
Taskposé: Exploring Fluid Boundaries in an
Associative Window Visualization

Michael Bernstein
MIT CSAIL

Cambridge, MA
msbernst@mit.edu

Jeff Shrager
Symbolic Systems Program

Stanford University
Stanford, CA

jshrager@stanford.edu

Terry Winograd
Stanford HCI Group

Stanford, CA
winograd@cs.stanford.edu

ABSTRACT
Window management research has aimed to leverage users’
tasks to organize the growing number of open windows in a
useful manner. This research has largely assumed task
classifications to be binary — either a window is in a task,
or not — and context-independent. We suggest that the
continual evolution of tasks can invalidate this approach
and instead propose a fuzzy association model in which
windows are related to one another by varying degrees.
Task groupings are an emergent property of our approach.
To support the association model, we introduce the
WindowRank algorithm and its use in determining window
association. We then describe Taskposé, a prototype
window switch visualization embodying these ideas, and
report on a week-long user study of the system.

Author Keywords
Task management, window management.

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: User Inter-
faces—graphical user interfaces, windowing systems.

INTRODUCTION
Human activity on the computer is an ad-hoc, messy
process. Computer desktops are characterized by an array
of running programs, e-mail, chat, to-dos and authored
documents. To successfully manage their work, users often
rely on windowing tools such as the Windows Taskbar [2]
or Apple Exposé [1] to assist in switching and re-finding.

Task-based approaches offer promise for managing our
growing workspaces. If computer desktops were meaning-
fully sorted into tasks, we might reduce cognitive overload
by showing windows relevant to the user’s current task and
hiding others.

Whether explicitly communicated or implicitly learned,
however, these task models present problems for the user.

In the explicit case, the user may find it burdensome to
explicitly classify windows into tasks. Even when the user
is willing to undertake the activity or the system can classi-
fy automatically, the user may be hard-pressed to identify
an objectively correct classification. For example, consider
a user who visits Amazon.com to purchase books for his
child’s birthday but gets distracted by a related item and
starts browsing other items on the site instead. Should we
still call this activity the buying a birthday book task?
Should we instead put it in a catch-all distracted task?
Tasks also evolve constantly, and what may have been a
correct classification an hour ago may be inappropriate
now. For example, a user may write a document in the
context of an annual report task, but the next day then refer
to the document when making slides for a boardroom
presentation task.

These issues bear directly on the design of window manag-
ers. In an evaluation of TaskTracer, users were often
noncommittal when mapping windows to tasks: “…users
are often not 100% sure themselves or may provide differ-
ent answers in different contexts. Users are often able to tell
the system what it is not, but not what it is.” [10]

To address these problems, we extend a task model first
explored in Rooms [4] and WindowScape [11] that allows
windows to be identified with multiple tasks at the same
time. Our research introduces association, a continuous
measure of two windows’ relatedness, into this model. We
automate the association metric and its accompanying
visualization. We believe such automation is critical, as
users are typically disinclined to organize their personal
information up front [3], and we hypothesize that they
would be even less inclined to manually update this organi-
zation as tasks evolve and context changes.

In this paper, we apply our approach in a window visualiza-
tion system called Taskposé. Underlying Taskposé is a set
of algorithms for determining window importance and
window association using both importance and window
switch histories. Taskposé uses this association heuristic to
lay out related windows near each other. We conducted a
weeklong user study to evaluate Taskposé’s accuracy and
usefulness. Outstanding design needs include interface
stability and evolution of our association algorithms.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
UIST’08, October 19–22, 2008, Monterey, California, USA.
Copyright 2008 ACM 978-1-59593-975-3/08/10...$5.00.

RELATED WORK
Researchers have in general approached window manager
design in two ways: by giving users manual control over the
task organization of their windows, or by using machine
learning to infer task structure. Manually controlled win-
dow managers rely on the user to define tasks. Such win-
dow managers include virtual desktops, Rooms [4], Group-
Bar [9], Scalable Fabric [8], and WindowScape [11].
Manual systems require significant investment from the
user to manually organize windows into tasks in order to
extract benefits. Predictive window managers, by contrast,
assign a window to its most likely task based upon evidence
of task creation and manipulation, such as window titles,
activation history, and window content. When predictive
window managers are accurate, they do not impose undue
time and cognitive costs on the user. However, predictive
systems that guess incorrectly impose repair costs on the
user. Examples of predictive window managers include
TaskTracer [10], SWISH [6], and UMEA [5].

Virtual desktops, WindowScape [11] and Rooms [4] are
particularly relevant because they allow windows to selec-
tively participate in multiple tasks. Rooms and virtual
desktops allow users to place windows in multiple desktop
contexts simultaneously. WindowScape builds on this
approach by enabling implicit, non-binding task associa-
tion: windows can exist in multiple tasks or in no task at all.
Taskposé differs from these systems because it is predictive
rather than manual and uses a degree-of-association visuali-
zation in place of explicit task groupings.

TASKPOSÉ
To accommodate complex relations between windows and
users’ tasks as well as the continually-updating nature of
tasks, we have developed the Taskposé window switching
visualization (Figure 1). Taskposé is a screen-filling visua-
lization of the user’s workspace in two dimensions,

representing degree-of-relatedness rather than explicit task
groupings. The tool draws its name from the Exposé feature
in Mac OS X [1], which inspired the two-dimensional
layout and continually-updating window screenshots.

Taskposé Layout
Taskposé represents open windows by thumbnails. The
distance between thumbnails is based on the predicted
association (degree of relatedness) between the windows.
As the user exhibits behavior implying that windows are
related to one another — in our system, by switching from
one window to the other — these thumbnails move closer
together on the Taskposé display (Figure 2). Groups of
related windows will form as an emergent result of these
window-to-window relationships. Windows that are inde-
pendent of task, such as e-mail and music, tend to drift near
the center of the visualization. A user may drag a window
to another location or anchor a window with a right-click
interaction, preventing it from moving until unanchored.

Taskposé has no explicit task groupings. Instead, it depends
on the user’s perceptual system to interpret the layout as a
meaningful task organization, with proximity and empty
space suggesting rather than imposing an organization. It is
fundamental that the visualization can be understood in
multiple ways, because a window may participate in mul-
tiple tasks. For example, a window related both to writing a
report and to drafting a presentation should be interpretable
as belonging to either group.

The Taskposé interface also visualizes the relative impor-
tance of windows, as estimated by our WindowRank
algorithm. Window size in the visualization is directly
correlated with the window’s importance as estimated by
our system (Figure 2), making important windows larger
and thus easier to locate. Important windows also have
more mass, so that they are relatively unlikely to move as
the visualization updates. Keeping important windows
relatively stable not only makes them easier to find, but also
makes them more reliable anchors for task groupings.

Switching Windows
The Taskposé visualization may be opened in two ways: by
double-clicking the Taskposé icon in the system tray, or by
pressing Alt-` (backquote). This keyboard shortcut was
chosen for its close physical similarity to the inveterate Alt-
Tab key combination. When the Taskposé visualization

Figure 1. The Taskposé visualization arranges open windows in
two dimensions when the visualization is called up. Windows
automatically size relative to their importance, and closely-related
windows appear together (inset).

Figure 2. User interaction through the course of normal interaction with the computer will determine the Taskposé visualization.

appears, it overlays the contents of the user’s screen and
outlines the current window in red. To switch windows, the
user clicks on the appropriate thumbnail. The Taskposé
window then closes, and the operating system switches to
the requested window. The visualization continues to
update window locations while hidden.

IMPLEMENTATION
Three main algorithms underlie the Taskposé system: the
WindowRank algorithm for determining window impor-
tance, the window relationship algorithm, and a spring-
embedded graph layout algorithm.

The WindowRank algorithm takes as input a series of
switches between windows in the operating system, and
outputs a real number representing its determination of the
importance of the window to the user’s work. WindowRank
builds on the approach popularized by Google’s PageRank
[7] by handling switches between windows similarly to
PageRank’s treatment of links between web pages. Where
SwitchesሺA,Bሻ is the number of window switches from
Window A to Window B, the iterative algorithm proceeds
until convergence as follows, and is updated with each new
switch:
WindowRankଵሺܣሻ ൌ 1

WindowRankேାଵሺܣሻ ൌ ൬WindowRankேሺܺሻ ൈ
Switchesሺܺ, ሻܣ

∑ Switchesሺܺ, ܻሻஷ
൰

ஷ

Thus, a window is deemed important if other (important)
windows switch to it often. WindowRank is useful in the
Taskposé context because information is collected without
the user having to make any explicit assertions about
relationships. Future work will integrate other features,
such as window dwell time, into this heuristic.

Our window relationship algorithm aims to output a conti-
nuous metric of window association. Like previous work
(e.g., [6]), we utilize window switches as a simple indicator
of task relationship. In our algorithm, each window main-
tains a ratio of switches from itself to every other window.
The algorithm then weights each window’s switch ratio by
a second ratio of the windows’ WindowRanks:

WeightedRatioሺܣ, ሻܤ ൌ
Switchesሺܣ, ሻܤ

∑ Switchesሺܣ, ܺሻஷ
ൈ

WindowRankሺܣሻ
WindowRankሺܣሻ WindowRankሺܤሻ

Associationሺܣ, ሻܤ ൌ WeightedRatioሺܣ, ሻܤ WeightedRatioሺܤ, ሻܣ

Weighting by WindowRank allows more important win-
dows to override other windows’ preferences; this is useful
in practice because newly opened windows may have very
strong (but biased) views of their relationships based on a
small number of window switches.

The window switch algorithm is a simple model of task
relationship, and we propose it not as a solution to task
tracking but rather as a proof of concept in support of an
associative task relationship interface.

Given the a posteriori relationship computed between
windows, a spring-based graph algorithm lays out the
thumbnails. The result of this operation is that closely
related windows are connected by short, stiff springs, and
tend to cluster. Unrelated windows end up with long but
loose springs. Windows move with mass proportional to
their WindowRank, so important windows are mostly static.

The Taskposé prototype is implemented in Windows using
C# and the .NET platform. It hooks into the Win32 API to
listen to and publish window events, and to retrieve window
icons, labels and screenshots.

EVALUATION
We performed a week-long longitudinal evaluation of the
Taskposé prototype. Ten undergraduate students (five male,
five female), all regular users of Windows XP, were re-
cruited for this study. Taskposé was installed on their
primary computer and the researcher demonstrated its use.
For one week, participants used Taskposé for an hour a day
as part of their everyday computer use, in addition to
normal windowing tools such as the Taskbar and Alt-Tab.
No specific task instructions were given, as we wanted to
learn how the Taskposé visualization fared when given
naturalistic data. After the week elapsed, researchers held a
debriefing session and the participants answered a ques-

tionnaire about the experience. Users kept diaries, and
system use was logged during the study.

Results
Surprisingly, we found that participants left the Taskposé
software running in the background far longer than the
required hour per day – the median over the week was 40.8
hours (min 10.3, max 195.4). Participants used Taskposé to
switch windows a median of 156 times during the weeklong
evaluation (min 19, max 237).

Users expressed an interest in continuing to use Taskposé,
and generally found the relation and importance tracking to
be useful in their everyday work (Figure 3). Eight of the ten
participants found Taskposé to be most useful when the
number of open windows outstripped space available on the
Windows taskbar; in interviews, participants confirmed that
the system’s strengths were to be found in intense task-
based work. However, none of these users had previous
access to 2D window visualizations, so the result may be
conflated with general approval of a 2D visualization
approach. Users did not report the Taskposé visualization
becoming cluttered or running out of space.

The design had several shortcomings. Visualization stabili-
ty is an issue, though our evaluation revealed that anchoring
and growing important windows in size often was a strong
enough cue for most users. Users asked for additional
control and customizability over the interface, such as being
able to resize thumbnails and integrate drag/drop informa-
tion into the association algorithm. Some participants stated
a preference for a one-dimensional version of the program
which could dock to the bottom of the screen just like the
Windows taskbar.

Window Relationship Algorithm Shortcomings
Relationship tracking was rated as middling with a median
rating of 4 on a 7-point Likert scale. Longitudinal use
revealed several specific drawbacks. First, parent-child
relationships were not accounted for: for example, users
wanted chat windows to automatically group with each
other and with the buddy list. Secondly, participants re-
ported that when simultaneously working on multiple tasks,
Taskposé would move the tasks close together; they had
expected the distinct tasks to be spaced farther apart. As
might be expected, tabbed web browsing was found to
decrease the usefulness of the algorithm because the brows-
er started associating with multiple groupings.

Future work can improve upon our model by integrating
data sources other than window switches. Previous work
often requires users to predefine tasks [5, 10] or produces
hard boundaries between tasks [6]. However, much of this
work can be adapted to the associative space, which is
unsupervised and continuously-valued. Tools such as
SWISH's window content PLSA approach or multidimen-
sional scaling are strong candidates.

CONCLUSION
The Taskposé window switch visualization aims to speed
window switching and aid workspace understanding by

taking a perspective of task association rather than task
classification. Our approach has three main ramifications:
allowing windows to exist in multiple tasks, enabling
windows to associate with tasks to varying degrees, and
automatically updating visualizations as window relation-
ships change. Implicitly, Taskposé dispenses with the
notion of tasks altogether, as task relationships are emer-
gent in the visualization rather than explicitly constructed.
We believe the association approach provides many of the
benefits of task organization without the cognitive or time
tradeoffs associated with classification.

REFERENCES
1. Exposé. Apple Computer, Inc. http://www.apple.com
2. Windows Taskbar. Microsoft. http://www.microsoft.com
3. Bernstein, M., Van Kleek, M., Karger, D.R., and schraefel,

mc. Information Scraps: How and Why Information Eludes
Our Personal Information Management Tools. To appear in
ACM Transactions on Information Systems.

4. Henderson, D. A., and Card, S. Rooms: The use of multiple
virtual workspaces to reduce space contention in a window-
based graphical user interface. ACM Transactions on Graphics
5(3), 211-243, 1986.

5. Kaptelinin, V. UMEA: Translating interaction histories into
project contexts. Proc. CHI 2003: ACM Press. pp. 353-360,
2003.

6. Oliver, N., Smith, G., Thakkar, C., and Surendran, A. C.
SWISH: Semantic analysis of window titles and switching
history. Proc. IUI 2006: ACM Press. pp. 194-201, 2006.

7. Page, L., Brin, S., et al. The PageRank Citation Ranking:
Bringing Order to the Web, Stanford Digital Libraries Work-
ing Paper, 1998.

8. Robertson, G., et al. Scalable Fabric: flexible task manage-
ment. Proc. CHI 2000: ACM Press. pp. 494-501, 2000.

9. Smith, G., et al. GroupBar: The TaskBar Evolved. Proc.
OZCHI 2003. 2003.

10. Stumpf, S., et al. Predicting user tasks: I know what you're
doing! Proc. AAAI 2005: AIII Press. 2005.

11. Tashman, C. WindowScape: A Task Oriented Window
Manager. Proc. UIST 2006: ACM Press. pp. 77-80, 2006.

Figure 3. Participants found relationship and importance tracking to
be useful to their work. The importance tracking algorithm received
positive reactions. The response to relation tracking was middling.

