] and a CSAIL Technical Report [37], as well
as workshop papers at PIM 2008 [38], SWUI 2008 [130], and HCIR 2007 [36].

4. Jourknow

68

always an obvious place to put anything – at the end. And the freeform
nature of text means we can record anything we want to about anything,
without worrying whether it fits some application schema or should be
split over multiple applications.

However wonderful its capture affordances, however, text’s weakness
lies in retrieval. Text’s fixed linear form reduces us to scanning through it

Figure 4.1. The first-generation Jourknow user interface. The annota-
tions point out context thumbnails and tags associated with notes.

notes
containing
lightweight
structured

and un-
structured

text

expanded
context
views

provide
detailed

information
regarding

user activty

tag
selectors
for quick
filtering
of notes
by tags,

entities and
contexts

incremental keyword search supports
note filtering by contents

current context view displays the user’s
current activities and location as viewed

by the system

episode
thumbnails

display
glanceable
indicators
of context
of when

each note
was last ed-
ited, sorted
by recency

4. Jourknow

69

for information we need. Even with electronic text, the lack of struc-
ture means we cannot filter or sort by various properties of the infor-
mation. When we aren’t sure what we want, a blank text search box
offers few cues to help us construct an appropriate query [34]. The
shorthand we use to record information in a given context can make
it both hard to find and incomprehensible when we return to it later
without that context [19]. Furthermore, only text we explicitly enter is
recorded, without any of the related contextual information (such as a
timestamp) that might be known to a sophisticated application.

Jourknow’s goal is to combine the easy input affordances of text
with the powerful retrieval and visualization capabilities of graphical
applications and personal information management tools.

Figure 4.2. The second-generation Jourknow user interface. The
second iteration includes the faceted browsing panel on the right, as
well as images and sound files in notes.

4. Jourknow

70

Jourknow’s Design and Research 4.1	
Contributions

Jourknow (Figure 4.1, Figure 4.2) is designed after a notebook metaphor,
much like commercial tools such as OneNote [17], Yojimbo [24] and Ever-
note [5]. Its research goals can be viewed as falling into several major
categories:

Capture: Lightweight unstructured and structured entry•	
Manipulation: structure inspection and exploitation•	
Re-finding: Faceted Browsing and Context-based re-finding•	
Mobility: Unique design needs in mobile scenarios•	

In the sections that follow, I detail design innovations Jourknow makes in
each of these categories.

Notebook Interface4.1.1	

Jourknow’s organizing principle is that of the notebook. The default view
(called the Master Notebook) contains all notes. The user may create ad-
ditional notebooks and add notes to them, or instead create smart note-
books. Smart notebooks are analogous to smart searches or smart playlists
in Windows Vista and iTunes, respectively – the user creates a persistent
query such as “all notes tagged as @jourknow or edited at Starbucks,” and
the smart notebook will continually update to contain all notes matching
the query. Interacting with notebooks is straightforward – a drop-down
menu allows the user to switch between notebooks in view.

Jourknow provides three main views of notes: a list view (the default),
a freeform 2-dimensional canvas, and a zoomed-out view that utilizes se-
mantic zooming.

The list view (Figure 4.3) is a tabular view common in WIMP inter-
faces. Notes are added to the bottom of the list as they are captured, and
are rearrangeable via drag-and-drop. Additional columns are available:
creation time, last modified time, user location, programs open, files ed-
ited, music listened to while recording the note, desktop photo, and user
photo. Notes may be resorted by the columns that are well-ordered.

In the canvas view, notes are laid out like cards on a large 2-dimen-
sional canvas (Figure 4.3). The notes may be arbitrarily resized and moved
around on the canvas. The canvas view was designed to support the physi-
cal grouping and repositioning our study users employed so successfully.
Each new note is added to the bottom of the canvas initially. The canvas
view can be zoomed out to an arbitrary viewpoint, employing the same

4. Jourknow

71

Figure 4.3. The three main views in Jourknow.

List View

Canvas View

Flow View

notes in a vertical scrolled list

notes repositionable in a 2D plane

zoomed-out view for browsing and
search results

4. Jourknow

72

quick capture
 window

Figure 4.5. The quick capture window can be called up via a hotkey. It
overlays the contents of the screen and optionally pastes in the selected
contents of the previous application.

Figure 4.4. Animating from list view to flow view.

4. Jourknow

73

semantic zooming techniques described below. Canvases can be cre-
ated containing subsets of notes by creating notebooks with only those
notes inside.

Upon text search, the list view and canvas view animate to a
zoomed-out flow view of note previews (Figure 4.3, Figure 4.4) to sup-
port visual scanning. As search terms eliminate notes from consider-
ation, they fade from the flow layout and new results take their place.
Search results are sortable by the same criteria described above. When
the user clicks on a desired note, the program zooms into the note in
the previous view mode.

Semantic zooming [109] is a user interface technique wherein the
program continues to display an object’s most salient identifiers at
normal size when zoomed out, and zooming in may expand previous-
ly singular items into constituent parts. Jourknow employs semantic
zooming when the canvas view or list view are zoomed out or in search
view. The zoomed-out notes continue to display images and the first
few lines of text, so that the note is still readable.

Capture: Lightweight unstructured and 4.1.2	
structured entry

Information scraps cannot be managed if they are never captured
into our system, and our ethnographic work (Chapter 3) suggests that
users are extremely unforgiving of time and effort wastes when they
wish to capture a thought.

Jourknow provides two major facilities for capture: quick launch,
for all notes, and Pidgin languages, for notes which carry implicit
structure such as meeting times and locations.

Quick Launch4.1.2.1	

Jourknow’s main method of note capture is via a hotkey launcher: a
key combination mapped to Ctrl-Alt-Spacebar that launches a small
capture window (Figure 4.5). Mac OS X-specific versions of Jourknow
allow for a second combination that automatically copies whatever is
selected in the current application into the window, allowing the user
to seed notes with web pages, blog posts, documents, or whatever else
he or she has encountered. The user may then type into the window
and record a note or annotate the text that was copied in. This tech-
nique is not a terribly innovative interface design; however, it may save
precious seconds at capture time.

4. Jourknow

74

Pidgin: Lightweight Structured Input4.1.2.2	

In linguistics, a Pidgin is a simplified language used to communicate with
another person whose language is not your own. The foreign tongues at
odds here are the abbreviated and incoherent text common in informa-
tion scraps on one hand:

mtg w/ karger @ 5pm

and highly structured representations used by computers on the other:
type: meeting;
title: [none];
attendees: Michael Bernstein and David Karger;
time: 5:00pm;
date: May 23, 2008.

We know that users are often unwilling to enter the structured version of
information, creating information scraps instead. Can we instead bring
users and computers to a middle ground – quick and simple for the user
to enter, but providing enough structure for the computer to interpret
and, for example, place in the user’s calendar or add to the shopping
list?

This bridging between information scrap language and computer-
interpretable language is the goal of Pidgin. When the user enters a note
with the text:
mtg w/ karger @ 5pm

Jourknow recognizes the text as a meeting and attaches the relevant struc-
ture. Jourknow makes this structure useful by pushing the information
into the user’s calendar application and by making it browseable within
the interface (described more fully in §4.1.4.1).

The meeting Pidgin above is restricted to a predefined grammar –
here, one which captures various means of expressing meeting events.
Predefined grammars allow for considerable flexibility in the user’s ex-
pression of data:
mtg w/ karger @ 5pm
meeting 5pm karger
calendar tomorrow 5

However, these grammars can often be inscrutable (“why did it parse that
way?”), and rely on a specialist authoring each grammar. We can author
Pidgin grammars across a variety of common PIM types found in infor-
mation scraps such as to-dos and contact information.

Our studies also revealed that users maintain large numbers of un-
common data types such as shopping lists, UNIX commands, and recipes.
Such items can be captured via a second type of Pidgin language that is

4. Jourknow

75

designed to be extensible by the end user. The following are examples of
such a Pidgin, called TurtleDove, available in Jourknow:
meeting with karger, time 5pm, date tomorrow

thesis Information Scraps: Understanding and Design, due 5/23/08, au-
thor Michael Bernstein

shoppingList this weekend, dairy milk, dairy butter, meat ground beef,
vegetables onions

restaurant In ‘n Out, review 4, cuisine American

restaurant Kaze Shabu Shabu, review 5, cuisine Japanese

TurtleDove is syntactically unambiguous, so it can be used to capture
any information the user cares to enter. The grammar adheres to the fol-
lowing general form:

TypeName ObjectName, [PredicateName ValueName,]*

TypeName and PredicateName are constrained to be only a single word.
So, a TurtleDove entry above would be structured as the following:
restaurant In ‘n Out , review 4 , cuisine American

type name predicate value predicate value
The parse would translate into the following object:

type: Restaurant;
name: In ‘n Out;
review: 4;
cuisine: American.

Jourknow makes this structure available to the user for exploration and
browsing purposes, as described in §4.1.3.2.

TurtleDove requires the user to signal the beginning of a Pidgin phrase
with a period. This syntactic clutch incurs an extra cost on the user – how-
ever, Jourknow can provide extra input support when it knows the user

Figure 4.6. The TurtleDove
autocomplete drop-down assists
with completion of Pidgin state-
ments. Here it is suggesting all
known values for the predicate
‘at’ that begin with ‘rob.’ The list
has been initialized with names
from the user’s e-mail.

4. Jourknow

76

is entering a TurtleDove expression. Autocomplete is one such technique
– Jourknow automatically suggests previously used values to speed entry
(Figure 4.6). Specifically, the autocomplete dropdown will suggest all pre-
viously used types at the beginning of a phrase, all previously used names
for the given type, all previously used predicates at the beginning of each
predicate clause, and all previously used values for the chosen predicate.
Thus, the autocomplete dropdown will suggest ‘review’ and ‘cuisine’ when
the user is typing a new predicate for a restaurant; once the user chooses
‘cuisine,’ then the autocomplete dropdown displays ‘Chinese,’ ‘American’
and other previously-entered cuisine types. The dropdown also auto-pop-
ulates with entities from the user’s computer, such as those mined from
e-mail (Figure 4.6).

A more full discussion of the space of possible Pidgin designs is post-
poned until Chapter 5).

Implicit Structure Capture: Context4.1.2.3	

Contextual information is a final source of lightweight structure – one
that requires no explicit user intervention. Jourknow utilizes the Personal
Lifetime User Modeling (PLUM) system [132] to capture user activity at
all times. This activity information includes:

Application in Focus•	
File System Access•	
Active/Idle State•	
Web Browsing (Firefox, Safari, Internet Explorer)•	
E-Mail (Microsoft Outlook, Apple Mail)•	
Document Viewing (Microsoft Office, Adobe Acrobat, Apple Pre-•	
view)
Location (GPS coordinates based on WiFi triangulation)•	
Chat (iChat, Adium)•	
Music Listening (iTunes)•	
User Photo (Webcam embedded in laptop)•	
User Desktop Screenshot•	

The preceding activity information is automatically logged and associated
with timestamps on each character in the note, as described in §4.2.1.1.

Manipulation: structure exploitation and 4.1.3	
inspection

Capturing structured data is only worthwhile if that data can be put to
work for the user. The most straightforward application of structure is for
re-finding: note structure becomes immediately searchable and browse-
able within a faceted browsing interface [139]. Visual context summaries

4. Jourknow

77

assist users in reconstructing situations surrounding note capture. Rec-
ognized Pidgin expressions are pushed into external applications such
as calendars and to-do managers, and benefit from specialized browsing
interfaces.

Application Integration4.1.3.1	

Many Pidgin expression can be “brought to life” and manipulated like ob-
jects in traditional PIM applications, used to set reminders, or sorted and
filtered by property or value. To maximize their availability and utility,
Jourknow exports a view of Pidgin expressions that represent PIM data
types such as events, contacts, and to-do items to the user’s standard PIM
applications. Edits via these external representations are reflected in the
text, and are made visible in the through a revision indicator.

For example, the Pidgin mtg at Luna Cafe @ 5pm w/ Akemi cell
617-851-1294 re:camping this weekend encodes the fact that there is
a meeting that is happening at a location known as the “Luna Cafe”, at
5pm today, with a person named “Akemi”, whose cell phone number is
“617-851-1234”, on the topic of “camping this weekend”. Instantiation of
this Pidgin element causes an event to appear in the user’s calendaring
application with the appropriate date, time and subject, as well as contact
information to appear (if one didn’t already exist) for a person named
“Akemi” with the appropriate phone number, in the user’s address book.

Structure Inspection4.1.3.2	

Jourknow allows visual exploration of Pidgin expressions. By right-click-
ing on the name of the object in the text, the user can see a tabular view
of all information known about this entity (Figure 4.7). This information
is gathered across all notes, so if the user were to assign Mike’s Pastries
a rating of “5” in one note and leave a comment in another note, the in-
spection window will show both elements. This technique is useful, for
example, when the user wishes to jot down individual shopping list ele-
ments throughout the week and have them collated into a list right before
a shopping trip.

This inspection panel is sensitive to the content being selected. If the
user were to right-click “restaurant” instead of “Mike’s Pastries,” the entity
panel would list all known restaurants (Figure 4.7); if he or she clicked on
the “5” in “rating 5,” the panel would display all entities which the user
had given 5 stars.

4. Jourknow

78

All Pidgin expressions, not just those pushed to external applications,
support browsing and exploration in the Jourknow interface. Pidgin ob-
jects are added to the facet panel (Figure 4.8), so that the user may quickly
find all notes with Pidgin meeting agendas in them, or all meetings that
occurred with Victor Zue present.

Re-finding: Faceted Browsing and Context-4.1.4	
based re-finding

Given the speed at which we typically fill our notebooks, Jourknow’s inter-
face needs to scale appropriately to hundreds of thousands of notes. This
section details two techniques Jourknow includes for just such a purpose:
faceted browsing and context-based re-finding.

Faceted Browsing4.1.4.1	

Jourknow makes all of the information it captures available to the user
in a faceted browsing interface (Figure 4.8). This information includes
mined context associated with notes, Pidgin information, and basic note
information such as creation time. Faceted browsing [139] allows the user

Figure 4.7. The structure inspection interface. Top: three TurtleDove
statements. Middle: the user has right-clicked on “Mike’s Pastries” and is
viewing a tabular version of all information known about Mike’s Pastries.
Bottom: the user has right-clicked “restaurant” and is viewing a list of all
restaurants in Jourknow.

4. Jourknow

79

Default List View Zoomed out to Flow View

Wayport Meeting selected in Location facet 4am selected in Edited Time facet

Figure 4.8. The faceted browsing panel is a means for browsing
notes. Upper left, the typical list view. Upper right, the user has
entered the Flow view on the same notes, preparing to search. Lower
left, the user has selected Wayport Meeting in the Location facet, re-
stricting note display to only those notes taken while on the Wayport
Meeting wireless. Lower right, the user has selected only notes taken
in the 4:00 hour on October 7th. (This user is a night owl.)

4. Jourknow

80

to explore his or her notebook by a combination of any of these features,
visually constructing queries such as “all notes created today when I was
in Starbucks and listening to Metallica.”

Context-based Re-finding4.1.4.2	

Consider john 617-555-6835: “Which John? How do I know this per-
son? Was I supposed to call him? What was I thinking?”

Many notes deliberately leave out information, leaving only salient clues
to aid reconstruction of meaning. Often this tactic works over the short
term, but memory degrades within a month [86].

Jourknow harnesses the contextual information it has mined to aid
this memory process. Each note contains an expandable context pane that
displays the most salient contextual information surrounding the note
capture (Figure 4.9). In the case of John’s phone number, it might remind
our user of where he was when he took down the note, who he had been
interacting with via e-mail and possibly a picture of the individual if he
happened to be standing over the user’s shoulder when the webcam trig-
gered.

The contextual information is available for reverse lookups as well: “I
met a business contact at Starbucks last time I was in Chicago, and he gave
me his phone number. I know I wrote his name and number down, but I
can’t remember either of them!” This contextual information can be used
to create a search in the facet panel, narrowing down the set of visible
notes to just those taken in a Chicago Starbucks.

Mobility: Unique design needs in mobile 4.1.5	
scenarios

Our ethnography participants reported that their tools were often ren-
dered useless when not available, for instance when away from their desks,
driving to work, or at home. Scraps already entered into the tool could
not be retrieved, and new scraps could not be added unless a temporary
medium such as e-mail or cameraphone were employed. Our hypothesis
was that the Jourknow system would become much more viable when
note creation and note referencing is possible in a mobile scenario, allow-
ing for the unique affordances of mobile phones such as picture taking
and audio recording.

To address this issue, we created Jourmini, a mobile phone Jourknow
client (Figure 4.10). Jourmini implements a subset of the functionality in

4. Jourknow

81

Figure 4.9. The expanded context view associated with a note.

Figure 4.10. Jourmini, the mobile phone Jourknow client. Clockwise
from the upper left: a list of notes, commands available, single note edi-
tor interface, and a view of all images attached to a note.

4. Jourknow

82

Jourknow, as well as a few phone-only features. Jourmini synchronizes its
notes with Jourknow, so any notes created on the desktop are available on
the mobile device and visa versa. The phone interface allows for note cre-
ation via keypad text entry, full-text searching and viewing. In addition, it
allows users to attach photos from the phone’s camera and audio record-
ings directly to the note, and later review them.

Visibility and Reminding: Desktop Dashboard, 4.1.6	
Importance Indicator and Alarms

Visibility and reminding are important in any information scrap man-
ager (§3.5.4). Jourknow addresses these needs through three major de-
sign points: a note dashboard on the desktop, a visual importance indica-
tor on notes, and scheduled alarms.

The note dashboard is a thin display visible on the user’s desktop even
when Jourknow is hidden or minimized (Figure 4.11). Notes may be pro-
moted to or demoted from the dashboard by clicking on the Dashboard
icon in the note. By dragging a note out of the dashboard, the user
may position it in an arbitrary location on the desktop. A pin icon may
be used to anchor the note on top of all visible windows. We designed the
dashboard and note pinning facility in support of visibility – notes may be
deliberately placed in the way of future activity to serve as reminders.

The importance indicator is another method of making notes highly
visible. The importance icon toggles note importance, which highlights
the note contents in a bright red (Figure 4.12). The note may be returned
to normal color by toggling note importance off.

It was common for participants in our ethnography to set alarms on
arbitrary items such as e-mails, thus signaling a to-do or reminder – we
enable this pattern by including a note alarm mechanism. By clicking the
alarm icon , users may set an alarm for a later date and time – when
the alarm goes off, users are prompted with a dialog box containing the
contents of the note and the note turns red as described above.

Implementation4.2	

The key technical challenges were in supporting the following func-
tionality:

Unconstrained textual input, •	

4. Jourknow

83

Figure 4.12. A note that has been marked as important turns red to pro-
mote visibility.

Figure 4.11. The note dashboard would appear on the user’s desktop even
when the Jourknow client was minimized.

4. Jourknow

84

Flexibility in how information can be structured without requiring •	
people to predefine (or adhere to predefined) ontologies,
Interfacing with desktop applications, specifically, alignment of sub-•	
text with applications’ data ontologies,
Extraction of subtext from unconstrained text, particularly support-•	
ing incomplete grammatical input, partial phrases, and informal
language,
Capture of context, and subsequent selection and presentation of •	
relevant contextual events for supporting effective re-finding and
memory priming,
Maintaining appropriate correspondences among the user’s text, •	
extracted subtext, and captured context,
Synchronizing information across desktop and mobile clients,•	
Obtaining interactive speeds while feeding a GUI from an RDF da-•	
tabase.

Figure 4.13. The Jourknow architecture. One knowledge base (KB) holds
the contents of notes as well as all structure, and second KB holds con-
text information. The program makes calls to external APIs to export
items to legacy PIM applications.

4. Jourknow

85

In this section, I describe Jourknow’s current solutions to these challenges;
Figure 4.13 illustrates the general architecture of Jourknow.

Data Model: Three Representations4.2.1	

Text4.2.1.1	

Jourknow maintains two different knowledge bases (KBs) to hold the
structures that become the notebook (text and subtext, or the “meaning
behind the text”: structure embedded in the text via Pidgin), and the con-
text. Jourknow employs an expressive approach to storage: each character
in every note is stored as a unique object in the text KB. (‘Character’ is
liberally interpreted to include all entries in the note, such as audio and
picture elements.) These characters have creation timestamps associated
with them, as well as a link to any subtext object associated with the char-
acter. Maintaining a creation timestamp for every character enables Jour-
know to identify exactly when each character was created, edited or auto-
matically generated in response to an external edit to underlying subtext.
Being able to identify the time of creation efficiently for each character
in the codex is critical to Jourknow’s functionality, because it is the key by
which Jourknow establishes a correspondence among text, subtext, and
the context chronology. This creation time is kept with the character for
the entire duration of its existence, and follows each character as it moves
due to edits to surrounding text. New characters assume the current time,
and characters that are cut or copied from one location in Jourknow and
pasted elsewhere gain additional timestamps corresponding to each paste.
This makes it possible to “manually re-plant” context associated with a
note simply by moving appropriate text between notes.

Subtext and application integration4.2.1.2	

Subtext entities are represented as graphs in RDF [21]. Subtext that orig-
inates from pattern extractors such as the Pidgin parser or the Notation3
processor are grounded in the PLUM and Jourknow ontologies which are
mapped to standard RDF ontologies, such as iCalendar [52] for events and
vCard [76] for contacts. Use of these standard ontologies makes it pos-
sible to use existing tools [94] to help with ontology alignment to schemas
used by external sources, simplifying the process of importing subtext
such as events from atom/RSS feeds, contacts from the user’s LDAP server
or IMAP e-mail account, and bookmarks from the user’s web browser.
Importing subtext items can assist the name ambiguity problems men-
tioned earlier by providing additional information with which to identify
people, places and things mentioned in the codex.

4. Jourknow

86

Similarly, when manifestations of the user’s subtext (“shadows”) are
exported to the user’s applications, ontologies must first be aligned with
the target application’s schema. Unfortunately, establishing a good map-
ping from instances grounded in the rich, expressive ontologies of the
semantic web, to rigid schemas of PIM applications often requires some-
what arbitrary decisions regarding determining which fields best align
(e.g., should “about” correspond to “comment” or “description”?). As
more applications adopt flexible data representations in the future, we
hope better mappings will become possible.

In order to effectively maintain the illusion of a single unified data
model across the user’s PIM applications, Jourknow stores explicit bidi-
rectional pointers between each subtext item and all its exported shadows.
Some external APIs such as GData [8] already generate unique IDs for
identifying elements; in this case, these IDs are used as-is; in other cases,
Jourknow generates an identifier and stores this both with the subtext
item and in a miscellaneous field of the shadow. Once this correspon-
dence is established, maintaining synchronization is simple; Jourknow
periodically polls applications using its data transfer API, and examines
all items that are tagged with a subtext identifier. For each such item, it
casts it back to the Jourknow representation, and compares field values;
if values have changed, this indicates that the user has edited the subtext
externally. Likewise, when the user updates the subtext by editing the
note, Jourknow first determines whether the subtext already has export-
ed shadows; and if so, updates these shadows with new values. Jourknow
currently exports shadows to Google Calendar via the GData API, and
Apple’s iCal and Address Book via Applescript.

Context4.2.1.3	

The context KB consists of a chronology of observations made of the us-
er’s desktop state and actions, and of their situation/environment, which
is created and maintained by PLUM [132]. PLUM executes a sequence of
observer knowledge sources at a regular frequency (usually 2-3Hz) that
call various facilities in the underlying operating system to yield obser-
vations. Examples of activities currently observed by PLUM knowledge
sources include the identity of the application that has focus at each mo-
ment, the names and locations of any documents or web pages being
viewed or edited, the user’s activity in chats, writing emails, or music lis-
tening, as well as periodic desktop screen captures and the user’s activity/
idle state. Examples of environment/situational state captured by observ-
ers include the user’s location (as perceived through Placelab [93]) and
web cam snapshots of the user. Observations each have an associated “va-
lidity” time interval, which represents the largest contiguous time interval

4. Jourknow

87

for which, according to the observer, the observed phenomena remained
unchanged. All observations made by knowledge sources are encoded as
RDF graph structures (for representational flexibility), grounded in the
PLUM ontology.

Episodes and saliency heuristics4.2.2	

Jourknow uses the concept of an episode to segment time into discrete
units for context association. By default, Jourknow assumes an episode
length of an hour, so a note written at 1:44pm would be associated with
context from 1:00pm–1:59pm. In order to find the set of episodes asso-
ciated with particular text in the codex, Jourknow finds all the episodes
whose intervals intersect the creation times of the text. Once associations
are made between text and episodes, Jourknow extracts observations rel-
evant to each episode by finding all observations that overlap with each
relevant episode’s interval.

However, there may be a great number of observations; in order to
prevent inundating the user with a record of their activities, we have de-
signed saliency heuristics to select observations that are likely to be memo-
rable and relevant to the user. These heuristics include, for each type of
context observation, most recently observed, most frequently observed,
and longest total duration. We additionally defined an “outlier” saliency
heuristic inspired by TF-IDF [119] which weights context proportionally
to its total observed duration during a particular episode, and inversely
proportionally to its total frequency observed across episodes. This latter
heuristic has proven useful in filtering out routine visits to commonly
revisited web sites, as well as intermediary pages that consumed little face
time.

Structure extraction from text4.2.3	

To support the various modes of input described in the Interaction sec-
tion, Jourknow provides three types of textual pattern analysis: simple
syntactic forms (i.e., regular expressions), recursive-descent parsing, and
Notation3 interpretation. As the recognition process can be computation-
ally intensive (particularly for the recursive-descent parsing), Jourknow
runs recognizers only on regions containing changed text, and executes
recognizers asynchronously and independently on their own threads.

The syntactic recognizer uses a standard regular expression engine
to find syntactically structured elements in the text, including tags, file
paths, and URLs. The Pidgin parser for common types such as to-dos and
calendar events can accept any context-free language. Jourknow features

4. Jourknow

88

Pidgin grammars designed to handle the most common found types of
PIM data: events, contacts, and to-dos. NLTK_lite’s rdparser [15] is used
to implement these grammars — rdparser is a simple deterministic top-
down parser for context-free grammars. Our modifications involved al-
lowing the inclusion of regular expression as terminals, which we defined
to match if and only if the regular expression matched the entire token.
This modification greatly simplified the recognition of tokens by syntactic
form (such as dates) without a separate lexical analysis phase, and enabled
us to add “wildcards” to the grammars, to stand in for words or combina-
tions of words that could not be known a priori. This occurred frequently
in our Pidgin grammars, such as with names of people, locations, or the
topics of a meeting.

While enabling wildcard terminals greatly enhanced the expressive-
ness of our grammar language, it also dramatically increased parse am-
biguity. Modifying the grammar to not require phrase headwords (usu-
ally prepositions such as “at” or “with”) made the number of ambiguous
parses combinatorially larger, but also dramatically improved usability of
the grammars, as we observed in Chapter 3 that prepositions were often
omitted in people’s information scraps. Jourknow tackled the complexity
of parse ambiguity resolution in three ways. First, interleaving wildcard
token matching into parsing made it possible to include ambiguous or
incomplete interpretations. Second, because the recursive descent auto-
matically returned all possible parses for a particular sentence under the
grammar, it reduced the problem of ambiguity resolution to choosing the
correct parse tree from the returned set of possible parses. Finally, a sim-
ple heuristic worked well in most cases: to choose the parse tree that was
broadest at its base. This corresponded to the parse tree that recognized
the greatest number of separate clauses, and attached them closest to
the root. This heuristic eliminated the most common source of incorrect
parses, the consumption of clauses by wildcard terminals, as evidenced
by errors such as interpreting the meeting Pidgin expression “meeting
with Michael at Stata” as a meeting with a person named “Michael at Sta-
ta” rather than a meeting with a person named “Michael” at a location
named “Stata”. Jourknow allows the user to override the heuristic’s choice
by browsing through potential parse trees.

The TurtleDove interpreter is implemented as a simple finite state
machine. This machine transitions between four states: type, name, predi-
cate and value. Transitions are governed by spaces and commas as de-
scribed in the grammar design. TurtleDove must be implemented with a
think-ahead technique to analyze the state the user will enter upon typing
the next character in order to display the autocomplete drop-down at the
correct moment.

4. Jourknow

89

Associating text with subtext4.2.3.1	

When a pattern extractor first identifies a previously unseen structure in
the text, it generates a new subtext entity to represent the item. To allow
future edits of the original text to properly update the correct subtext
entities, it is necessary for Jourknow to be able to uniquely identify a text’s
corresponding subtext. To effectively and reliably support this lookup,
Jourknow creates a pointer from each character in the subtext to the sub-
text object. When the source text changes, the corresponding subtext may
be updated or removed to reflect the change.

Jourmini: Simplified Data Model4.2.4	

Jourmini is implemented on Symbian Series 3 Linux Nokia phones using
Python and PyGTK. The data model is also RDF, stored using a Python
implementation of Wilbur [97]. The phone’s built-in camera and micro-
phone are used to record picture and speech notes.

Due to limited memory constraints of phone technology, Jourmini
uses a simplified data model. Specifically, rather than storing each char-
acter as an individual RDF object with a timeprint, Jourmini maintains a
string representation of the entire note and a series of edit timeprints for
the entire note. This is a lossy transformation; we no longer know when
each character was created.

Synchronization4.2.5	

An arbitrary number of Jourknow and Jourmini clients may try to update
a single collection of notes – creating a classic problem of offline-online
synchronization. Jourknow relies on a synchronization server to manages
updates and commits of note changes. When the user chooses to synchro-
nize, a two-step process begins: update (to bring any other note changes
to our local client and reconcile conflicts) and commit (to push changes to
the central server).

Versioning is accomplished using timestamps: specifically, the most
recent edit time of any character in the note serves as a de facto version
number. Comparing timestamps between the server and the client will
usually uncover which is the most recent. However, this approach fails if
the client edits an out-of-date note: for example, if the client receives the
note from the server and edits it, but another client pushes changes to the
server before the first client can push its updates. The Jourknow server
detects this situation by inspecting a special lastSync timestamp associated
with each note, marking the date and time of the last synchronization with

4. Jourknow

90

the server. If the times do not match between client and server, we have a
conflict, much like in commercial version control systems like CVS or Sub-
version. Our solution in conflict scenarios, since there is no way to know
which note is the “right” one, is to defer to the user: the two versions are
pasted together into a new note, so no information is lost.

The lossy data structures in Jourmini make synchronization a bigger
problem. How does the system go about assigning timestamps to char-
acters, given only a list of timestamps at the note granularity? Missing
timestamps might lead to context being un-associated with a note. This
problem is not generally solvable, so the synchronization server applies a
heuristic: randomly assign each character in the note a timestamp from
the set of known edit times. More formally, we sample without replace-
ment from the note set of timestamps. This technique gives us as strong
an assurance as possible without adding placeholder characters for missed
timestamps. The heuristic works in practice because the typical note has
many more characters than it does edit times (Jourmini collapses edit
times to larger, minutelong intervals), and the timestamp information is
only used at high levels of abstraction to generate context thumbnails.
However, the note is left with nonsensical and incorrect timing data, and
if Jourknow used timing information at higher granularity than hourly
episodes this solution would need to be revised.

Caching to Obtain Interactive Speeds4.2.6	

Jourknow’s persistent data model is held in an RDF [21] database using
the Jena framework [14]. Semantic Web relational databases (triple stores)
are extremely difficult to optimize, and as a result it is difficult to extract
interactive speeds from disk-based triple stores.

Our solution has been to maintain an in-memory copy of the data-
base called the cache model to hold the text KB and the context KB. In
practice the cache model performs writes and reads at interactive speeds,
and is small enough to fit in RAM. The physical disk database (the base
model) is overwritten with the contents of cache model upon save.

Many operations require further caching by using Java in-memory
data structures. For instance, the code commonly needs to query the string
representation of a note’s contents; rather than reconstruct the buffer by
traversing a list of character objects in RDF, Jourknow caches this string
in memory. Context summaries require more complex caching – asking
PLUM to return a list of all observations during a given hour is a nontriv-
ial operation, so these observations are likewise cached once completed.

4. Jourknow

91

This caching architecture will not scale; Jourknow already uses up-
wards of 100MB of memory with fewer than 50 notes. Caching is a con-
venient interim solution because the RDF representation conveniently
overlaps with many of the data model needs of our system. To make a
fully interactive system, however, a more complex in-memory data model
would be required.

Object-Oriented RDF Programming4.2.7	

Programmer efficiency is a major issue when attempting to program using
an RDF data model. Programming using an RDF data model has many
dissimilarities to object-oriented programming paradigms. Most striking-
ly, there is no function abstraction: all changes must be at the statement
level, because RDF is conceived as a series of <subject, predicate, object>
statements. To create a new blank note and insert a sentence requires a
carefully-crafted series of statements, paraphrased as:

There is an object with the following URI: http://projects.csail.mit.•	
edu/#plum/a8bd6b78s...
The object is of type Note•	
The note has a list of characters•	
That list of characters is an object•	
That list of characters is of type Sequence•	
The first entry in the list of characters is an object•	
The first entry in the list of characters is of type Character•	
The first entry in the list of characters has a contents property with •	
a value of the following URI: http://projects.csail.mit.edu/#plum/
quc876fd8...
The contents object is an object•	
The contents object is of type xsd:string•	
The contents object is the string “a”•	
The second entry in the list of characters is an object•	
…•	

One option is simply to write the application’s model code directly in
terms of these statements. This is the most efficient implementation for
the machine, as the programmer can manipulate only the necessary parts
of the data model, but it is unfamiliar and difficult to inspect or debug.

To address this issue, I have created Java object wrappers around RDF
types in Jourknow. The wrapper classes serve as sets of functions around
objects – each object corresponding to a particular URI. Getter methods
make the appropriate calls into the RDF data model to retrieve data, for
example asking for all statements with the given URI as subject and a
predicate called character, and parsing the result as a Java char.

4. Jourknow

92

These object wrappers enable traditional OOP design patterns. For
example, wrapper classes may be inherited: entries in notes can be charac-
ters, images, or audio files, sharing common manipulation code. Wrapper
classes also are straightforward places for any caching to occur, and sim-
plify both parameter passing and model-view separation. (These objects
are a simple means of access control to the data model – only a note object
can inspect its own contents.)

Saving and Transactions4.2.8	

Early users of Jourknow complained about saving – a lightweight ap-
plication should not require explicit saving, and instead automatically
back up data behind the scenes. Given the verbosity of Jourknow’s data
representation, explicit pushes of the cached data model to the database
could take minutes. Such a wait is unacceptable, especially when the ap-
plication needs to block user input during that period to avoid writing
incomplete data to disk.

Jourknow’s solution is to use transactional saving in a background
thread. The implementation of this technique is fairly straightforward,
as Jourknow’s persistent memory is kept in a RDF database. To save, a
background thread begins a transaction, removes stale statements from
the physical memory database, copies fresh ones from the cached version,
and ends the transaction. If the application is closed or crashes during
save, database ACID transactional semantics guarantee a consistent data-
base.

User Study4.3	

The Jourknow study consisted of 14 participants from MIT (ages 18-41,
median 26), external to our research group. 7 were students at the busi-
ness school, 1 was visiting Computer Science faculty at our university, 2
were undergraduates and 3 were graduate students in computer science.
There were 10 men and 4 women. The group was randomly divided into
seven participants who received just the desktop version of Jourknow, and
seven participants who received both the desktop and the mobile version
of Jourknow (MiniJour). This division enabled us to perform a between-
groups investigation on the mobile client, examining its effect on take-up
of the tool. Both groups had the context capture and TurtleDove ele-
ments of Jourknow enabled; however, common PIM type recognition and
application push was disabled.

4. Jourknow

93

Following standard practice (e.g. [60, 117]), Jourknow was installed
on participants’ computers, participants were instructed in the use of
the interface. We described several of the shortcomings of the cur-
rent version of the research prototype — slow loading and saving, oc-
casional GUI bugs, and a remaining server bug that was patched near
the beginning of the study. Participants were instructed to introduce
Jourknow into their everyday note-taking practices, and to make extra
effort to use the software to capture their thoughts and notes. They
then used the Jourknow client for a period averaging eight days, in-
cluding one weekend. Throughout the study, I used e-mail announce-
ments to promote use of the tool, remind participants to integrate the
tool into their lives, and keep in constant contact. This level of contact
was fell short of other studies which made regular visits to participants
(e.g., [31]), but was more direct than those with no reported communi-
cation during the study (e.g., [124]).

Study Results4.3.1	

General Feedback and Anemic Usage4.3.1.1	

Mid-study warning signs. Our team began to receive indications mid-
way through the study that participants were not making regular use
of Jourknow. On the 6th day of the rollout, we observed that only four
of the seven participants with mobile phones had tried synchronizing
their notes on the server. In response to an e-mail suggesting every-
one synchronize, two participants e-mailed us admitting that they had
not yet opened the tool, with a third participant experiencing trouble
starting the tool on his computer. We helped the participant debug
the problem, then sent an e-mail reminding all participants that we
had asked them (as per the study agreement) to make daily use of the
tool.

Usage analysis. At the conclusion of the study, three participants
(P2, P3, P11) had never launched the client after their initial installs
(Figure 4.14). A fourth participant only used the client once right be-
fore his exit interview (P1). Others’ usage varied significantly. As can
be seen in Figure 4.15, most participants created notes on the day that
they received the client, and note creation tailed off sharply in time.
Usage picked up with the release of a major software patch. Another
short jump occurred on the 12th, most likely in response to an e-mail
that reminding participants that the study was half over and that we
expected them to “continue using the client.”

4. Jourknow

94

Figure 4.14. Number of notes captured by each participant during our
weeklong trial. Several participants barely used the prototype at all, and
barely over half captured more than one note per day.

Figure 4.15. Number of notes captured each day during our study. The
first two days were the installation and tutorial days for all participants.
After the installation dates there is a precipitous drop. The spike in the
middle is in response to a reminder e-mail from the researchers.

4. Jourknow

95

Closing interview feedback. The closing interview indicated that
many participants were generally unsupportive of the prototype or
exhibited mixed feelings. Feedback was often focused on non-research
elements of the design such as load times and bugs. It was clear that
the prototype needed additional design iterations in several respects;
I return to this conversation in Chapter 6.

Specific Feature Feedback4.3.1.2	

Here I report the feedback we received on the three research aspects
of Jourknow: context, TurtleDove, and JourMini.

Context-based Re-finding. We found that our participants made
very little use of the contextual features, rarely viewing the context as-
sociated with a note or navigating via the associated context to re-find
a note. Participants pointed out that much of the contextual informa-
tion was incomprehensible, for instance wireless router ssid’s – and
since Jourknow was logging a great amount of context, such informa-
tion overwhelmed the facet panel. Most participants generated a very
small number of notes by the end of the experiment, and could thus
linearly scan the list more quickly than might locate the correct facet
values.

TurtleDove Language. Our participants generally found the com-
ma-delimited syntax of TurtleDove too complicated to use. Engineers
and programmers understood the format, but others found the com-
ma-delimited predicate/value approach abstruse and gave up after a
small number of attempts. We found few instances of uncommon PIM
type capture beyond shopping and to-do lists – both examples given
during the training period. Participants tended to forget syntax quick-
ly after the training session, likely contributing to our null result. Sev-
eral participants requested that we re-introduce the original Pidgin
support for common PIM types such as meetings and calendar events,
and pushing the information into applications such as the calendar.

Mobile Client. Mobility was our most successful venture – reac-
tions to Jourmini were generally positive. Notes taken on the mobile
client included many text scraps, as well as several cameraphone pic-
tures. Participants using phones with full QWERTY keyboards were
in general more positive about the mobile experience than those with
traditional 12-key number pads, due to the ease of typing. Further-
more, participants who lived primarily digital lives and used little or
no paper also found the system more useful than those who used pa-
per regularly for such notes, as they already had a functioning mobile
solution in scraps of paper.

4. Jourknow

96

Discussion4.4	

I believe that the somewhat anemic take-up of Jourknow reflects on the
design and evaluation process for the artifact. This is a complex topic, and
one I postpone for full discussion in Chapter 6.

The Pidgin languages were originally designed to serve as lightweight
entry of two data classes: common PIM types (using simple language),
and uncommon data types (using more complicated syntax). TurtleDove
disabled the former by removing the functionality to push Pidgin expres-
sions into common applications — due mainly to a lack of engineering
time for integrating with the wide variety of tools our participants used.
Our hypothesis was that the opportunity to record uncommon data types
would provide enough of a benefit to users. The hypothesis was incorrect:
participants indicated that these common PIM types would be at least as
important as the uncommon item capture already enabled.

Testing with a population heavy on business students underscored the
importance of integration with users’ critical work pathways. Several of
these participants had extremely well-defined information handling rou-
tines that Jourknow could not penetrate without integrating into specific
tools. Whether this result is an issue of adoption for evaluation purposes
(as Kelley and Teevan suggest [89]) or a more general design critique is an
open question.

Data scale is of importance in studies of systems like Jourknow. The
context information in particular proved unbeneficial to our participants
over such a short period of time, due to both the small number of notes
they accumulated and our participants’ still-intact memory of notes’ con-
tents. To better stress-test the context features of Jourknow, our partici-
pants must gather notes over a long enough period of time that these
mechanisms may become useful, or instead seed the application with ex-
isting notes.

Conclusion4.5	

In this chapter I have presented Jourknow, an information scrap manage-
ment client for the desktop and mobile phone. Jourknow explores several
dimensions of the design space, including lightweight capture, flexible
organization and re-finding, context as a memory cue, and multimodal
input. Through a weeklong evaluation of the tool on a population on
predominantly nontechnical users, we were able to identify some of the

4. Jourknow

97

tool’s most salient design and implementation weaknesses moving for-
ward. I continue the discussion of the user study and design process
in Chapter 6.

99

If Jourknow is the Swiss Army Knife of information scrap management,
attempting a variety of designs for capture, organization and re-finding,
then Pinky is a surgeon’s scalpel: it attacks a subset of the problem much
more directly. Pinky (Personal Information Keywords) is a quick capture
mechanism for common personal information types such as to-dos and
calendar events. Its design goal is to prevent information scraps in the
first place by reducing the time and energy associated with capturing
structured information. This chapter describes Pinky, its design and in-
novations, and ongoing work.

Motivation5.1	

Some information scraps exist because the user has no specific tool for
managing them (e.g. guitar tabs or how-to guides). But other scraps are
precisely the sort of data that PIM tools are designed to store. Our study
of the scraps on knowledge workers’ computers and physical desktops
in Chapter 3 found that over 25% of scraps were to-do items or contact
information, the two largest categories overall.

This result begs the question, what goes wrong? Why doesn’t this in-
formation make it into a PIM tool? The cost of starting, navigating, and

Pinky: 5.	
Personal Information Keywords

Work presented in this chapter is a collaboration with Max Van Kleek, Vikki Chou, Rob
Miller, David Karger and mc schraefel. It is under review.

5. Pinky

100

entering data in PIM applications is one reason why users turn to scraps,
despite the difficulties of organization and refinding that information
scraps will pose later [14]. Participants in our study in Chapter 3 reported
the need for quick capture as a common reason for creating scraps. “If it
takes three clicks to get it down, then it’s easier to email [a scrap to my-
self],” reported one participant. Another said, “Starting in Outlook forces
me to make a type assignment, assign a category, set a deadline, and more;
that takes too much work!”

Starner et al. [125] found a similar effect for users of mobile PDAs
and paper day planners. When prompted to schedule an appointment,
almost half of PDA users and over half of day planner users wrote down
information scraps (generally on bits of paper) rather than open up and
navigate their calendars.

The Jourknow system in Chapter 4 was designed to capture and man-
age information scraps, to catch these bits falling between the cracks of
current tools and give them life. In particular, we presented Pidgin lan-
guages for capturing structured information, potentially pushing it into
appropriate application. One finding from our studies of Jourknow, how-
ever, is that users are loath to abandon their current PIM tools, necessi-
tating automatic synchronization between Jourknow and the universe of
other PIM tools – a substantial engineering undertaking.

In this chapter I focus on the structured information capture process.
Pinky, a close relative to Jourknow’s Pidgin languages, is a prototype cap-
ture tool for these common personal information types. Rather than be-
ing another PIM tool to manage, Pinky exists only to capture information
into other tools.

A Command Line for PIM5.2	

Pinky offers a possible solution to the lightweight capture problem.
Pinky is a hotkey-invoked popup command line extending the Inky web
command system [51] that allows the user to enter information quickly as
text, then pushes the information into the appropriate PIM tool (Figure
5.1). The text is parsed using keyword matching to extract PIM data (like
todo items, calendar events, or contact information), which is then filed
immediately in the appropriate PIM tool. As a web browser plug-in, Pin-
ky currently automates web-based PIM tools including Google Calendar
and Remember the Milk to accomplish this filing. However, this technique
could be extended to many desktop applications as well.

5. Pinky

101

The rest of this chapter describes Pinky’s design, research contribu-
tions and implementation. Some of the new ideas embodied in Pinky in-
clude: (1) using GUI widgets for choosing and changing arguments on
the command line; (2) displaying relevant clippings from the back-end
web site while the user is entering a command; and (3) reorganizing the
display of alternative interpretations to make them easier to scan and se-
lect.

Figure 5.1. The Pinky command line for personal information. The text
box at the top of each window has been typed by the user, and the list
below the break represent Inky’s interpretations of the command. The
user selects a parse, and Inky will execute the command.

5. Pinky

102

Design of a GUI Keyword 5.3	
Command Line

Pinky builds on techniques explored in the Inky internet keyword com-
mand system [51] — the interaction techniques in this section are derived
from Inky. Pinky-specific innovations are detailed in §5.4.

Pressing Control-Spacebar in the web browser pops up the Inky win-
dow (Figure 5.1). This keyboard shortcut was chosen because it is gener-
ally under the user’s fingers, and because it is similar to the Quicksilver
shortcut (Command-Space on the Mac).

The Inky window has two areas: a text field for the user to type a
command, and a feedback area that displays the interpretations of that
command. The Pinky window can be dismissed without invoking the com-
mand by pressing Escape or clicking elsewhere in the browser.

Commands5.3.1	

A command consists of keywords matching a web site function, along with
keywords describing its parameters. For example, in the command todo
call mom 3pm, the todo keyword indicates that the user wants to capture a
to-do, and call mom and 3pm are arguments to that function.

To reduce the burden of learning and remembering syntax, Inky insensi-
tive to keyword ordering and synonyms. For example, todo call mom 3pm
and 3pm call mom todo will produce the same interpretation. Keywords
that represent arguments to a function can be reordered and interspersed
with keywords matching the function to be called. Commands can use
synonyms for both function keywords and arguments. For example, to
set up a meeting with david at 4pm in D463, the user could have typed
calendar or mtg instead of meeting, used a full room number like 32-D463
or a nickname like Star Room, and used various ways to specify the time,
such as 15:00 and 3:00.

Function keywords may also be omitted entirely. Even without func-
tion keywords, the arguments alone may be sufficient to identify the cor-
rect function. For example, D463 15:00 is a strong match for the room
reservation function because few other PIM functions take both a room
location and a time as arguments.

5. Pinky

103

Feedback5.3.2	

As the user types a command, Inky continuously displays a ranked
list of up to five possible interpretations of the command (Figure 5.7).
Each interpretation is displayed as a concise, textual sentence, show-
ing the function’s name, the arguments the user has already provided,
and arguments that are left to be filled in. The interpretations are
updated as the user types in order to give continuous feedback.

The visual cues of the interpretation were designed to make it
easier to scan. A small icon indicates the website that the function au-
tomates, using the favicon image displayed in the browser address bar
when that site is visited. Arguments already provided in the command
are rendered in black text. These arguments are usually exact copies
of what the user typed, but may also be a standardized version of the
user’s entry in order to clarify how the system interpreted it. For ex-
ample, when the user enters mtg star room, the interpretation displays
“meeting D463” instead to show that the system translated star room
into a room number.

Arguments that remain to be specified appear as white text in a
dark box. Missing arguments are named by a word or short phrase
that describes both the type and role of the missing argument. If a
missing argument has a default value, a description of the default
value is displayed, and the box is less saturated. In Figure 5.8, name,

Figure 5.7. Feedback is offered continuously as the command is entered.

Figure 5.8. Feedback showing different kinds of argument feedback,
including required (room), default values (this month), and rarely-used
arguments (repeats never).

5. Pinky

104

e-mail office, etc. is a missing argument with no default, while this month
is an argument that defaults to the current month.

For functions with persistent side effects, as opposed to merely retriev-
ing information, Inky makes a distinction between arguments that are
required to invoke the side effect and those that are not. Missing required
arguments are marked with a red asterisk*, following the convention used
in many web site forms. In Figure 5.8, the room and description are re-
quired arguments. Required arguments exist for functions with side ef-
fects because those side effects cannot be automated without all necessary
arguments. Note that the user can run partial commands, even if required
arguments are omitted. The required arguments are only needed for run-
ning a command in the mode that invokes the side effect immediately.

The feedback also distinguishes optional or rarely-used arguments by
surrounding them by parentheses, like the (repeats never) argument in
Figure 5.8. It should be noted that this feedback does not dictate syntax.
The user does not need to type parentheses around these arguments. If
the user did type them, however, the command could still be interpreted,
and the parentheses would simply be ignored.

Running a Command5.3.3	

Pressing Enter on a command runs the top-ranked interpretation by de-
fault. The arrow keys or the mouse can be used to select a different in-
terpretation from the list, or the user can click the Go button next to the
desired interpretation. When a command is run, the Inky window disap-
pears, and Inky directs the browser to visit the target web site and fill in
the form automatically.

Commands without side effects can be run with as few arguments as
the user chooses to give. If the function is missing arguments, Inky re-
lies on the fact that the website will either fill in appropriate defaults or
prompt the user for required arguments when Inky tries to submit the
form. By delegating these tasks to the website, Inky is able to use defaults

Figure 5.9. Commands can be run in either view mode (Go) or submit
mode (e.g., Send Email).

5. Pinky

105

that are stored by the web site. For example, AccuWeather. com uses an
HTTP cookie to remember the last city used for looking up a weather
forecast. By letting AccuWeather handle the default, Inky users can look
up the weather in their usual area just by running the command weath-
er.

A website’s prompt may also include useful UI feedback and con-
straints that are not available in our textual prototype. For example, the
command travelocity SFO LAX would start searching Travelocity for
flights from San Francisco to LA, but Travelocity would prompt for de-
parture and return dates with a custom calendar widget.

Functions with side effects can also be run in submit mode. When a
command is run in submit mode, Inky takes the final step of causing the
side-effect to occur. Submit mode is selected by pressing Control-Enter, or
by clicking the submit button in the desired interpretation. The submit
button is labeled with the effect that it has, such as “Make Event”, “Reserve
Room”, or “Send Email” (Figure 5.9). This button is disabled until all re-
quired arguments are provided to Inky, since Inky is taking responsibility
for running the command. For example, typing email vikki@mit.edu re-
member to buy milk today and pressing Control-Enter will immediately
send an email, with no further interaction. The command is run by auto-
mating the web site, however, so any confirmation pages or opportunities
to cancel or undo would be visible.

Separating commands with side effects from those without side-ef-
fects helps discourage Inky users from making errors that would be dif-
ficult to reverse. Since the default run methods always execute the com-

Figure 5.3. Pinky has redesigned the command interface to speed disam-
biguation between multiple parses. Most notably, it splits top-level func-
tions into tabs on the left, and enables disambiguation by argument via
drop-down.

5. Pinky

106

mand in a view mode, it is more difficult for a user to unknowingly cause
a persistent side effect. However, by making it possible for users to run in
a submit mode, Inky increases the efficiency of users who trust the system
and want to commit to the side effect.

Personal Information Keyword 5.4	
Commands

In this section I detail the improvements and adaptations I have per-
formed to redesign Inky for personal information capture. This new ver-
sion of the software is called Pinky.

Organizing Multiple Interpretations5.4.1	

One observation from the Inky user study was that the list of alternative
interpretations was rarely used. Several study participants expressed the
concern that the alternatives on the list often looked very similar, which
made them hard to compare. For example, the top few choices may all be
the same function, differing only in how the user’s keywords are assigned
to arguments. As a result, it often felt easier to change the command until
the top suggestion was right, rather than visually scan the list of sugges-
tions.

The Pinky prototype has a new feedback interface aimed at address-
ing this problem (Figure 5.3). The suggestion list is categorized by func-
tion, indicated by the tabs on the left, so that each function that matches
the command appears only once. Within each command, the alternative
parses for each argument are shown in a drop-down list under the argu-
ment, which the user can select. However, this higher granularity adds
complexity to the user interface: the user can no longer simply page
through a list of options.

This interface allows the user to select the right interpretation by fo-
cusing on just one component at a time: first the function name (by pick-
ing a tab), then each argument (by picking from drop-down lists). Each
choice may cascade to other choices, since the keyword interpreter does
not permit two arguments to use the same keyword. For example, when
the user in Figure 5.4 indicates that G531 is the location of the calendar
event, G531 can be removed from the list of guesses for the title of the
meeting. The new interface also incorporates the GUI widgets mentioned
earlier (Figure 5.4 includes the calendar widget and the location widget).

5. Pinky

107

GUI Widgets for Command Arguments5.4.2	

Sometimes arguments may be easier or faster to select from a GUI wid-
get, such as a calendar picker, than to type. GUI widgets also inherently
offer additional feedback that can reduce errors. For example, a calendar
widget makes it obvious that April 12 is a Saturday, so it may not be a good
day to schedule a work meeting.

The Pinky prototype incorporates three kinds of GUI widgets into its

interface: people, places, and dates. The people widget pops up an au-
tocompleting list of people’s names and email addresses, drawn from the

user’s email contacts. The places widget has a similar list of relevant
places, which for our environment are the rooms in our building. The

calendar pop-up widget

location pop-up widget

Figure 5.4. Pinky provides GUI widgets to aid completion for certain
argument types, such as dates, locations, and people.

5. Pinky

108

date widget is a conventional calendar widget. These three widgets are
implemented in HTML and Javascript using the Yahoo User Interface
library.

GUI widget buttons are incorporated into Pinky’s feedback window, so
that argument slots of the appropriate type (people, places, and dates) are
automatically followed by the relevant button. Clicking the button pops
up the widget to fill in the missing argument (or change the value already
assigned to it by command parsing).

When an argument’s value is set with a GUI widget, the command
in the textbox automatically reflects the change as well. The relevant text
is annotated with the property name (Figure 5.5). This text represents
a mandated variable and is prefixed by an argument name, as in mtg 5pm
with:emax at:G725. This syntax forces the keyword interpreter to use
those keywords only for the specified argument. To avoid changing the
user’s command too drastically, this extra syntax is normally hidden, and
mandated variables are shown by underlining them as in mtg 5pm emax
G725 (Figure 5.5). Clicking on the mandated variable expands it into its
full syntax. Expert users can also directly type the syntax for mandated
variables, but this requires the user to learn and remember names of ar-
gument.

Web Clips5.5	

GUI widgets like the calendar widget provide generic support for enter-
ing arguments accurately, reminding the user for example that April 12 is
actually a Saturday and that msbernst@mit.edu is the intended email ad-
dress. For more personalized context, Pinky uses web clippings extracted
from relevant web sites. These web clippings bring just-in-time informa-
tion to the user, anticipating the user’s information needs so that the user
does not need to break off the entry to consult less efficient menu and
form interfaces, or worse, choose not to record the information at all.

compressed mandated variable expanded mandated variable

Figure 5.5. Variables chosen explicitly from drop-down lists or widgets
are visually indicated by the predicate they represent (left). When the
user clicks the expand box , the entire expression is displayed (right).

5. Pinky

109

Figure 5.2. Web clips
available in Pinky:
a) Google Calendar;
b) Remember the Milk
to-do manager;
c) Horde webmail cli-
ent;
d) CSAIL room reser-
vation system;
e) Google Charting
API, fed from a Google
Spreadsheet.

a) b)

c)

d) e)

5. Pinky

110

For example, when the user is scheduling a calendar event or reserv-
ing a conference room, Pinky automatically pops up a clipping of the
user’s calendar (Figure 5.2a) for that day, to help confirm the date and
time of the meeting and avoid overbooking. When the user is sending
an e-mail, Pinky shows a clipping of recent e-mails exchanged with the
intended recipient (Figure 5.2c). Other clippings appear in Figure 5.2.
Clippings appear as satellites around the main Pinky popup window, and
update as the command is edited (Figure 5.6).

Pinky’s clippings are reminiscent of WinCuts [127] for desktop win-
dows and Apple Web Clips [23] and Web Tracker [68] for web pages. Un-
like these systems, however, Pinky extracts a clipping not by retrieving
a single URL and extracting a snippet of HTML or a screenshot, but
instead by automating a web application until it reaches the desired state.
The resulting web page can thus be customized much more dramatically
than with other tools; for example, by showing the calendar focused on
the time under consideration, by displaying only e-mails exchanged with
the person of interest, or by skinning the conference room schedule down
to only the room under consideration rather than a large matrix showing
all rooms. The automation and customization scripts are pre-authored by
a domain expert.

Since the clipping is a live rendition of the underlying web applica-
tion, it can update immediately when the user changes arguments in the
command, like the day of a meeting. To interact with the web application
directly, the user can click on the clipping, which expands the clipping to
make the whole web page visible. Clicking away from the expanded page
shrinks it again.

Figure 5.6. Web clippings appear as satellites of the Pinky window. The
clippings update to match the arguments — here, the date of the reser-
vation.

5. Pinky

111

By automatically navigating web applications and showing appro-
priate clippings, Pinky helps bridge the gap between the user and the
web application. For PIM data capture, clippings bring useful bits of
the PIM tool out to the user, on demand, rather than requiring the
user to find their own way into the tool.

Automatic clippings suggest another use for Pinky – not just a
shortcut for data capture, but for queries as well. By typing a partial
command, like apr 17, the user can immediately bring up a web clip-
ping with useful information, in this case their calendar for that day.

Implementation5.6	

Pinky, like Inky, is a Firefox extension built on top of the Chickenfoot
end-user automation system [44]. Pinky’s user interface is implement-
ed in HTML, Javascript and CSS; the back-end keyword interpreter
is implemented in Java; XML files are used to specify top-level func-
tions.

Keyword Command Interpreter5.6.1	

The keyword command interpreter takes in a command from the
user and returns an ordered list of possible interpretations of that
command. The goal is to make entries in that list as mirror the text’s
intention as closely as possible. Our approach proceeds in two stages
for each possible function: first, identifying potential matches for each
argument, and second, merging the argument matches into coherent
interpretations. Pinky uses a different keyword command algorithm
than Inky: one based on the Koala sloppy programming paradigm
[100], called Koalalicious.

Each function definition consists of set of name keywords, (e.g.,
“calendar, addCalendar, add, cal, gcal, schedule, appointment, meeting,
rekky, mtg” and a list of arguments to that function. Each argument
likewise consists of a set of keywords (e.g., “time, at, dueTime, due, by,
before, on, @, the”), as well as the base type: string, regular expression,
date, time, or an enumerated type. These type definition files repre-
sent the database against which the user’s command is matched.

In the first stage, each argument searches the string for potential
matches and assigns numeric scores to substrings. This score reflects
how likely the substring is to match the argument (for example, if it

5. Pinky

112

looks a lot like a time and has the word “at” before it). Each argument may
tag as many substrings as it likes, and these substrings may overlap.

In the second stage, the goal is to assign an interpretation based on
these sets of argument scores and substrings. We want interpretations that
explain the highest percentage of the command text, giving preference
to those substrings which have received high scores as likely matches for
particular arguments.

 The general approach is a close relative of the A* search algorithm.
In traditional A* on a graph, search proceeds by successively removing
the first item from a priority queue as sorted by a distance heuristic. Each
heuristic guess is guaranteed to equal or underestimate the actual distance
to the goal: the defining characteristic of an admissible heuristic. When an
item comes off the queue, all outgoing edges are explored and all new
possibilities are placed in the queue with fresh heuristic guesses. If there
are no more edges to explore, then either the search is at a dead end, in
which case it simply discards the item, or it has arrived at the goal. If it
has arrived at the goal, the current path is guaranteed to be the shortest
path because all admissible heuristic guesses are underestimations, so any
shorter path would have already been examined.

Koalalicious adapts this approach by using the argument scores as a
distance heuristic. The heuristic guess is the sum of all argument scores
in a single interpretation. As a result, rather than searching for the short-
est path using underestimates, Koalalicious’s A* algorithm searches for
the largest summed score, and requires equality or overestimation on all
score estimates. The initial overestimate score sums the maximum pos-
sible scores for each argument, based on all possible substring matches
each argument provided. Suppose the interpretation were the following:

function: todo
	 arg name:
		 5pt, [1, 2]
		 10pt, [2, 6]
		 6pt, [2, 3]
	 arg date:
		 15pt, [4, 10]
		 2pt, [4, 6]
		 8pt, [6, 10]

The initial score would be 10pt for max(name) + 15pt for max(date) =
25pt.

At each following step, the algorithm removes the highest-scoring (in-
complete) interpretation from the queue. It then makes a single argu-
ment assignment to maximize its score: in the preceding example, date
would be assigned the 15pt interpretation, since that choice adds the most
to the overall score. The algorithm then removes any interpretations that

5. Pinky

113

conflict with the now-reserved substring bounds. In our example, we
would be left with:

function: todo
	 arg name:
		 5pt, [1, 2]
		 10pt, [2, 6] (pruned due to substring overlap)
		 6pt, [2, 3]
	 date:
		 15pt, [4, 10] (chosen by the algorithm)
		 2pt, [4, 6]
		 8pt, [6, 10]

The algorithm then sums the highest possible remaining scores, here
15pt + 6pt = 21pt, and places this new guess back on the queue. Re-
moving all possible interpretations for an argument does not signify a
dead end, as the user may have omitted an argument.

When the algorithm removes a fully-assigned interpretation from
the queue, that interpretation is guaranteed to be the highest-scoring
interpretation for that function. The algorithm may then continue to
run and generate a ranked list of interpretations.

Web Clippings5.6.2	

To render a web page as a clipping, it is opened in an HTML iframe
element set to reasonable browsing dimensions (800x600), which en-
sures that the clipping is rendered in a familiar and readable way. A
pre-authored Chickenfoot script automates the web page using argu-
ments supplied from the Koalalicious parse, for example the date and
time of the calendar event under consideration. Once the automation
is complete, the desired region in the page is located (e.g., a single day
in Google Calendar), and its bounding box is used to clip the iframe
by positioning the frame appropriately inside a viewport element, a
div of the appropriate width and height. The div element is absolutely
positioned on the page to appear as a satellite, and the iframe is abso-
lutely positioned inside the div to place the upper-left of the clipping
bounds at the upper-left edge of the div.

Evaluation5.7	

As Inky had previously been evaluated with a small field study [51],
we can extrapolate appropriate conclusions to Pinky. Inky’s field study
involved seven users, all members of MIT CSAIL who regularly use
Firefox, who used Inky over a period of approximately a week. The
data gathered from the study shed light on learnability, accuracy, the

5. Pinky

114

importance of synonyms, the importance of order independence in com-
mands, and the importance of suggestions. In brief:

Almost all commands executed were presented at the top of the •	
interpretation list
Synonyms and re-ordering are critical to successfully recognizing a •	
small but significant number of commands

Pinky has not yet been rigorously evaluated. The main aspects of Pinky
which require evaluation are its novel layout, its inclusion of web clippings
as just-in-time information, and GUI widgets.

To evaluate the layout and usability of the interface, a laboratory us-
ability setting would be appropriate. A question for investigation: does the
Inky’s list interface or Pinky’s tabular layout lead to faster, more error-
free capture under time pressure? This question could be answered via a
within-subjects experiment using a precompiled list of personal informa-
tion items to capture.

Web clippings need to be evaluated in two areas: 1) do they provide
useful information at appropriate moments?; 2) is the compressed inter-
face to that information usable? A laboratory study may begin to shed
some light on these issues. We can amend the previously-detailed study by
asking participants to role-play as a fictional person whose schedule, con-
tacts list, etc. already exist online. Some commands given to participants
might be straightforward, with no conflicts or other information needed,
while others might depend on the information from the web clippings
such as a time conflict. In this way, we can encourage participants to inter-
act with the web clippings and uncover both quantitative data answering
the question “does it help?” and usability feedback. The broader question
of whether the clippings are engaged in practice would need to be evalu-
ated through a longitudinal study.

A longitudinal evaluation could be a mix of an experience sampling
study and a traditional rollout. Participants would install Pinky on their
computers and receive training on the software. Follow-up meetings
would ensure that they understand the software and reinforce the im-
portance of continued usage (see Chapter 6). Furthermore, participants
would be text-messaged at semi-random intervals with information to re-
cord immediately using Pinky. This experimenter-fed information would
be based on reference tasks [137] we wish to compare across participants,
and also further reinforce Pinky usage.

5. Pinky

115

Future Work5.8	

We suggest that Pinky may be useful as a query mechanism in addition
to a capture mechanism. It is an intriguing idea to be able to call up a
keyword command window, type board meeting and have the interface
show you the time and location of your next board meeting. Pinky already
supports a measure of this style of interaction: typing mtg tomorrow will
display tomorrow’s calendar in a web clipping. However, this notion could
be extended by allowing the information to be acted upon, for example
by changing the date or time, or by pasting the selected information into
the current application. Such a search-and-paste approach might speed
up common interrupting tasks like finding a contact’s e-mail address to
type into a web form.

Long tail personal information may also be an appropriate target for
Pinky. For a user who maintains a spreadsheet of jogging activity, entering
jogged 10 miles might capture today’s activity; for a user who is applying
to graduate schools, MIT recommendations due 12/15 might capture an
additional bit of information about the application process into a spread-
sheet. Is long tail information the best candidate for a Pinky-style inter-
face, however? The ethnographic data suggests that reliable archiving and
extensible formats are much more important than lightweight capture for
long tail information.

Command history might be integrated into the Pinky interface to
speed entry and reduce ambiguity. For instance, when the user enters
board meeting, Pinky can search its command history and display all pre-
vious board meeting commands in a satellite window. The user might se-
lect entries in the list and use them to populate arguments in the main
command window, for instance carrying over the previous time, location
and attendees. Command history can also be used to disambiguate board
meeting Blair 6, if previous commands reveal that Blair has been used as
a location and board meetings are typically at 6pm rather than 6am.

The context information mined by PLUM for Jourknow can be used
to disambiguate commands as well. A command jourknow mtg w/ david
5pm is inherently ambiguous: do I mean David Karger, David Huynh, or
David Bowie? PLUM’s topic models of my e-mail might suggest that Da-
vid Karger co-occurs with Jourknow much more often than David Huynh
or David Bowie, and then implicitly store that information. Potentially
more powerfully, PLUM might notice that I have been trading e-mails
about Jourknow with David Huynh recently or that David Bowie (but not
David Karger) is in the room when I make the command, and adjust in-
terpretation accordingly.

5. Pinky

116

Pidgin and Keyword Commands: 5.9	
Lightweight Data Capture Mechanisms

Pinky exhibits many similar characteristics to the Pidgin languages de-
scribed in Chapter 4. They both expose lightweight textual capture mech-
anisms. What can we say about the meaningful axes of distinction between
these tools?

Language Axes5.9.1	

We can characterize several important design features of the textual lan-
guages themselves:

General/ontology-specific: whether the language contains domain •	
specific representations (e.g., events, contacts) or generic entities
and relations
Resolution of entity and property names: the ability for the user •	
to refer to entities using short/familiar names instead of a long but
unambiguous identifier.
Literal type deduction: the ability to automatically determine the •	
types of literal values without extra work by the user, e.g., to parse
relative dates and coerce numeric values
End-user extensibility: letting the user extend the language to new •	
forms
Nesting of expressions: allowing for the embedding of one state-•	
ment within the clause of another
Reorderability/Optional clauses: supporting reordering/optional •	
clauses
Mandatory delimiters: whether to require the user to adhere to strict •	
syntactic rules
Syntactic ambiguity: whether the strings in the language can have •	
multiple valid interpretations
Command or data description: does the language take a noun-ori-•	
ented perspective (“there is a meeting”) or a verb-oriented perspec-
tive (“create a meeting”)?

The preceding study identified a number of these features as essential
if not highly convenient for most users. In particular, supporting familiar
references to entities and properties and literal type deduction appear to
be of particular importance. There is often a delicate trade-off between
naturalness and unambiguous interpretability. For example, syntactic de-

5. Pinky

117

limiters were seen in general to be somewhat onerous (e.g. requiring quo-
tation marks around literal expressions); however, relaxing the syntactic
requirements too far often resulted in an explosion in syntactic ambiguity
– which is perceived to be far worse.

The Inky user study reported earlier demonstrated that being flex-
ible regarding word/phrase order in expressions might be important as
well; the study revealed that nearly 50% of expressions entered by users
in their sloppy-programming [101] based language were out of order in
some way, despite immediate graphical assistive feedback.

Design Axes5.9.2	

We can likewise characterize the design choices of the tool. Though there
are many such axes, a few particularly prominent ones are:

Embedded or independent: is the language embedded in an appli-•	
cation (as is Pidgin in Jourknow), or is it an independent interface?
Disambiguation: how does the interface support disambiguation? Is •	
disambiguation performed by shuttling through full parses, or by
fixing individual problems?
Ephemeral or permanent: do the statements continue to exist after •	
they have been issued? Are they kept up-to-date as the referenced
PIM items are changed?

Pidgin Languages and 5.9.3	
Natural Language Processing (NLP)

A potential criticism of our approach is that it is simply “NLP-lite” — that
as soon as computer scientists solve the problem of recognizing arbitrary
natural language, the Pidgin approach will not be needed. However, there
are several reasons to doubt such an argument. First, a complete NLP
solution remains distant at this time, and is more than is needed for the
simple data capture we support. Thus, the Pidgin approach offers many
of the benefits of NLP input, sooner. Second, individuals’ jotted notes are
generally not in “natural language”. They include personalized language,
abbreviations, ungrammatical constructions, and a variety of other lan-
guage hacks to make entry more efficient. By contrast, most NLP corpora
are trained on well-formed English sentences common across individuals.
Users do not want to waste time crafting grammatically complete sen-
tences to record information fragments. While NLP might ultimately be
able to handle this unnatural language, shorthand is highly individualis-
tic and requires a solution that learns for each user differently – an even
more challenging problem than standard NLP. Third, Pidgin emphasizes
the value of bridging from a more naturalistic input framework to a tra-

5. Pinky

118

ditional GUI output environment, in contrast to many natural language
systems that assume natural language is the right modality for both direc-
tions.

Conclusion5.10	

Pinky is the first step toward a new type of information scrap manag-
er — one that preempts the need to create information scraps. As such,
it eschews the typical tropes of notebook applications for a command-
style interface. I believe that it is such an approach — paying attention
to the design needs behind information scraps and not necessarily to the
scraps themselves — that will lead to the most innovative and successful
designs.

Pinky accomplishes this break with tools like OneNote and Evernote
by focusing on a constrained subset of the problems: information scraps
that could in principle live in common applications, but in practice do not.
Our investigations uncovered lightweight capture as a powerful reason
moderating capture of this data, and thus Pinky is designed as a capture
tool.

119

The design process is rarely a wholly scientific effort. For most design
problems, process exists to lend guidance to an inherently entropic set of
tools and techniques. These techniques are aimed first at getting the right
design (generating as many ideas as possible and selecting the best one),
and then at getting the design right (executing the chosen idea) [129].
These techniques begin with sketching and ideation [49] and transition to
refinement and a focus on usability.

Not all design problems are well-suited for a process, however. Rittel iden-
tified a subset of design problems he termed wicked problems: those with
particularly messy, circular, or contradictory requirements [115]. When
attempting to solve a wicked problem, it is most likely that a designer will
unintentionally uncover or create further issues. For such design tasks,
process is less of an aid: a designer may enter late stages of usability test-
ing, only to discover that the design has a fatal flaw in its fundamental
assumptions.

My experiences with information scrap design suggest that the design of
an information scrap manager is indeed such a wicked problem. As dis-
cussed in Chapter 4, the Jourknow prototype faced unanticipated feed-

Design Processes for Information 6.	
Scraps

Work presented in this chapter is a collaboration with Max Van Kleek, David Karger and
mc schraefel. It is published as a CSAIL Technical Report [37] and a CHI 2007 work-in-
progress paper [39].

6. Design Process

120

back at the conclusion of its longitudinal evaluation. I had been interested
in the usefulness of contributions like context-based re-finding, Pidgin
input syntax, and the mobile Jourmini client. Instead, I found that many
participants gave up on the tool early in the trial, and gave unanticipated
reasons for doing so:

“It didn’t integrate with Outlook.”•	
“I didn’t like that it was an extra window open on my Taskbar.”•	
“I didn’t •	 get it.”

This chapter is a characterization of the nature of such design prob-
lems associated with designing for information scraps. I will begin by re-
viewing the Jourknow design process and recounting how the design and
research team rationalized its investigative approach. I then look at four
points in the process that reflection suggests might have impacted our
outcome: scale of prototype, effective prototyping techniques, choice of
participants, management of participants in a longitudinal study. I in-
terrogate these points against known design methods. I conclude with a
consideration of how to move forward, and reflect on implications of our
experience for design practice.

The Design Process6.1	

The following section traces out the evolution of the Jourknow prototype,
from early design exercises, a first prototype, ethnography and a revised
prototype. The “we” voice in this section refers to the research team.

Early Ideation and Design Space Exploration6.1.1	

Having identified a problem space of interest, the design team began with
an exercise: if you had a magic text file that could do whatever you want-
ed, what would you do with it? Our team of four researchers spent a week
interacting with this “fake computer.” We were interested in considering:
what kinds of creative uses could we come up with for this tool?

We observed a number of interesting characteristics in our logs, for ex-
ample deliberate ambiguities such as “do ____ stuff” or “remind me” notes
without any mention of when the reminder should actually occur, and the
use of commands such as “open cal.” Structure ranged from very orderly
notes to almost unparseable text. Verbosity also varied between clearly ex-
plicated sentences and very condensed text, even within the same log. Two
researchers explicitly recorded contextual information like date, time and

6. Design Process

121

location into the text file, and a third, reflecting on his failing memory for
the note, remarked that he wished he had done so as well.

Based on our experiences, we built a first prototype system called the
DOINGpad (Figure 6.1a), so named because it captured what the user
was doing whenever he or she recorded a note. The DOINGpad (“doyng-
pad”) was intended as a functional sketch [49] intended to explore an idea
space -- implemented in four hours, we built it to elicit feedback amongst
the design team as we used it. DOINGpad recorded the following when-
ever the user begins to write a note: current date and time, friendly loca-
tion name (from the wireless access point; e.g., “max’s office”), a webcam
photo of the user and his/her surroundings, and a Uniform Resource
Identifier (URI) which could be linked to other concurrent system activ-
ity such as window switches and music being played. Below these system-
generated fields is a free text area for recording the note itself.

Involving Related Work, Functional Prototyping6.1.2	

With DOINGpad allowing us to reflect on our approach, we began to
iterate upon our ideas. Our explorations spanned several research do-
mains; from PIM research we took note of the inherent tension between
a need for lightweight entry and a desire for structured representation
later [30, 41, 86]. Studies of remembrance habits then informed us of the
various mechanisms our users might utilize to re-find information, such
as relevant people and situations [54] or pictures [122]. Here we drew
on systems such as ChittyChatty [86], and Stuff I’ve Seen [60] for design
inspiration.

Figure 6.1. Evolution of Jourknow prototype: (a) the original DOING-
pad prototype, (b) sketches and storyboards for our functional proto-
type, and (c) the final version.

6. Design Process

122

Given this variety of research recommendations, we set out to incor-
porate them into our tool to see if their insights would positively impact
our own work. Through design iteration (Figure 6.1b), we developed the
first version of Jourknow, a journal that “knows.” Jourknow represent-
ed our first foray exporting our own ideas into the functional prototype
space for feedback. Its main design points were automatic context capture
and association with notes in support of re-finding (e.g., “it was that note
I took down when I was at Starbucks”) and lightweight structured expres-
sion parsing, which we called Pidgin. We employed first-use studies and
design critiques in order to get first-contact feedback on our prototype.
The prototype was, however, still too slow and too brittle to be used on a
regular basis.

Expert Feedback6.1.3	

With the Jourknow prototype demonstrable but not yet stable or polished,
the research team decided the next appropriate step would be to put the
Jourknow interface to expert critique. We headlined information scraps
and Jourknow as a work-in-progress poster at CHI 2007 to gain feedback
from the attendees [39]. We received a much more positive response than
than anticipated (first place award, people’s choice!), much positive feed-
back, and many requested features.

At this point we also received expert reviewer feedback on Jourknow,
and acceptance of the prototype into a top-tier computer science and
HCI conference [131]. Reviews indicated support for our direction but a
need to test our ideas on real users:

“The authors have implemented a reasonably complex system to try •	
to address this well-motivated problem. [...] Since it was informally
evaluated with CS students in a lab, how can we know if this is even
reasonably usable for non-techies?”
“There is a need for longitudinal testing to establish how such a •	
system would fit in with people’s working practices: who does such a
system actually suit, and why?”
“I agree with the other reviewers that this paper describes a cool •	
system. Certainly I want to use something like this. [...] but, I’m also
not sure what we learn from this work without evaluation.”

Needfinding and Ethnography6.1.4	

Before incorporating the expert feedback into our prototype, we de-
cided first to hone our knowledge of the domain of information scraps.
To this point we had based much of our research on existing literature

6. Design Process

123

informing information scrap management (as detailed in Chapter 2).
However, we found that the literature left unanswered questions: what
kind of data is kept in information scraps? What kinds of tools are gener-
ally used? What do they look like? What factors affect their creation and
use?

Thus, in order to more fully understand the makeup, contents, and
needs of information scraps, we performed our own investigation as de-
tailed in Chapter 3 and in an upcoming journal article [35]. Our study
consisted of semi-structured interviews and artifact examinations of par-
ticipants’ physical and digital information scraps across physical and digi-
tal tools. For details on the study, see Chapter 3.

Scoping and Research Specification6.1.5	

At the conclusion of our study, we reflected upon lessons learned and how
we might apply our new knowledge to Jourknow. During a two-day cau-
cus, the researchers attempted to scope the project to areas of interest in
need of evaluation. We grounded our hypotheses firmly in our own work
as well as related research — each hypothesis needed to be justified by ob-
servations from our ethnographic work. For each feature, we examined
whether leaving it out would significantly harm the overall effectiveness
of the system.

We began with our two hypotheses from the previous prototype: con-
text capture and Pidgin structured language input. An object of discus-
sion was: should we leave the work at those two hypotheses for evaluation,
or add something new? We foresaw that users who did not always carry
laptops may see limited use to the system, just as users of existing digital
tools in our study found mobility a major inhibitor. Furthermore, our
participants reported that their tools were often rendered useless when
they were not accessible when a note was needed, for instance when away
from their desks, driving to work, or at home. Thus, we hypothesized that
supporting mobile note-taking might greatly improve the overall experi-
ence and usefulness of our system. Thus, we decided to focus our proto-
type on the following three improvements to existing information scrap
practice: context capture, structured capture (Pidgin), and mobility.

Jourknow Client Redesign6.1.6	

At this point the research team took the opportunity to redesign the cli-
ent based on knowledge gained from our previous iterations. We began
by generating a large number of basic interface approaches for informa-
tion scrap management, then built paper prototypes [113] (Figure 6.2)
to investigate the most promising directions: an inbox metaphor, a note-

6. Design Process

124

book metaphor, and a search-only interface. We recruited participants
from the lab to interact with the paper prototype, which had already been
populated with notes; we found that the notebook metaphor afforded a
level of spatial memory that participants generally preferred. However,
the list interface also seemed to have merits: physical resemblance to a
word processor, a logical place to start capturing (i.e., at the end) and an
easy metaphor for supporting both automatic and manual arrangement
(i.e., sorting). Thus, we brainstormed and designed the remainder of the
interface, relying heavily on existing interface paradigms in faceted re-
trieval (e.g., [139]) to reduce risk. Over a period of the coming weeks, we
continued to refine of the design, focusing on Pidgin and context facet
panel.

Figure 6.2. Paper prototypes of the revised Jourknow interface, explor-
ing notebook, list and search approaches.

6. Design Process

125

Development6.1.7	

A team of four researchers tasked themselves with implementing this new
version of Jourknow over an approximately ten-week period. The first
four weeks were concentrated on implementing the general client, in-
cluding the dashboard mechanism, reminders, the basic user interface
in a notebook metaphor, and internal logic and representation. Much of
the code from the original Jourknow prototype was rewritten to support
the new design. Throughout the design and development process, the
research team held weekly design reviews with a larger group of students
and researchers to get feedback on progress and design decisions.

As described above, at the end of the fourth week the client entered a
design review and came out with a revised specification. From this point
on, our focus was in completing the prototype in time for the summa-
tive evaluation to come. Midway through development, a fifth researcher
joined to implement the mobile client. Implementation fell behind sched-
ule and the researchers made value tradeoffs concerning features to cut.
Various core and auxiliary features were cut in the last weeks of develop-
ment, including automatic transactional saving and integration with exist-
ing office applications. Cuts were made carefully avoiding features that
we believed would compromise our ability to test the main hypotheses of
the project. The final prototypes are shown in Figure 6.3 and Figure 6.4
— for further discussion of the prototype see Chapter 4.

Figure 6.3. The final Jourknow prototype. Figure 6.4. The final Jour-
mini prototype.

6. Design Process

126

Study Design and Execution6.2	

The evaluation of our design may have had as strong an effect on the
results as the design itself. In this section I detail the evaluation approach
we took toward understanding Jourknow’s successes and failures.

Method6.2.1	

Concurrently with the research scoping meetings, the research team de-
liberated on an evaluation approach for Jourknow. The two study types
we considered were laboratory and longitudinal evaluation. A labora-
tory study would have allowed us to directly examine particular aspects
of the interface, such as the design of the Pidgin language or the facet
panel, whereas the latter (what Kelley and Teevan term a combination of
longitudinal and naturalistic studies [89]) would give us feedback on the
integration of the tool with users’ lives.

We viewed a laboratory study as too artificial and controlled to reveal
how Jourknow might be used to capture information scraps in real situa-
tions. Furthermore, our previous reviewer feedback indicated a need for
longitudinal evaluation of the system. We thus opted for a longitudinal
study to give Jourknow a chance to integrate itself into our participants’
information management practices so that later we could observe its im-
pact. Our decision carried an implicit assumption that Jourknow would
achieve basic uptake, and thus that real-world observation of its research
features was a useful next step.

Our study and the results are detailed in Chapter 4. In brief, we re-
cruited 14 participants from our university (ages 18-41, median 26), ex-
ternal to our research group. Following standard practice (e.g. [60, 117]),
we installed Jourknow on participants’ computers, and instructed them in
the use of the interface. We also described several of the shortcomings
of the current version of the research prototype — slow loading and sav-
ing, occasional GUI bugs, and a remaining server bug that was patched
near the beginning of the study. Participants were instructed to introduce
Jourknow into their everyday note-taking practices, and to make extra ef-
fort to use the software to capture their thoughts and notes. They then
used the Jourknow client for a period averaging eight days, including one
weekend. Throughout the study, we used e-mail announcements to pro-
mote use of the tool, remind participants to integrate the tool into their
lives, and keep in constant contact. This level of contact was fell short of
other studies which made regular visits to participants (e.g., [31]), but was
more direct than those with no reported communication during the study
(e.g., [124]).

6. Design Process

127

Study Results6.2.2	

The study results are reported in Chapter 4 — in this section, I instead
focus on feedback that was unexpected and has bearing on the design
process. As a brief review, we quickly found that participants were not
making regular use of Jourknow. In response to an e-mail suggesting ev-
eryone synchronize their notes with the server, two participants e-mailed
us admitting that they had not yet opened the tool, with a third partici-
pant experiencing trouble starting the tool on his computer. We helped
the participant debug the problem, then sent an e-mail reminding all
participants that we had asked them (as per the study agreement) to make
daily use of the tool. At the conclusion of the study, three participants (P2,
P3, P11) had never launched the client after their initial installs. A fourth
participant only used the client once right before his exit interview (P1).
Others’ usage varied significantly, though there were usage spikes in re-
sponse to our reminder e-mail.

During the closing interview, we scheduled each participant to spend
an hour with two investigators (one acting as facilitator and one taking
notes), where we planned to have participants first provide their general
impressions of using the system, and then to walk-through the notes they
took using the system, to allow participants to recount their experiences
with it.

It took little time to discover that this protocol would need to change
due to anemic tool adoption. With our first exit interview (participant 1),
we discovered that he had not used the system at all during the week, and
had only 2 notes (one of which was created on the day of the install, and
one created on the day of, and shortly prior to his exit interview). When
asked why he had not used the system despite requests and the terms he
had agreed to in the study, he responded “It didn’t become part of my
routine, I had to be conscious of it; I’m not accustomed to doing this kind
of thing, and it required too much effort for me to bother with it.” Other
participants who did not use the tool responded similarly; adopting the
tool seemed to require more effort than they wanted to invest. Participant
9 had a slightly different explanation of why he didn’t adopt the tool:
“Your tool is just not useful to me. You said that this tool was designed to
help people whose ideas just ‘pop’ into their heads, who need a place to
write them down. Well, it occurred to me that this just never happens to
me! Either I have a lot of ideas that are just not worth writing down, or I
just have one good one that I hang on to [in my head] and I don’t need
to.”

A majority of the remaining feedback we received focused on highly
specific, particular characteristics of the system and of the user interface

6. Design Process

128

that they did not like, found annoying or “broken”. These included syn-
chronization “just not working”, complaints about lengthy save/load/launch
times, various note views “not working” and being confusing, frustration
from the rendering, and issues with ordering and presentation of notes,
including font and icon sizes.

Feedback was also occasionally positive, but often inconsistent. Sev-
eral participants reported liking features (such as the ability to keep notes
on the desktop) but it was not clear that they had actually ever used the
features (as they were unclear about how they worked); we also noticed
that two participants contradicted themselves by first saying they liked
something, and then saying they were annoyed by it or “couldn’t stand it”
in another context.

 After all of the negative and inconsistent feedback regarding the desk-
top client, we were surprised when 3 participants protested when began to
delete the system from their computers. This was the strongest evidence
we had that some participants had actually started to adopt Jourknow into
their organizational practices.

Symptoms of a Wicked Design Process Failure6.2.3	

Our user study results exhibited a small number of generalizable charac-
teristics:

Participants’ inability to articulate their critique. Whereas we in-
tended to probe for feedback on the general design of our tool and on
our research hypotheses, our users were unwilling to provide much feed-
back on them. Instead, we received very general responses, characterized
by broad generalizations such as “I didn’t get it” or “I didn’t find this tool
useful.” When pressed for reasons, participants (unable to articulate the
causes of their disposition) usually paused briefly and then produced a
reason which we believe constituted the first plausible justification they
thought of. The range and types of reasons varied largely (as described
earlier) but largely surrounded overly specific details, failing to provide
any larger insight regarding the tool’s design.

Inconsistent feedback. When appraising the usefulness of various
features of the tool, we often found both inter-participant and intra-par-
ticipant disagreement. While the former could be explained by differenc-
es in individual preferences and practice; the latter, self-contradictions,
are troubling — they suggest that appraisals were less reliable as a source
of information regarding whether they would truly use the features being
appraised.

6. Design Process

129

Lack of adoption of the tool. We observed very little use of our tool
amongst our participants. We had requested that our participants insert
the tool into their everyday practice, but it was clear that existing practice
proceeded with little effect by our tool. Several participants barely used
Jourknow during the study period, and several more tried briefly and
then ceased to use it.

Lack of coverage over users’ varying habits. Though we dedicated a
large amount of engineering and design work to covering the basic needs
of the information scrap space, we were nonetheless unable to satisfy
many of our users. In addition, we received seemingly inconsistent feed-
back that basic features, while critical to some participants’ happiness with
our tool, were highly undesirable to others.

Reflection on Practice: 6.3	
What Went Wrong?

From the above discussion, we see that despite strong momentum going
into the final study, the study was unable to test the team’s desired hypoth-
eses. My goal in this section is to examine the various choices made in the
process of designing and developing Jourknow. I first caveat by discuss-
ing the most straightforward solutions the user-centered design process
suggests. I then propose four candidate moments for review, which I call
breakpoints in the process. These breakpoints include the research scope,
the design and prototyping process, the study type, and study popula-
tion. For each of these particular breakpoints, I will reflect upon how the
particular domain of study — personal information management (PIM)
— played a role. My goal is to reflect on the methodology that informed
our actions in each of these phases, and to investigate what other practices
might have better informed the team’s approach.

Considering the Obvious Solutions6.3.1	

The most straightforward critique of this process may be that we did not
adequately follow the user-centered design mantra. These are the stock
solutions that the interaction design process has to offer. Certainly these
critiques are valid and following this advice would have abetted our pro-
cess. However, they may be occluding other important elements of the
story, and so I point out ways in which paying attention only to these stock
solutions might be misguided.

6. Design Process

130

More UI prototyping! One answer to the lack of user adoption might
be that the team should have carried out more interface prototyping. To
be sure, lo-fi and hi-fi prototyping would have revealed errors and mis-
steps, for example to improve the visual representation and layout of the
facet panel, and structure of the pidgin syntax. However, this prototyping
may not have addressed the fundamental issues our study participants re-
ported. For example, our business school participants almost unilaterally
did not want to use a computer to take these kinds of notes; if they did,
they needed it to be an extension of Outlook, not a separate tool. As we
discuss in the breakdowns to follow, our prototypes may have simply been
focused on the wrong aspects of the experience.

More system testing! Much feedback we received surrounded par-

ticipants’ perception of the client being buggy and too slow/unresponsive.
We have no doubts that more time would have allowed for greater inte-
gration and performance testing using more client workstation configu-
rations; which would have uncovered problems that could have lessened
this perception. However, it is not clear that even testing our system until
it was perfectly robust would have received substantially greater adoption,
based upon feedback from the couple users who persevered through the
glitches and still found many aspects of the tool useless. This suggested
that the most important troubles with Jourknow were design-oriented,
and that perhaps the glitches were partially a proxy to blame for these
more latent underlying design problems.

More iterations! Assuming we had more time, more prototypes, and
multiple rounds of quick and dirty feedback, the next question is: would
our methodology have supported us then? In deference to the “wicked”
nature of this problem, the answer is not clear. Why did we see fit to move
from high-fidelity prototypes to a first client implementation? Design is
a process of exploration and then refinement [49]; we had refined a pro-
totype that was somehow locally optimal (based on positive informal feed-
back) but not globally so. Specifically, having employed multiple methods,
from interactive sketches, lo-fidelity prototypes to hi-fidelity prototypes,
our team felt that we had enough design feedback to proceed with an
implementation. Our study results uncovered this error.

Breakpoints: Process Inspection Points6.3.2	

In this section I detail the elements of our process which may have un-
expectedly impacted our experience. These elements are related to the
wicked nature of designing for information scraps, and will challenge any
designs in this space.

6. Design Process

131

Breakpoint 1: Scope of PIM Investigation6.3.2.1	

The team planned to introduce a single tool to address the problems
of information scrap capture and retrieval. Our approach to building this
tool specified four pillars of design to meet the challenges we had identi-
fied in our research: a general note capture and manipulation interface,
context capture to facilitate note retrieval, a lightweight structured data
capture language (Pidgin), and mobile capture and access. In hindsight,
we might ask: did we really have one idea, or four? Should each of these
have been studied individually, or were they simply too co-dependent to
do so? What gave us confidence that we could design, develop and evalu-
ate them all together?

At the time of this breakpoint, there were two main factors that played
into our decision: the power of the Gestalt in PIM, and positive feedback
and inertia from our previous prototypes. We analyze each in turn.

Personal information management tools are such multifunctional de-
vices that they necessarily encompass an entire ecology of use rather than
a single research or design problem. This situation leads to two results:
huge functionality requirements (resulting in large start-up design and
implementation costs), and perception of the system as a Gestalt rather
than as singularly differentiable features. Bellotti et al. describe one PIM
application, e-mail, as “a mission critical application with much legacy data
and structure involved in it” — and go on to report that several of their
users dropped out from the study due to limitations of their research
system to adapt to users’ complex usage habits [31]. Kelly and Teevan
conclude that PIM prototypes must be more robust than typical research
prototypes [89], and with both TaskMaster and Jourknow we also see that
these tools must also support broad functional requirements in order to
compete.

This situation placed the team in a difficult position: the system as a
whole may not be useful unless we solved several problems simultane-
ously. Specifically, our inclusion of the mobile client was a response to
strong motivation in our previous studies suggesting digital tools severely
limit their own usefulness by being available only on a user’s workstation
or laptop computer. However, in retrospect, the inclusion of the mobile
client may have contributed to a prototype unable to anticipate the broad
functional requirements supporting our ideas. It is thus questionable
whether broadening our scope improved the situation, or simply left us
unable to do any of the ideas justice.

A second factor in our decision to incorporate all four ideas into our
design was the very positive response we had received from outside re-

6. Design Process

132

viewers inspecting our work and ourselves. We implicitly took such feed-
back as design approval and cut down on usability studies of the client.
We mistook expert inspection feedback for user feedback. In the space of
personal information management, we also see that inspectors may have
had difficulty projecting themselves into the use of the client, leading to
overly positive feedback.

Breakpoint 2: Prototyping and Interaction Design Process6.3.2.2	

In designing a complicated system like Jourknow we faced a number of
interaction design challenges. Here we examine some of the potential
design missteps we may have made, including too few iterations and dif-
ficulty prototyping the experience rather than the interface.

The negative feedback we received on the basic design of some pieces
of our interaction points to a need for more formative evaluations, earlier
on in the process. Design reviews and adherence to research precedent
were insufficient in our case. One possible solution may have been to use
formative laboratory studies during implementation to investigate fea-
tures in isolation before the longitudinal summative evaluation, or to have
lab partners use half-functioning versions of the prototype for feedback.

Our prototypes also faced a challenge simulating the experience of re-
cording an information scrap, rather than simply the interaction. This
means that our prototypes succeeded at getting feedback on many inter-
face design challenges, but were less successful at placing that interaction
in a context of use. This effect may also have been amplified by our posi-
tion in the personal information management space, where even small
details can make impressive differences in behavior [118]. Our prototypes
focused on the novel features — on being able to re-find information
based on context and capture structured information with little effort.
Here, we question whether our prototypes were truly effective experi-
ence prototypes [47], garnering feedback on the rich context surrounding
notes’ capture and context surrounding reuse. If we failed to prototype
important parts of the experience, it is not surprising that user feedback
concentrated on unexpected areas of the system.

Breakpoint 3: Study Methodology6.3.2.3	

The choice of population implicitly assumes the question of the choice of
study form: user-centered design promotes the use of multiple methodol-
ogies for evaluation, and recognizes the tradeoffs of different methods in

6. Design Process

133

evaluating an interactive system. A point of reflection: was a longitudinal
use study the best choice for Jourknow at its current stage of development,
and could we have organized the study more in support of our goals?

To recall, we chose a longitudinal evaluation to give Jourknow a chance
to ingratiate itself into our participants’ practice, and to reflect on how
that practice, once engaged, was or wasn’t successful. Was this decision op-
timal, however? Should the team have adapted or combined longitudinal
and first-use study methods, rather than using them in their typical for-
mulation? For example, we might have begun with a shorter longitudinal
study (2-3 days) to identify pain points with the application and then pro-
ceeded to use laboratory evaluation to further understand the results. It
was potentially to our detriment that we chose the most ambitious study
to begin with.

Given that we chose a longitudinal evaluation, did we design the study
in such a way as to maximize our chances of success? For example, we
chose to keep in contact with participants via e-mail rather than requiring
further in-person interviews during the study. Plaisant and Shneiderman
[111] and Bellotti et al. [31] report that their longitudinal efforts benefited
from reappearances to remind each participant of processes in the soft-
ware that he or she had forgotten about. In previous longitudinal studies
of software, however, we see that researchers do often follow up remotely
[60, 121] with success. In our case, keeping in close contact with partici-
pants would have increased social pressure to use the tool and allowed us
to provide follow-up training; this is evidenced by our mid-week e-mail
reminder causing a temporary spike in usage.

Breakpoint 4: Choice of Study Population6.3.2.4	

The quest for external validity [105] dictates that researchers and
practitioners randomly choose participants from the target population,
rather than form a hand-picked subset. Recently this issue was brought
to a head by Barkhuus [26] with a call-to-arms for SIGCHI to stop using
local participants (particularly HCI graduate students) in their studies.
Thus, pressure from the CHI community to use a random population
was a large motivator in our decision to give Jourknow to a group of con-
sisting largely of business students. Here we examine our choice to follow
this desire to achieve this new CHI goal for studies to get out of one’s back
yard rather than testing on participants closer to the research project, or
even ourselves.

In the domain of personal information management, ironically, there
are reasons why testing outside a friendly community might hurt a study.

6. Design Process

134

Kelley and Teevan point out that recruiting PIM system evaluators is a
particularly thorny issue: participants must be willing to grant access to
personal information, overcome self-consciousness of messy practice,
agree to a large time commitment, and commit to temporarily suspend-
ing their deeply-ingrained practices [89]. Kelley and Teevan also note
that studies in this space, including Bellotti et al. [31] and our own, suf-
fer from a degree of participant mortality (drop out prior to the conclu-
sion). A third possible problem lies in community practices in PIM (for
example, business students using Outlook) previously unknown to the
experimenter. Finally, again due to the “mission critical” aspects of PIM,
there is little room for error — while business students were excellent crit-
ics of the system and an appropriate user group, they were also unable or
unwilling to overlook entry barriers to using the system such as outstand-
ing bugs and performance issues.

PIM researchers are left with three main options, then: continue
to pursue externally valid studies with outside participants, use insider
participants who may be more pliable and willing to evaluate a system
through its defects, or “eat their own dog food” and have the researchers
themselves reflect on using the system themselves for a period of time.
Jones [80] promotes this final option of self-study as a particularly use-
ful tool in PIM research. However, the closer the study population to the
research team, the less external validity the results carry. In our case we
believed our tool was ready to demonstrate an improvement to a general
audience, but this may have been a heavy investment with little return.

Outcomes for Design Methodology6.4	

While I have considered above how we might address next steps for my
own process in this project, my overall goal here has been to reflect upon
the methodological path or choices that lead my team to the decisions
we made. Based on this experience, I suggest that the level of certainty
various design methods instill in the practitioner or researcher may vary
depending on the problem domain. Particularly in wicked domains such
as information scraps and personal information management, applying
a plurality of methods gave us false security that were prepared to build
and evaluate a full research prototype — when in fact basic design ele-
ments of our system were still faulty.

I would suggest — though this proposal itself will need to be validated
in some way — that the breakpoints we have identified in our process
may indeed be generalizable breakpoints for others (a) working in PIM
research in particular, (b) focused on wicked design problems, or simply

6. Design Process

135

(c) using multiple methods in any artifact design. We must interrogate the
process, and watch for warning signs that indicate a false positive. In our
case, experience prototypes did not succeed in eliciting feedback on the
full range of the experience of using our tool.

Conclusion6.5	

This chapter examines a negative research result in search of a new design
practice for information scraps and personal information management in
general. What went wrong, how is this common to other design difficulties
noted in the PIM literature, and what can we do about it?

The final question — what to change — is the elusive one, and the one
that is most potentially transformative. Our research response has been
to scale down the design problem under consideration, focusing only on
common PIM types in information scraps; this decision led to the Pinky
prototype introduced in Chapter 5. Scaling down makes the research
more incremental, but better-tuned to each problem.

137

The genesis of innovation often lies in identifying breakdowns: moments
when existing tools and designs fail to live up to their promise. By defini-
tion, information scraps are such breakdowns: they represent moments
when we deliberately choose not to use any of our existing PIM tools.
Thus, information scraps reveal the most salient shortcomings in PIM
tools today.

I have translated these shortcomings into research directions: light-
weight capture, flexible content, flexible organizational strategies, visibility
and reminding, and mobility and availability. Jourknow is a test bed for in-
novations in several of these directions; Pinky focuses only on lightweight
capture. Jourknow looks much like PIM tools today; Pinky does not.

In this conclusion, I examine the future of information scrap manage-
ment, and the ways in which this future may or may not look anything like
our PIM tools today.

Lightweight Capture. Pinky represents a first attempt to re-envision
the information capture process on the desktop. It is imperfect: it intro-
duces ambiguity and has limited discoverability. How else could we de-
sign for fast and accurate capture when the user has limited time and
attentional resources? How might these designs change when in a mobile
scenario, with nothing but a cellphone?

Flexible Content. Currently, the long tail of personal information
has little or no explicit support. How can I manage my college applica-

Conclusion and Future Work7.	

7. Conclusion

138

tions? My fantasy football team’s lineup? My collection of guitar tabs or
my personal restaurant review list? The TurtleDove language in Jourknow
focused on a method for recording such information, but it proved too
complicated for most users. Is it possible to design a generic tool capable
of supporting this broad range of information? Of supporting its evolu-
tion from broadly scattered e-mails to structured spreadsheet? Of leav-
ing the e-mails scattered but providing spreadsheet-like interfaces to the
information?

Flexible Usage and Organizational Strategies. Jourknow attempted
to provide multiple management strategies, from a reorderable list inter-
face, text search, and a 2-dimensional canvas layout; it provided facilities
ranging from reminding to desktop pinning. However, the result was a
largely unfocused design. Instead of broad feature sets, we might instead
consider ways in which we can support adaptability. This may require end
user hacking — which is, as Bonnie Nardi points out tongue-in-cheek, just
a small matter of programming [106].

Visibility and Reminding. Canonical ubiquitous computing demos
typically fall into two classes: 1) museum tour guides, and 2) location-
aware reminding services. It is this second class of applications that sug-
gest new directions for visibility and reminding services — not just at-
taching information to physical locations, but attaching annotations to
arbitrary windows and documents on our computer, or linking arbitrary
personal information in other pieces of personal information.

Mobility and Availability. Mobile scenarios offer unique affordances
and constraints. What are common mobile personal information needs,
and how can we support them? How can we solve the capture problem
when text entry on a keypad is prohibitively slow and other modalities like
voice input introduce even more ambiguity into parsing?

The first response to an interest in information scraps seems to be to
design a note management tool [5, 9, 17, 18, 22, 24, 86, 131]. However,
through this work I have come to believe that it may be more important
to direct our efforts toward the basic reasons that such notes exist — ad-
dressing the causes rather than mitigating the effects. This more targeted
approach may be the real future of information scrap management.

139

[1]	 Anoto Digital Pen and Paper. Anoto. http://www.anoto.com/
[2]	 ARToolkit. Hirokazu Kato. http://www.hitl.washington.edu/artoolkit/
[3]	 E Ink. E Ink Corporation. http://www.eink.com/
[4]	 Eclipse. The Eclipse Foundation. http://www.eclipse.org/
[5]	 Evernote. Evernote Corporation. http://evernote.com/
[6]	 GNU emacs. Free Software Foundation, Inc. http://www.gnu.org/soft-

ware/emacs/
[7]	 Google Calendar. Google. http://calendar.google.com/
[8]	 Google Data APIs. Google. http://code.google.com/apis/gdata/
[9]	 Google Notebook. Google. http://www.google.com/notebook/
[10]	 io2 Digital Pen. Logitech. http://www.logitech.com/index.cfm/mice_

pointers/digital_pen/devices/408&cl=us,en
[11]	 iPhone. Apple, Inc. http://www.apple.com/iphone/
[12]	 I Want Sandy. values of n, Inc. http://iwantsandy.com/
[13]	 Jott. Jott Networks Inc. http://www.jott.com/
[14]	 Jena. http://jena.sourceforge.net/
[15]	 Natural Language Toolkit. http://nltk.sourceforge.net/
[16]	 Lifehacker. Gawker Media Network. http://www.lifehacker.com/
[17]	 OneNote. Microsoft. http:// office.microsoft.com/onenote/
[18]	 Post-it Digital Notes. 3M. http://www.3m.com/us/office/postit/digital/

digital_notes.html
[19]	 Protege. Musen, M. http://protege.stanford.edu/
[20]	 Quicksilver. Blacktree Software. http://www.blacktree.com
[21]	 Resource Description Framework (RDF). W3C. http://www.w3.org/

Bibliography8.	

8. Bibliography

140

RDF/.
[22]	 Stikkit. values of n, Inc. http://www.stikkit.com/
[23]	 Web Clips. Apple, inc. http://www.apple.com/macosx/features/safari.

html
[24]	 Yojimbo. Bare Bones Software. http://www.barebones.com/products/

yojimbo/
[25]	 Allen, D. Getting Things Done: The Art of Stress-Free Productivity. Pen-

guin Books, New York, NY, 2001.
[26]	 Barkhuus, L. and Rhode, J.A., From Mice to Men - 24 years of Evalu-

ation in CHI. In Proc. CHI 2007: ACM Conference on Human Fac-
tors in Computing Systems. 2007.

[27]	 Barreau, D. and Nardi, B. A. Finding and reminding: file organization
from the desktop. SIGCHI Bulletin, 27, 3 (1995), 39–43.

[28]	 Barreau, D. K. Context as a factor in personal information manage-
ment systems. Journal of the American Society of Information Science
(JSIST), 46, 5 (1995), 327–339.

[29]	 Bederson, B. B. Interfaces for staying in the flow. Ubiquity, 5, 27
(2004), 1-1.

[30]	 Bellotti, V., Dalal, B., Good, N., Flynn, P., Bobrow, D. G. and Duch-
eneaut, N. What a to-do: studies of task management towards the de-
sign of a personal task list manager. In Proc. CHI 2004: ACM Confer-
ence on Human Factors in Computing Systems. 2004.

[31]	 Bellotti, V., Ducheneaut, N., Howard, M. and Smith, I. Taking email
to task: the design and evaluation of a task management centered email
tool. In Proc. CHI 2003: ACM Conference on Human Factors in Com-
puting Systems. 2003.

[32]	 Bellotti, V., Ducheneaut, N., Howard, M., Smith, I. and Grinter, R.
E. Quality Versus Quantity: E-Mail-Centric Task Management and Its
Relation With Overload. Human-Computer Interaction, 20, 1 (2005),
89-138.

[33]	 Bellotti, V. and Smith, I. Informing the design of an information
management system with iterative fieldwork. In Proc. DIS 2000: ACM
Conference on Designing Interactive Systems. 2000.

[34]	 Bergman, O., Beyth-Marom, R. and Nachmias, R. The user-subjective
approach to personal information management systems. Journal of the
American Society for Information Science and Technology (JSIST), 54, 9
(2003), 872-878.

[35]	 Bernstein, M., Van Kleek, M., Karger, D.R., and schraefel, mc. In-
formation Scraps: How and Why Information Eludes Our Personal
Information Management Tools. To Appear in ACM Transactions on
Information Systems (TOIS). 2008.

8. Bibliography

141

[36]	 Bernstein, M., Van Kleek, M., Karger, D.R., and schraefel, mc.
Personal Information Management, Personal Information Retriev-
al? In Proc. HCIR 2007: Workshop on Human-Computer Interaction
and Information Retrieval. 2007.

[37]	 Bernstein, M., Van Kleek, M., Khushraj, D., Nayak, R., Liu, C.,
Karger, D.R., and schraefel, mc. Wicked Problems and Gnarly
Results: Reflecting on Design and Evaluation Methods for Idiosyn-
cratic Personal Information Management Tasks. Technical Report
MIT-CSAIL-TR-2008-007, 2008.

[38]	 Bernstein, M., Van Kleek, M., schraefel, mc, and Karger, D.R.
Evolution and Evaluation of an Information Scrap Manager. In
Proc. PIM 2008: Workshop on Personal Information Management at
CHI 2008. 2008.

[39]	 Bernstein, M., Van Kleek, M., schraefel, mc, and Karger, D.R.
Management of personal information scraps. In Proc. CHI 2007:
Extended abstracts on Human Factors in Computing Systems. 2007.

[40]	 Blanc-Brude, T. and Scapin, D. L. What do people recall about
their documents?: implications for desktop search tools. In Proc.
IUI 2007: International Conference on Intelligent User Interfaces.
2007.

[41]	 Blandford, A. E. and Green, T. R. G. Group and Individual Time
Management Tools: What You Get is Not What You Need. Per-
sonal Ubiquitous Computing, 5, 4 (2001), 213–230.

[42]	 Boardman, R. and Sasse, M. A. Stuff goes into the computer and
doesn’t come out: a cross-tool study of personal information man-
agement. In Proc. CHI 2004: ACM Conference on Human Factors in
Computing Systems. 2004.

[43]	 Boardman, R., Spence, R. and Sasse, M. A. Too Many Hierarchies?
The Daily Struggle for Control of the Workspace. In Proc. HCI
International. 2003.

[44]	 Bolin, M., Webber, M., Rha, P., Wilson, T., and Miller, R.C. Au-
tomation and customization of rendered web pages. In Proc. UIST
2005: : ACM Symposium on User Interface Software and Technology.
2005.

[45]	 Bowker, G. C. and Star, S. L. Sorting Things Out: Classification and
its Consequence. The MIT Press, Cambridge, MA, 2000.

[46]	 Bruce, H., Jones, W. and Dumais, S. Keeping and Re-finding
information on the Web: What do people do and what do they
need. In Proc. of ASIST 2004: The American Society for Information
Science & Technology Annual Meeting. 2004.

[47]	 Buchenau, M. and Suri, J.F. Experience prototyping. In Proc. DIS

8. Bibliography

142

2000: ACM Conference on Designing Interactive Systems. 2000.
[48]	 Butz, A. and Jung, R. Seamless user notification in ambient sound-

scapes. In Proc. IUI ‘05: ACM International Conference on Intelligent
User Interfaces. 2005.

[49]	 Buxton, B. Sketching User Experiences. Morgan Kaufmann, 2007.
[50]	 Campbell, C. and Maglio, P. Supporting notable information in office

work. In Proc. CHI 2003: ACM Conference on Human Factors in Com-
puting Systems. 2003.

[51]	 Victoria Chou. Inky: Internet Keywords with User Feedback. M.Eng.
Thesis, Massachusetts Institute of Technology. 2008.

[52]	 Connolly, D. RDF Calendar - an application of the Resource Descrip-
tion Framework to iCalendar Data. W3C Interest Group Note. 2005.
http://www.w3.org/TR/rdfcal/

[53]	 Csikszentmihalyi, M. Flow: The Psychology of Optimal Experience.
Harper & Row, New York, NY, 1991.

[54]	 Czerwinksi, M. and Horvitz, E. An Investigation of Memory for Daily
Computing Events. In Proc. HCI 2002: International Conference on
Human-Computer Interaction. 2002.

[55]	 Dahley, A., Wisneski, C. and Ishii, H. Water lamp and pinwheels:
ambient projection of digital information into architectural space. In
Proc. CHI 1998: Conference Summary on Human Factors in Computing
Systems. 1998.

[56]	 Dai, L., Lutters, W. G. and Bower, C. Why use memo for all?: restruc-
turing mobile applications to support informal note taking. In Proc.
CHI 2005: ACM Conference on Human Factors in Computing Systems.
2005.

[57]	 Darken, R. P. and Sibert, J. L. A toolset for navigation in virtual
environments. In Proc. UIST 1993: ACM Symposium on User Interface
Software and Technology. 1993.

[58]	 Dontcheva, M., Drucker, S. M., Salesin, D. and Cohen, M. F. Rela-
tions, cards, and search templates: user-guided web data integration
and layout. In Proc. UIST 2007: ACM Symposium on User Interface
Software and Technology. 2007.

[59]	 Ducheneaut, N. and Bellotti, V. E-mail as habitat: an exploration of
embedded personal information management. interactions, 8, 5 (2001),
30-38.

[60]	 Dumais, S., Cutrell, E., Cadiz, J., Jancke, G., Sarin, R. and Robbins,
D. C. Stuff I’ve seen: a system for personal information retrieval and
re-use. In Proc. SIGIR 2003: ACM Conference on Research and Develop-
ment in Information Retrieval. 2003.

[61]	 Ennals, R. J. and Garofalakis, M. N. MashMaker: mashups for the

8. Bibliography

143

masses. In Proc. SIGMOD ‘07: ACM International Conference on
Management of Data. 2007.

[62]	 Fertig, S., Freeman, E. and Gelernter, D. Lifestreams: an alterna-
tive to the desktop metaphor. In Proc. CHI 1996: ACM Confer-
ence Companion on Human Factors in Computing Systems. 1996.

[63]	 Fisher, D., Brush, A. J., Gleave, E. and Smith, M. A. Revisiting
Whittaker & Sidner’s email overload ten years later. In Proc. CSCW
‘06: ACM Conference on Computer Supported Cooperative Work.
2006.

[64]	 Gemmell, J., Bell, G., Lueder, R., Drucker, S., and Wong, C.
MyLifeBits: fulfilling the Memex vision. In Proc. Multimedia 2002:
ACM International Conference on Multimedia. 2002.

[65]	 Gonçalves, D. and Jorge, J. A. Describing documents: what can us-
ers tell us? In Proc. IUI 2004: International Conference on Intelligent
User Interfaces. 2004.

[66]	 Gray, W. D. and BoehmDavis, D. A. Milliseconds matter: An
introduction to microstrategies and to their use in describing and
predicting interactive behavior. Journal of Experimental Psychology:
Applied, 6, 4 (2000), 322–335.

[67]	 Gray, W. D. and Fu, W. Ignoring perfect knowledge in-the-world
for imperfect knowledge in-the-head. In Proc. CHI 2001: ACM
Conference on Human Factors in Computing Systems. 2001.

[68]	 Greenberg, S. and Boyle, M. Generating custom notification histo-
ries by tracking visual differences between web page visits. In Proc.
GI 2006: Graphics Interface. 2006.

[69]	 Halbert, D.C. SmallStar: programming by demonstration in the
desktop metaphor. In Watch What I Do: Programming by Dem-
onstration, Cypher, A. ed. MIT Press, Cambridge MA, 1993,
103-123.

[70]	 Hayes, G., Pierce, J. S. and Abowd, G. D. Practices for capturing
short important thoughts. In Proc. CHI 2003: ACM Conference on
Human Factors in Computing Systems. 2003.

[71]	 Hayes, G.R., Rea, A., Brunette, W., Abowd, G.D., Pierce, J.S.,
Truong, K.N., and Pering, T. Lightweight Note-Taking Tools Us-
ing a Confederation of Mobile Capture and Access Devices. Work-
shop on Multi-Device Interfaces for Ubiquitous Peripheral Interaction
at Ubicomp 2003. 2003.

[72]	 Hill, W. C., Hollan, J. D., Wroblewski, D. and McCandless, T.
Edit wear and read wear. In Proc. CHI 1992: ACM Conference on
Human Factors in Computing Systems. 1992.

[73]	 Hodges, S., Williams, L., Berry, E., Izadi, S., Srinivasan, J., Butler,

8. Bibliography

144

A., Smyth, G., Kapur, N., Wood, K. SenseCam: A retrospective mem-
ory aid. In Proc. Ubicomp 2006: International Conference on Ubiquitous
Computing. 2006.

[74]	 Hsieh, G., Wood, K. and Sellen, A. Peripheral display of digital hand-
written notes. In Proc. CHI 2006: ACM Conference on Human Factors
in Computing Systems. 2006.

[75]	 Huynh, D. F., Karger, D. R. and Miller, R. C. Exhibit: lightweight
structured data publishing. In Proc. WWW 2007: ACM International
Conference on World Wide Web. 2007.

[76]	 Iannella, R. Representing vCard Objects in RDF/XML. W3C Note.
2001. http://www.w3.org/TR/vcard-rdf

[77]	 Ito, M. and Okabe, D. Camera phones changing the definition of
picture-worthy. Japan Media Review, 08/29/2003.

[78]	 Jones, W. Finders, keepers? The Present and Future Perfect in Support
of Personal Information Management. First Monday, 9, 3.

[79]	 Jones, W. Introduction. In Personal Information Management, Jones,
W., and Teevan, J., Eds. University of Washington Press, Seattle, WA,
3–21.

[80]	 Jones, W. and Cronin, B. Personal Information Management. An-
nual Review of Information Science and Technology (ARIST), 41 (2007),
453-504.

[81]	 Jones, W. P. and Dumais, S. T. The spatial metaphor for user interfaces:
experimental tests of reference by location versus name. ACM Transac-
tions on Information Systems (TOIS), 4, 1 (1986), 42–63.

[82]	 Jones, W., Bruce, H. and Dumais, S. Keeping found things found on
the web. In Proc. CIKM 2001: International Conference on Information
and Knowledge Management. 2001.

[83]	 Jones, W., Dumais, S. and Bruce, H. Once found, what then? A study
of keeping behaviors in the personal use of Web information. Proceed-
ings of the American Society for Information Science and Technology, 39, 1
(January 2005), 391–402.

[84]	 Jones, W., Munat, C. and Bruce, H. The Universal Labeler: Plan the
Project and Let Your Information Follow. In Proc. of ASIST 2005: The
American Society for Information Science & Technology Annual Meeting.
2005.

[85]	 Jones, W., Phuwanartnurak, A. J., Gill, R. and Bruce, H. Don’t take
my folders away!: organizing personal information to get things done.
In Proc. CHI 2005: ACM Conference on Human Factors in Computing
Systems. 2005.

[86]	 Kalnikaité, V. and Whittaker, S. Software or wetware?: discovering
when and why people use digital prosthetic memory. In Proc. CHI

8. Bibliography

145

2007: ACM Conference on Human Factors in Computing Systems. 2007.
[87]	 Karger, D. R. and Quan, D. Haystack: a user interface for creating,

browsing, and organizing arbitrary semistructured information. In
Proc. CHI 2004: ACM Conference on Human Factors in Computing
Systems. 2004.

[88]	 Karger, D. R. Unify Everything: It’s All the Same To Me. In Jones, W.
and Teevan, J., eds. Personal Information Management. University of
Washington Press, Seattle, WA, 2007, 127–152.

[89]	 Kelley, D. and Teevan, J. Understanding What Works: Evaluating PIM
Tools. In Jones, W. and Teevan, J. eds. Personal Information Manage-
ment. University of Washington Press, Seattle WA, 2007, 190–205.

[90]	 Khan, F. A Survey of Note-Taking Practices. HPL-93-107. 1993.
[91]	 Kindberg, T., Spasojevic, M., Fleck, R. and Sellen, A. How and Why

People Use Camera Phones. HPL-2004-216. 2004.
[92]	 Kirsh, D. and Maglio, P. P. On Distinguishing Epistemic from Prag-

matic Action. Cognitive Science, 18, 4 (1994), 513-549.
[93]	 LaMarca, A., Chawathe, Y., et al. Place Lab: Device Positioning Using

Radio Beacons in the Wild. In Proc. Pervasive 2005. 2005.
[94]	 Lanzenberger, M. and Sampson, J. AlViz - A Tool for Visual Ontology

Alignment. In Proc. IV 2006: International Conference on Information
Visualisation. 2006.

[95]	 Lamming, M., Brown, P., Carter, K., Eldridge, M., Flynn, M., Louie,
G., Robinson, P. and Sellen, A. The design of a human memory pros-
thesis. The Computer Journal, 37, 3 (1994), 153–163.

[96]	 Lansdale M. W. The Psychology of Personal Information Management.
Applied Ergonomics, 19, 1 (1988), 55–66.

[97]	 Lasila, O. Programming Semantic Web Applications: A Synthesis of
Knowledge Representation and Semi-Structured Data. PhD Disserta-
tion, Helsinki Institute of Technology. 2007.

[98]	 Lichtenstein, S., Fischhoff, B. and Phillips, L. D. Calibration of prob-
abilities: The state of the art to 1980. Judgment under uncertainty:
Heuristics and biases, (1982), 306–334.

[99]	 Lin, M., Lutters, W. G. and Kim, T. S. Understanding the micronote
lifecycle: improving mobile support for informal note taking. In Proc.
CHI 2004: ACM Conference on Human Factors in Computing Systems.
2004.

[100]	Little, G., Lau, T.A., Cypher, A., Lin, J., Haber, E.M., and Kandogan,
E. Koala: Capture, Share, Automate, Personalize Business Processes on
the Web. In Proc. CHI 2007: ACM Conference on Human Factors in
Computing Systems. 2007.

[101]	Little, G. and Miller, R. C. Translating keyword commands into ex-

8. Bibliography

146

ecutable code. In Proc. UIST 2006: ACM Symposium on User Interface
Software and Technology. 2006.

[102]	Malone, T. W. How do people organize their desks?: Implications for
the design of office information systems. ACM Transactions on Informa-
tion Systems (TOIS), 1, 1 (1983), 99–112.

[103]	Mander, R., Salomon, G. and Wong, Y. Y. A “pile” metaphor for sup-
porting casual organization of information. In Proc. CHI 1992: Confer-
ence on Human Factors in Computing Systems. 1992.

[104]	McAlpine, H., Hicks, B. J., Huet, G. and Culley, S. J. An investigation
into the use and content of the engineer’s logbook. Design Studies, 27
(2006), 481–504.

[105]	McGrath, J.E. Methodology matters: doing research in the behav-
ioral and social sciences. In Baecker, R., Grudin, J., Buxton, B., and
Greenberg, S., eds. Human-computer interaction: toward the year 2000.
Morgan Kaufman, San Francisco VA, 1995, 152–169.

[106]	Nardi, B. A small matter of programming: perspectives on end user com-
puting. MIT Press, Cambridge MA, 1993.

[107]	O’Day, V. L. and Jeffries, R. Orienteering in an information landscape:
how information seekers get from here to there. In Proc. CHI 1993:
ACM Conference on Human Factors in Computing Systems. 1993.

[108]	Oulasvirta, A. and Sumari, L. Mobile kits and laptop trays: manag-
ing multiple devices in mobile information work. In Proc. CHI 2007:
ACM Conference on Human Factors in Computing Systems. 2007.

[109]	Perlin, K. and Fox, D. Pad: an alternative approach to the computer
interface. In Proc. SIGGRAPH 19933: Computer graphics and interac-
tive techniques. 1993.

[110]	Pinhanez, C. S. The Everywhere Displays Projector: A Device to Create
Ubiquitous Graphical Interfaces. In Proc. UbiComp 2001: International
Conference on Ubiquitous Computing. 2001.

[111]	Plaisant, C., The challenge of information visualization evaluation. In
Proc. AVI 2004: ACM International Working Conference on Advanced
Visual Interfaces. 2004.

[112]	Popescu, A., Armanasu, A., Etzioni, O., Ko, D. and Yates, A. Modern
natural language interfaces to databases: composing statistical parsing
with semantic tractability. In Proc. COLING 2004: ACL International
Conference on Computational Linguistics. 2004.

[113]	Rettig, M. Prototyping for tiny fingers. Communications of the ACM,
37, 4 (1994). 21-27.

[114]	Rhodes, B. The wearable remembrance agent: A system for augmented
memory. Personal Ubiquitous Computing 1, 4 (1997), 218-224.

[115]	Rittel, H.W.J. and Webber, M.M. Dilemmas in a general theory of

8. Bibliography

147

planning. Policy Sciences, 4 (2). 155-169. 1973.
[116]	Robertson, G., Czerwinski, M., Larson, K., Robbins, D. C., Thiel, D.

and Dantzich, M. V. Data mountain: using spatial memory for docu-
ment management. In Proc. UIST 1998: ACM Symposium on User
Interface Software and Technology. 1998.

[117]	Rodden, K. and Wood, K.R., How do people manage their digital
photographs? In Proc. CHI 2003: ACM Conference on Human Factors
in Computing Systems. 2003.

[118]	Ross L. and Nisbett R. The Person and the Situation: Perspectives of
Social Psychology. Temple University Press, 1991.

[119]	Salton, G. and Buckley, C. Term-weighting approaches in automatic
text retrieval. Inf. Process. Manage., 24, 5. 513–523.

[120]	 schraefel, m. c., Hughes, G. V., Mills, H. R., Smith, G., Payne, T. R.
and Frey, J. Breaking the book: translating the chemistry lab book into
a pervasive computing lab environment. In Proc. CHI 2004: ACM
Conference on Human Factors in Computing Systems. 2004.

[121]	 schraefel, m.c., Zhu, Y., Modjeska, D., Wigdor, D. and Zhao, S.,
Hunter gatherer: interaction support for the creation and management
of within-web-page collections. In Proc. WWW 2002: ACM Interna-
tional World Wide Web Conference. 2002.

[122]	Sellen, A. J., Fogg, A., Aitken, M., Hodges, S., Rother, C. and Wood,
K. Do life-logging technologies support memory for the past?: an ex-
perimental study using sensecam. In Proc. CHI 2007: ACM Conference
on Human Factors in Computing Systems. 2007.

[123]	Sellen, A. J. and Harper, R. H. R. The Myth of the Paperless Office. MIT
Press, Cambridge, MA, USA, 2003.

[124]	Smith, G., Baudisch, P., Robertson, G., Czerwinski, M. and Meyers, B.
GroupBar: The TaskBar Evolved. In Proc. OZCHI: Australasian Com-
puter-Human Interaction Conference. 2003.

[125]	Starner, T., Snoeck, C., Wong, B., and McGuire, R. Use of mobile ap-
pointment scheduling devices. In Proc. CHI 2004: ACM Conference on
Human Factors in Computing Systems. 2004.

[126]	Stifelman, L., Arons, B. and Schmandt, C. The audio notebook: paper
and pen interaction with structured speech. In Proc. CHI 2001: ACM
Conference on Human Factors in Computing Systems. 2001.

[127]	Tan, D.S., Meyers, B., and Czerwinski, M. WinCuts: manipulating
arbitrary window regions for more effective use of screen space. In Proc.
CHI 2004: ACM Conference on Human Factors in Computing Systems.
2004.

[128]	Teevan, J., Alvarado, C., Ackerman, M. S. and Karger, D. R. The
perfect search engine is not enough: a study of orienteering behavior in

8. Bibliography

148

directed search. In Proc. CHI 2004: ACM Conference on Human Factors
in Computing Systems. 2004.

[129]	Tohidi, M., Buxton, W., Baecker, R., and Sellen, A. Getting the right
design and the design right. Proc. CHI 2006: ACM Conference on
Human Factors in Computing Systems. 2006.

[130]	Van Kleek, M., Bernstein, M., André, P., Pertunnen, M., Karger, D.R.,
and schraefel, mc. Simplifying Knowledge Creation and Access for
End-Users on the Semantic Web. In Proc. SWUI 2008: Workshop on
Semantic Web User Interaction at CHI 2008. 2008.

[131]	Van Kleek, M., Bernstein, M., Karger, D. R. and schraefel, mc. GUI
— Phooey!: The case for text input. In Proc. UIST 2007: ACM Smpo-
sium on User Interface Software and Technology. 2007.

[132]	Van Kleek, M. and Shrobe, H. A Practical Activity Capture Framework
for Personal, Lifetime User Modeling. In Proc. UM 2007: User Model-
ing. Corfu, Greece, 2007.

[133]	Venolia, G. D., Dabbish, L. A., Cadiz, J. J. and Gupta, A. Supporting
Email Workflow. MSR-TR-2001-88. 2001.

[134]	Wagenaar, W. A. My memory: a study of autobiographical memory
over six years. Cognitive psychology, 18, 2 (1986), 225–252.

[135]	Whittaker, S. and Hirschberg, J. The character, value, and management
of personal paper archives. ACM Transactions on Computer-Human
Interaction (TOCHI), 8, 2 (2001), 150–170.

[136]	Whittaker, S. and Sidner, C. Email overload: exploring personal infor-
mation management of email. In Proc. CHI 1996: ACM Conference on
Human Factors in Computing Systems. 1996.

[137]	Whittaker, S., Terveen, L., and Nardi, B.A. Let’s Stop Pushing the
Envelope and Start Addressing It: A Reference Task Agenda for HCI.
Human-Computer Interaction, 15, 2 (2000), 75–106.

[138]	Yates, F. A. The Art of Memory. University of Chicago Press, Chicago,
1966.

[139]	Yee, K.P., Swearingen, K., Li, K., and Hearst, M. Faceted metadata for
image search and browsing. In Proc. CHI 2003: ACM Conference on
Human Factors in Computing Systems. 2003.

[140]	Yeh, R., Liao, C., Klemmer, S., Guimbretière, F., Lee, B., Kakaradov,
B., Stamberger, J. and Paepcke, A. ButterflyNet: a mobile capture and
access system for field biology research. In Proc. CHI 2006: ACM Con-
ference on Human Factors in Computing Systems. 2006.

