
Exploiting the Sparse Derivative Prior for Super-Resolution and Image
Demosaicing

Marshall F. Tappen Bryan C. Russell William T. Freeman

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, MA 02139
{mtappen, brussell, billf}@ai.mit.edu

Abstract
When a band-pass filter is applied to a natural image, the distribution of the output has a consistent,
distinctive form across many different images, with the distribution sharply peaked at zero and rela-
tively heavy-tailed. This prior has been exploited for several image processing tasks. We show how
this prior on the appearance of natural images can also be used to estimate full-resolution images from
incomplete data. The unobserved image pixels are modeled with a factor graph. The constraints in the
factor graph are based on the characteristic distribution of image derivatives. We introduce an efficient
representation for finding candidate values for patches of the image being estimated, avoiding combi-
natorial explosion. The usefulness of this approach is demonstrated by applying it to two applications:
extracting a high-resolution image from a low-resolution version and estimating a full-color image
from an image with one color sample per pixel. We show how the super resolution system produces
noticeably sharper images, with few significant artifacts. The demosaicing system produces full-color
images with fewer color-fringing artifacts than images from other methods.

1 Introduction

A remarkably consistent property of natural images is the distribution of filter outputs when a band-pass

filter is applied to the image. Many researchers [25, 21, 29] have reported that the histogram of the filter

outputs is sharply peaked at zero and highly kurtotic, similar to the histogram shown in Figure 1(b). This

property has been observed across very many categories of images.

The strength and repeatability of this property make it invaluable as a statistical prior on the structure

of natural images. Simoncelli used this prior as the basis of a Bayesian noise-removal algorithm [30].

Simoncelli and Buccigrossi used the regular statistical structure of images for compression [31]. Levin et

al. have shown how this prior can enable an image to be decomposed into transparent layers [17]. Zhu and

Mumford used the prior to formulate reaction-diffusion equations for noise and clutter removal [39]. Several

authors have used this prior for wavelet-based image deconvolution [7, 6].

In this paper, we describe a general strategy for taking advantage of this prior on natural images to

estimate full-resolution images from incomplete data. We then show two different examples of how this

strategy can be applied. Section 3 discusses the application of the image prior to the problem of estimating

high-resolution images from low resolution images, also known as super-resolution. In Section 4, we show

1

PSfrag replacements

dx

of pixels

(a)

−200 −100 0 100 200
0

2

4

6

8

10x 10
4

PSfrag replacements

dx

#
of

pi
xe

ls

(b)

Figure 1: (a) An example of a natural image. (b) Histogram of the horizontal derivatives of the image in (a).
The histogram is sharply-peaked at zero.

how to improve the estimation of true color images from poly-chromatically sampled images, such as those

created by CCD’s.

In both tasks, the latent image being estimated is modeled well with a graphical model. We use the first

derivative as the band-pass filter and use the regular distribution of natural image derivatives to determine

the parameters of the model. The prior is enforced using a graphical model represented by discrete states.

One limitation of this approach is the potentially large number of states that need to be represented at each

node. To overcome this, we demonstrate a novel technique which enables a discrete-valued graphical model

to represent the wide range of image values possible at each node. This technique allows for a flexible

representation of the hidden variables, while controlling the computational complexity of state estimation,

which is a typical problem in learning-based approaches to low-level vision.

2 Graphical Models and Natural Image Statistics

2.1 Natural Image Statistics

As mentioned, the output of band-pass filters, including derivative filters, applied to a natural image have

sharply peaked distributions, with relatively heavy tails [25, 29]. These distributions are often described as

sparse distributions because only a small proportion of the outputs are greater than zero. The distribution of

the outputs is described well with a generalized Laplacian distribution [21]:

p(x) ∝ e−
|x|α

s (1)

where 0 < α < 1. We refer to this characteristic distribution of derivatives as the natural image prior,

because it is consistent across a wide variety of real images. An interpretation of this prior is that this

distribution describes images as consisting largely of zero gradient regions interspersed with occasional

strong gradient transitions. It seems plausible that in a given image a sharp edge is preferred over a blurry

2

0 1 2 3 4−2 −1

PSfrag replacements

y0 = 2

y2 = 1
y3 y4

x

α = 0.4

α = 0.6

α = 0.8

α = 1.0

α = 1.2

α = 1.4

y1 =?

y1

p(y1|y0, y2)

(a)

0 1 2 3

PSfrag replacements

y0 = 2
y2 = 1

y3

y4

x

α = 0.4

α = 0.6

α = 0.8

α = 1.0

α = 1.2

α = 1.4

y1 =?

y1

p
(y

1
|y

0
,y

2
)

(b)

Figure 2: A simple example showing the influence of the exponent α in Equation 1 on interpolated image
sharpness. (a) A simple interpolation problem where y1 must be interpolated from y0 and y2. (b) The
probability curves for y1. Each curve represents the probability of y for one value of α. For α > 1, the most
likely values of y1 is 1.5, leading to a softer image edge. For α < 1, y1 is most likely 1 or 2, either of which
gives a sharper edge transition.

edge. This can be seen by examining the simple interpolation problem shown in Figure 2. The samples at

y0 and y2 are observed, but y1 must be interpolated from the observed values.

To estimate y1, we assume that the probability of some value of y1, given y0 and y2, is proportional

to the probability of derivatives that would be induced by setting y1 to that value. If we assume that the

derivatives in the signal are distributed according to Equation 1, then

p(y1|y0, y2) ∝ e
−

(
|1−y|α+|2−y|α

s

)

(2)

Examining equation 2, shown in Figure 2(b), shows that an extremum of p(y1|y0, y2) will occur at

y1 = 1.5, regardless of the value of α. However, for α < 1, the extremum will be a minimum, causing the

most probable value of y1 to be either 1 or 2. For α > 1, p(y1 = 1.5) will be maximum, making it the best

estimate for y1. The fact that α < 1 for natural images is important because it imposes a “sharpness prior”.

If the distribution is sparse, it is preferable to have a single strong derivative, which would appear as a strong

edge in an image, rather than a pair of smaller derivatives, which would appear as a fuzzy edge.

The relationship between α and the convexity or concavity of the probability curve is important to any

application relying on this natural image prior. In [17], Levin et al. show how the probability must be less

than one in order to successfully decompose an image into transparent layers.

2.2 Applying Image Statistics

Graphical models are a natural choice because the constraints on groups of pixels provided by the sparse

image prior are conveniently expressed in a graphical model. For the problems described in Sections 3 and

4, our goal is to infer the pixel values of a full-resolution image.

We chose to use a factor graph to express the graphical model [16]. An example of a factor graph is

shown in Figure 3. Each node labelled xi represents a group of one or more full-resolution pixels that must

be estimated. Each xi does not necessarily represent just a single pixel, the state of xi could instead represent

the values of multiple pixels, as shown in Figure 3(b). The filled in squares represent the local functions, or

3

xx1

x3
x4

2

PSfrag replacements
f1(y) =
fn(y) =

(a)

x3

x1 x2

x4

PSfrag replacements

f1(y) =

f1(y) =f1(y) =

f1(y) =

fn(y) =

fn(y) =fn(y) =

fn(y) =

(b)

Figure 3: (a) An example of a simple factor graph. (b) The xi nodes in the graph represent states of groups
of pixels, not a single pixel. In this graph, each candidate state of a node represents a value of four pixels.
These candidate groups of pixels are computed from local image data by a set of different linear regressions,
f1(·) . . . fn(·).

constraints, that relate the various nodes to each other.

The probability distribution expressed by a graph is the product of the constraint functions. We denote

the constraint functions between nodes as ψ(·), which is a function of the nodes connected to that constraint.

The joint probability of any configuration of the nodes is

P (x1, x2, . . . , xn) =
1

C

M∏

i=1

ψi(·) (3)

where ψi(·) are functions of the nodes in the graph and C is a normalization constant.

The probability distribution for a graph in Figure 3(a) is

P (x1, x2, x3, x4) = ψ(x1, x2)ψ(x2, x4)ψ(x3, x4)ψ(x1, x3) (4)

We utilize the properties of natural images by basing the constraints between two neighboring candidates

on the image derivatives that the two image candidates would induce if they were chosen for the estimated

image. If we expect the latent image to appear natural, then the derivatives between its pixels should also

have a sparse distribution. Consequently, if xi and xj represented the value of two neighboring pixels being

estimated, the general form of ψ(xi, xj) will be

ψ(xi, xj) ∝ e
|xi−xj|

α

s (5)

2.3 Choosing Candidates

Along with specifying the form of compatibility functions, the form of each variable in the graphical model

must also be chosen. We model the nodes in the graphical model, which represent the pixel values in the

image being estimated, as discrete random variables.

4

Using a discrete representation requires choosing the number of states to be represented at each node.

The most complete representation would require one state for each possible combination of intensity-levels

in the image patch. Unfortunately, this makes performing inference in the model computationally intractable

because the number of states for the model would be huge. The cost of exact inference grows exponentially

in the number of states and even approximate inference algorithms, such as belief propagation, are O(n2)

in the number of states. This representation problem affects many learning-based vision algorithms. The

range of possible values for each node is very large, so algorithms must be able to find a small number of

states that represent the most likely values of the hidden variables.

In [11], Freeman et al. avoid this problem by choosing a small number of plausible image values as

the set of possible states for each node. Local image information is used to select a candidate set of image

patches which represent the hidden image data at each location in the image. Using patches reduces the

number of states for each random variable to a reasonable number, but requires that a large database of

image patches be stored. In addition, selecting candidate values requires searching this database for each

variable.

Instead of selecting patches from a large database, we generate candidates directly from the observed

image data. The candidates are produced by a set of functions that generate candidate pixel patches from

the observed data. These local functions can be seen as mapping low-resolution image data to the high-

resolution “scene data” [35]. Given the observed image information around some point, l, the candidate

value for the hidden information at that point, h, is modeled as a linear function of l:

h = Tl (6)

where T is the matrix relating the low-resolution image information to a candidate high-resolution patch.

Non-linear functions can be computed similarly by expanding l to include non-linear functions of the image

data, such as polynomials.

To generate multiple candidates, we find a set of matrices, T1 . . .TN , each of which interpolates the

same observed information to a different candidate for the hidden image patch. This is illustrated in Figure

3(b). The candidate states at each node are computed by a set of linear regressions of the observed image

data, f1(y) . . . fn(y).

Given a training set of observed patches, l, and the corresponding hidden image patches, h, the interpo-

lators are found with a simple clustering algorithm:

1. Use k-means clustering to initially assign each training example to one of N clusters.

2. For each cluster, j, set Tj to be the least-squares solution to hj = Tjlj , where hj and lj are the set of

training examples assigned to cluster j. Note that if there are K examples in cluster j, then hj and lj
will each have K rows.

3. Assign each example to the cluster where the corresponding Tjl best predicts h

4. Repeat step 2 until the reconstruction error ||h−Tjl|| drops below a threshold.

5

Lowpass
Filter

DownsamplePSfrag replacements

H L

↓ Z

(a) (b) (c)

Figure 4: (a) A system diagram of a low resolution image L generated from a high resolution image H .
(b) Example of pixel replication to increase resolution. (c) Example of bicubic interpolation to increase
resolution.

3 Super Resolution

In this section, we adapt the presented framework to the super resolution problem. Specifically, we describe

modifications to the model presented in Section 2.2 and describe in detail the algorithm to find solutions.

3.1 Problem Description

Super resolution takes as input a single low-resolution image and produces as output an image with higher

resolution, usually by a factor of two or more1. We approach the problem by assuming a model for the

degradation of the high resolution image. Specifically, we assume that a low resolution image L is generated

from a high resolution image H by first convolving H with a low-pass filter, to reduce aliasing, and then

downsampling to the desired size. This process is illustrated in Figure 4(a). We now wish to perform the

inverse operation, which is an underconstrained problem [3, 6, 28, 33]. Two simple solutions are pixel

replication (Figure 4(b)) and bicubic interpolation (Figure 4(c)). Pixel replication produces jagged edges

and “blocky” artifacts while bicubic interpolation produces an overly smooth result. The challenge of this

problem is to add visually plausible high frequency information in the higher resolution image to sharpen

the edges.

3.2 Previous Work

Functional interpolation methods, such as bicubic and cubic spline interpolation, approximate an unknown

continuous function by a set of local functions, which can then be discretely sampled to the desired resolu-

tion [14, 13, 27]. While these methods are usually fast and easy to implement, the resulting images often

have blurred edges. Image sharpening techniques have been proposed to ameliorate the results from func-

tional interpolation methods [12, 22, 34]. These methods result in sharper images, but may contain haloing

artifacts. An alternate solution involves deconvolving the blurring filter [5, 36, 6, 7, 24]. While the results

are quite good, deconvolution methods, as well as image sharpening methods, only enhance features that are

1Some authors refer to extracting a single high resolution image from multiple low resolution frames as super resolution. Here,
we deal with only single frames, which is sometimes called “image interpolation”.

6

present in the low resolution image. Learning-based methods use prior information to enhance the solution

space [28, 2, 18, 32, 11, 10, 5]. While many of these methods sharpen the low resolution image, a few of

these also add additional features not appearing in the low resolution image [2, 18, 11, 10].

3.3 Training and Algorithm

For super resolution, we consider Equation 3 which outlines how to incorporate the natural image prior and

local constraints. In this problem, the local constraint is the reconstruction of the low resolution image from

the inferred high resolution pixels. We derive the following equation which takes into account the natural

image prior and reconstruction constraint:

Pr ({x} | {y}) =
1

C

∏

(i,j)

exp

(

−
1

2

(
|Di ∗ x̂j |

σN

)α)

︸ ︷︷ ︸

Natural image prior

·
MN∏

i=1

exp

(

−
1

2

(
W ∗ x̃i − yi

σR

)2
)

︸ ︷︷ ︸

Reconstruction constraint

. (7)

where ∗ is the convolution operator, {x} are the latent random variables and {y} are the observed variables.

For the natural image prior, Di is a directional derivative kernel, x̂j is a patch of pixels from the high

resolution image of size equal to the derivative kernel Di, σN is the standard deviation parameter of the

natural image prior, and α is the natural image prior. The product ranges over all directional derivative

kernels and over all appropriately sized patches. For the reconstruction constraint, W is a Gaussian kernel,

yi is a low resolution pixel, x̃i is a patch of high resolution pixels that subsamples to the low resolution pixel

yi of size equal to the Gaussian kernel W , and σR is the standard deviation parameter of the reconstruction

constraint. The above equation is for a low resolution image of size M ×N . Also, the first product contains

the natural image prior constraint while the second product is the reconstruction constraint.

Consider the simple case of zooming by a factor of two. We start by converting Equation 7 into a factor

graph representation, as discussed in Section2.2 (we describe the factor graph representation for Equation 7

below). To solve the factor graph, we use the max-product belief propagation (BP) algorithm [8, 37] to

compute the maximum a posteriori (MAP) estimate of the random variables. Instead of considering all

possible intensities for the pixels within each patch, which is intractable, we assume for each low resolution

pixel a small set of candidate 2 × 2 high resolution patches. The sets of candidate patches for each spatial

location are the possible states of the latent variables, thereby making the problem tractable.

To illustrate how to represent the above equation, let us consider the one-dimensional case. Figure 5(a)

shows the factor graph, where the transparent circles represent random variables (xi are the latent variables

and yi are the observed variables), the solid squares represent the natural image prior constraint, and the

solid circles represent the reconstruction constraint. We will assume a derivative kernel of [−1, 0, 1] and a

three-tap Gaussian kernel. For tractability, we apply the high resolution patch constraint above by requiring

each latent variable to represent a patch of two pixels, as illustrated in Figure 5(e). We notate the two pixels

a and b of a patch candidate of latent node xi in our model as xa
i and xb

i respectively, shown in Figure 5(f).

To derive the propagation equations for the factor graph, we need to consider three propagation cases:

latent node to constraint node, derivative constraint node to latent node, and reconstruction constraint node

to latent node, illustrated in Figure 5(b)-(d). Let µi be an S-tuple representing messages passed between

7

{x i

. . .

µ ixi

µ i

xi

yi

x x2 x3 x4

y1 y2 y4

xi +1

i +1µ

xi +1

i +1µ

x
µ1 4µ

µ3

µ2

y3

.

. . .

. . .

.1

.

. . .

. . .

PSfrag replacements

(a)

(b)

(c) (d)

(e)

(f)

1

S

xa
i xb

i

Figure 5: (a) Factor graph for 1D super resolution example. The random variables are represented by the
transparent nodes where the xi are the latent variables and the yi are the observed variables, the solid squares
represent the derivative constraint, and the solid circles represent the reconstruction constraint. In (b)-(d)
we show message propagation for the three possible cases: (b) latent node to constraint node; (c) derivative
constraint node to latent node; (d) reconstruction constraint node to latent node. The messages are computed
via Equations 8, 9, and 10 respectively. In all of these graphs, it is important to note that the latent nodes xi

represent patches, not individual pixels. In (e), we pictorally show that for a given latent node, there are S
candidate patches. In (f), we show in detail the two pixels a and b of a patch candidate for random variable
xi.

latent node i and a constraint node, where S is the total number of states for latent node i. Each component

of µi corresponds to one of the S states of node i. To compute the message sent from latent node xi at

a particular setting to a neighboring constraint node, we take the product of all incoming message at that

setting of xi except from the target constraint node. Using Figure 5(b), we write this explicitly as follows:

µ4(xi)← µ1(xi)µ2(xi)µ3(xi). (8)

To compute the message sent from a derivative constraint node to a latent node xi+1 at a particular setting,

we incorporate the natural image prior, as discussed in Section 2.2. Using Figure 5(c), the message is

computed as follows:

µi+1(xi+1)← max
xi

µi(xi)
∏

p∈{a,b}

exp

(

−
1

2

(

|xp
i+1 − x

p
i |

σN

)α)

. (9)

To compute the message sent from a reconstruction constraint node to a latent node xi+1 at a particular

setting, we enforce the high to low resolution constraint, as discussed in Section 3.1. Using Figure 5(d), the

message is computed as follows:

µi+1 ← max
xi

µi(xi) exp

−
1

2

(

wTx′ − yi

σR

)2

 (10)

where w is a three-tap Gaussian kernel and x′ = (xa
i , x

b
i , x

a
i+1)

T . For the two-dimensional message propa-

gation equations, see the Appendix.

With the propagation equations in hand, we can now describe the algorithm. We follow the procedure

as outlined in Section 2.3 to produce candidate patches, run BP to find the candidates with highest belief,

and then construct the output image. The overall algorithm proceeds as follows:

8

PSfrag replacements

1 2 3 4 5

6 7 8 9 10

Figure 6: Gallery of test images used in this paper. All images are of size 256× 256, with the exception of
image 5, which is of size 128× 128.

1. For each pixel p in the low resolution image:

(a) Extract the 3× 3 window of pixels centered at p. This is the local evidence.

(b) Vectorize the pixels in the 3× 3 window to form l.

(c) Using the set of trained linear interpolators T1 . . .TN and l, linearly interpolate to obtain a set

of high resolution candidate patches h1 . . . hN .

2. With the candidate high resolution patches and observed low resolution image in hand, run BP using

the derived propagation equations in the Appendix.

3. For each node, insert into the corresponding position the high resolution patch with the highest belief.

We train the set of linear interpolators by considering a set of natural images. We use a 3× 3 Gaussian

kernel and subsample to get a low/high resolution pair. We then extract for each low resolution pixel the

corresponding 3 × 3 low resolution local evidence patch and 2 × 2 high resolution patch. With these low

and high resolution patches, we train the set of linear interpolators as outlined in Section 2.3.

For the experiments in this paper, we set α = 0.7, σN = 1, and σR = 0.01 and ran BP for 5 iterations.

For training, nine 432×576 pixel grayscale natural images were used, generating roughly 500,000 low/high

resolution patch pairs, and 16 linear interpolators were trained.

3.4 Results

To evaluate our super resolution algorithm, we (1) decimated a test image by filtering with a 3× 3 Gaussian

kernel and subsampled as described above and (2) super resolved back to the original dimensions. We

compared the natural image prior algorithm against the original image, bicubic interpolation, Freeman et al.

fast example-based super resolution algorithm—a memory-intensive approach using graphical models [10],

Photoshop Altamira plug-in—an undisclosed proprietary algorithm [1], and Greenspan et al. nonlinear

enhancement algorithm—an image sharpening algorithm (here, we used band-pass filtering, c = 0.4, and

s = 5) [12]. We tested our algorithm on the set of images shown in Figure 6, none of which were used for

training.

9

(a) Original (b) Bicubic (c) Altamira

(d) Nonlinear enhance-
ment

(e) Example-based (f) Natural image prior

Figure 7: 128×128 textured region cropped from image 2, decimated to 64×64 and then super resolved. (a)
True high resolution; (b) Bicubic interpolation; (c) Altamira; (d) Greenspan et al. nonlinear enhancement;
(e) Freeman et al. example-based; (f) our natural image prior based algorithm. Notice that our natural image
prior algorithm clearly out-performs the bicubic interpolation and Altamira algorithms. Also, the example-
based algorithm produces noisy artifacts, which our algorithm overcomes. The nonlinear enhancement
algorithm produces a sharp image as well, but at the expense of “haloing” artifacts.

10

(a) Original (b) Bicubic (c) Altamira

(d) Nonlinear enhancement (e) Example-based (f) Natural image prior

Figure 8: 128 × 128 bar region cropped from image 1, decimated to 64 × 64 and then super resolved. (a)
True high resolution; (b) Bicubic interpolation; (c) Altamira; (d) Greenspan et al. nonlinear enhancement;
(e) Freeman et al. example-based; (f) our natural image prior based algorithm. As in Figure 7, our algorithm
produces a sharp image with minimal noise and “haloing” artifacts.

11

(a) Original (b) Bicubic (c) Altamira

(d) Nonlinear enhancement (e) Example-based (f) Natural image prior

Figure 9: 128 × 128 synthetic font image (not included in the test gallery), decimated to 64 × 64 and
then super resolved [MSE in brackets]. (a) True high resolution; (b) Bicubic interpolation [0.0345]; (c)
Altamira [0.0294]; (d) Greenspan et al. nonlinear enhancement [0.0740]; (e) Freeman et al. example-
based [0.0599]; (f) our natural image prior based algorithm [0.0133]. As in Figures 7 and 8, we see that
our algorithm produces a sharp result. Moreover, notice that the nonlinear enhancement algorithm has
significant “haloing” artifacts around the fonts. These artifacts do not appear in our outputs.

A comparison of the outputs for the different super resolution algorithms are shown in Figures 7, 8,

and Figure 9. Here, we show cropped sections of two natural images from the test gallery, in addition to

a synthetic image of fonts. In Figure 10, we show the mean-squared error (MSE) of the images in the test

gallery for the different super resolution algorithms. Notice that the presented algorithm results in the lowest

MSE for all of the test images, followed by the Altamira plug-in.

In all of the images, the bicubic-interpolated method results in overly smooth outputs. Our method

clearly outperforms this, producing sharper results. The example-based algorithm produces a sharp image

as well, but at the expense of perceptually distracting artifacts. This is due to the database of patches that the

example-based method uses to obtain candidates for each latent node. Since the database comprises patches

that directly come from a set of training images, the patches tend to be noisy and dependent on the content

of the training images, which our algorithm overcomes through the linear interpolators. The interpolators

reduce the noise, but still provide enough variability in the higher frequencies. Moreover, our method is

more efficient in time and memory usage since we do not have to search or store a database of patches–

we simply interpolate. The Altamira algorithm produces sharp images, but appears to over-compensate in

12

M
S

E

Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Image 8
Image 9
Image 10

Bicubic Altamira Nonlinear
Enhancement

Example−based Natural
Image Prior

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Figure 10: Plot of mean-squared error (MSE) for super resolution. Notice that our natural image prior based
algorithm has the lowest MSE in comparison to the other methods shown here. While MSE is not always a
good measure of image quality, for this problem we feel the MSE correlates reasonably well with the image
quality for the different methods, as shown in Figures 7, 8, and 9.

certain areas, resulting in a higher error. The Greenspan et al. nonlinear enhancement sharpens the edges,

but produces ringing artifacts as can be seen in the outline of the fonts in Figure 9(d).

We compared the results when α is set to 0.7 and 2. While the former setting results in slightly lower

MSE, there is not a significant improvement in visual quality over the latter setting. This may be because

the interpolators are capturing well the derivative statistics. Further study of the interpolators will shed light

on this issue.

4 Demosaicing CCD Output

A similar problem to super-resolution is that of estimating a full-color image from samples of only one

color band. Typical CCD’s are only able to sample one color band at each pixel in the sensor. This is known

as poly-chromatic sampling because the samples at neighboring pixels represent the intensity of different

color bands. Figure 11(c) shows the poly-chromatically sampled version of Figure 11(a), using the sampling

pattern in Figure 11(b) [4]. To obtain the full-color image, with the value of three color bands per pixel,

the value of the other two color bands at each pixel must be interpolated from the observed samples. This

problem, known as demosaicing, is similar to the super-resolution problem in that we are trying to estimate

hidden information at every pixel location in the image, except now we are trying to estimate color values

instead of high-resolution information.

While the missing color values in each band could simply be interpolated from the observed values in

that band, that ignores the correlation between color band values. A change in one color band is usually

13

(a) Input image

R G R G R
G B G B G
R G R G R
G B G B G
R G R G R

(b) Sampling Pattern (c) Sampled input im-
age

Figure 11: An example of poly-chromatic sampling and the candidate color values produced by our method.
(a) The original input image. (b) The sampling pattern used (c) The input image sampled according to the
pattern shown in Figure 11(b).

(a) (b) (c) (d)

Figure 12: If the interpolation matrix best suited for the edge in (a) is applied to (b), then (c) results.
However, if the best interpolation matrix for (b) is used, then (d) can be achieved.

correlated with a change in the other bands also. In order to take advantage of this correlation, researchers

have proposed using all of the samples in a neighborhood around the pixel being estimated to interpolate

the unobserved color bands. The interpolated color values, h, are calculated as the linear combination of the

observed color samples, l:

h = Tl (11)

where l is created by unwrapping a local K × K neighborhood into a K2 × 1 vector and T is a 2 × K2

matrix containing the interpolation coefficients. For the results shown here, we used K = 3.

In [20], Brainard shows how T can be found using Bayesian methods. Researchers have used learning

methods to find T from both test patterns [38] and real imagesc [15, 23]. In [23], the system also performs

non-linear interpolation by expanding l to include its squared terms.

Each of these algorithms assumes that T is constant for the whole image, which implies that the corre-

lation between color bands is also the same at every point. However, this correlation between color bands

varies according to the structure of the image. The correlation between red and green bands will be very

different for a cyan edge than for a white edge. If the interpolator best suited to the cyan edge in Figure

12(a) is applied to the white edge in 12(b), then the results, shown in Figure 12(c), will be incorrect. On the

14

Figure 13: A portion of the candidate color values produced by the set of 20 candidate interpolators. The
center pixel shows the candidate full-color value for that pixel.

other hand, if the interpolator best matched to the white edge is used, then the results, shown in Figure 12(d)

are excellent.

This can be avoided by allowing the correlation between color bands to vary from pixel to pixel. To do

so, the colors at each pixel are interpolated by one of a set of interpolation matrices, each of which implies

a different correlation between color bands.

Effectively, this modifies equation 11 so that:

h = Tjl (12)

where Tj is one of N possible sets of interpolation coefficients. By allowing the interpolator to vary, the

correlation between color bands can vary. A portion of the set of possible interpolators is shown in Figure

13. The center pixels show the candidate values produced for the center pixel in the image shown in Figure

12(b). The color of the center pixel varies according to the correlation between color channels assumed by

each interpolator. The color of the center pixel varies as the correlation between color bands assumed by

each matrix varies.

4.1 Model

The system is based on the factor graph shown in Figure 14. Nodes labelled yi denote observed variables,

while the state of nodes denoted xi must be estimated. There is one xi node associated with each pixel

in the observed image. The state of a hidden node is the best interpolator, Tj , to use at that point. The

set of possible interpolators is chosen according to the method described in section 2.3. Using the set of

interpolators as the state for the variables in the graphical model is vital because representing the image

value directly would require a large two-dimensional state variable at each node. With interpolators, only a

small number of states are needed at each node.

As shown in Figure 14(a), each unobserved node is constrained by its direct neighbors. The constraint

function between two neighboring interpolators, ψ(xi, xj), is based on the sparse image prior of the deriva-

tives between the pixel values that would be produced by each these interpolators. To create the constraint

15

xx1

xx5

x x

x4

x

x
2

6

987

3

(a) Constraints between neighbor-
ing hidden nodes

y2

y8

x1

y3
y1

y4

y7 y9

y6y5

(b) Constraint between hidden
and observed nodes

Figure 14: The factor graph used for demosaicing. The graph has constraints between hidden nodes and
constraints relating hidden nodes to observed image data. For clarity, the two constraints are depicted
separately.

function, we use the marginal statistics of the three color bands and assume that the derivatives of each color

band have the same distribution. For two neighboring candidate interpolators, Ti and Tj , the constraint re-

lating the interpolators is based on the neighboring pixels produced by the two interpolators. If p is produced

by Ti and p′ is produce by T
′
j , then

ψ(Ti,T
′
j) = exp

(

−|pr − p
′
r|

α − |pg − p
′
g|

α − |pb − p
′
b|

α

s

)

(13)

where pr is the value of the red color band at p and the rest of the color bands are labelled accordingly. For

the results shown here, we use α = 0.7 and s = 0.1.

This model also includes constraint functions between each interpolator and the local observed image

information, shown in Figure 14(b). Each yi node corresponds to a pixel in the observed images. The node’s

state is the sample of the single color band observed at that point. The constraint between the observed

image data and the hidden nodes is modeled as a multivariate gaussian

ψ(Tn, l) = N (l;µn,Σn) (14)

where l is a vector containing the observed samples from a 3× 3 local patch. The values of µn and Σn are

found when the set of interpolators, T1 . . .TN are chosen.

4.2 Demosaicing the Image

Given a sampled input image and N candidate interpolators, we estimate the two missing color-bands at

each pixel with the following steps:

1. For each pixel p:

(a) For each interpolator, Tn, calculate P (Tn|l), the likelihood that Tn is the best interpolator,

given the local image information.

16

0

1

2

3

4
x 10

−3

M
S

E

Image 1
Image 2
Image 3
Image 4
Image 5
Image 6
Image 7
Image 8
Image 9
Image 10

Multiple
Interpolators

Single
Interpolator

Median
Filter

Bilinear
Interpolation

Figure 15: Comparison of the mean squared error of the reconstructions produced by four different algo-
rithms for demosaicing. The images from Figure 6 were used for the test. While the MSE is not a good
indicator of perceptual quality for this task, our algorithm performs comparably to others.

(b) Use each of the candidate interpolators to calculate a candidate value for the unobserved data.

(c) Use equation 13 to calculate the constraint function between candidate values of neighboring

pixels.

2. Using the max-product Belief Propagation algorithm, find the most likely setting for each of the

random variables.

4.3 Results

For the first evaluation of our demosaicing algorithm, we compared it against using a single linear inter-

polator to find the two unobserved color values at each point. While [23] suggests performing non-linear

interpolation by augmenting the observations with quadratic functions of the data, we found that did not

improve the results on our training set. Both the single global interpolator used for comparison and the set

of interpolators used by our algorithm were trained on a set of 18 natural images. The images were a combi-

nation of scanned photographs and high-resolution digital pictures. Each of the images was down-sampled

to reduce the effects of any demosaicing that occurred when the images were captured. The candidate values

for each pixel were created by a set of twenty different interpolators. The images were sampled according

to the pattern shown in Figure 11(b). In this pattern there are actually four different types of local neighbor-

hoods. Therefore, we learn four different sets of twenty interpolators. The choice of which interpolator set

is used at a pixel depends entirely on the type of pixel being interpolated.

To evaluate the performance of the two algorithms, we use L2 norm of the difference between each

pixel of the demosaiced image and each pixel of the true image. Over the whole training set, we found that

average L2 error of the pixels produced by our method was 86% of those produced by using a single linear

interpolator. Note that [23] showed that using a single interpolator produced a significant improvement over

simply interpolating each color band separately.

17

We also used the test set shown in Figure 6 to compare our algorithm to other demosaicing solutions.

Figure 15 shows the mean squared error of all color bands for four different algorithms. We compared

our method to using a single interpolator, bilinearly interpolating the color planes independently, and an

algorithm utilizing the median filter [9]. The median filter algorithm has been found to perform well exper-

imentally in [20] and [26]. Our method outperforms the others, except for the median filter algorithm, in

terms of MSE. The images in the test set are affected by chromaticity artifact caused by image compression.

These likely adversely affected the results of our algorithm.

(a) Original, non-sampled image (b) Image produced using multi-
ple interpolators

(c) Image produced using a single
interpolator

(d) Enlarged portion of (a) (e) Enlarged portion of (b) (f) Enlarged portion of (c)

Figure 16: A comparison of the results produced by using multiple interpolators versus a single interpolator.
Notice that the image produced with multiple interpolators, shown in (c), does not have the color fringes
along the coat and tie.

However, the mean squared error does not capture the important perceptual differences. The important

difference in performance lies along the edges in the image, where color fringing can occur. The number of

pixels along edges is relatively small compared to the total number of pixels in the image, so differences in

performance along the edges will not much effect on the overall MSE. Examining the images qualitatively

shows a much greater improvement by using multiple interpolators, especially along edges in the image. The

most noticeable artifacts of demosaicing algorithms are colored fringes along edges. Figure 16 shows the

18

difference in fringing caused by using one interpolator versus multiple interpolators. Using one interpolator

causes the fringes along the suit coat shown in Figure 16(c). These are caused when the correlation between

color bands implied in the interpolator is incorrect. For example, if the interpolator believes that red and

green are correlated, a red edge will have a greenish fringe when it is demosaiced. By using multiple

interpolators and belief propagation, our algorithm significantly reduces the amount of color fringing in

Figure 16(b).

In Figure 17 we compare the results of our algorithm, in Figure 17(f), to two other methods for demo-

saicing. Figure 17(b) shows the results from independently bilinearly interpolating the three color bands.

Figure 17(c) shows the results from applying the “Bayes 1” algorithm from [20]. Again the results from

using multiple interpolators have significantly less color fringing.

The importance of setting the exponent α to be less than one, which was discussed in Section 2.1, is

illustrated in Figure 19. Setting α greater than 1 leads to multiple small derivatives being favored over a

single large derivative. This leads to the artifacts in Figure 19(b). When α is less than one, sharp edges are

preferred, resulting in Figure 19(b).

(a) Original Image (b) Bilinearly interpolating the
color channels independently

(c) Applying the “Bayes 1” algo-
rithm from [20]

(d) Median Filter (e) Using a single interpolator (f) Using multiple interpolators

Figure 17: Comparision of our algorithm with two methods of demosaicing discussed in [20]. Figures 17(a),
17(b), and 17(c) came from [19]. Enlarged portions of these figures are shown in Figure 18.

19

(a) Original Image (b) Bilinearly interpolating the color channels inde-
pendently

(c) Applying the “Bayes 1” algorithm from [20] (d) Using a single interpolator

(e) Median Filter (f) Using multiple interpolators

Figure 18: Enlarged portions of the figures from Figure 18. Using multiple interpolators, shown in (f),
increases the quality of the reconstruction, especially along the roof of the car.

5 Conclusion

Solving both the problem of super-resolution and CCD demosaicing requires inferring an unobserved, full-

resolution image from a sampled version of the image. In this paper, we have outlined an approach which

uses factor graphs to accomplish this. The unobserved patches of pixels in the full-resolution image are

modeled as nodes in the graph and the characteristic distribution of the derivatives of real-world images

are used to define the constraint functions between nodes in the factor graph. The general nature of this

approach makes it applicable to many problems besides super-resolution and CCD demosaicing.

To make inference computationally feasible, we use discrete-valued nodes in the factor graph. Instead

of using the states of each variable to represent actual image values, each state represents a linear mapping

that relates the observed image data to the unobserved, full-resolution image. This permits a small number

of discrete states to model the range of possible image values at each point in the image. This computational

efficiency makes this approach valuable for tasks where a full-resolution image must be found from a set of

samples.

20

(a) Sample results for α = 0.7 (b) Sample results for α = 2.0

Figure 19: The effect of the exponent α on the results. The results are sharper when α = 0.7 because the
statistical prior favors fewer, large derivatives.

Acknowledgments

Erik Sudderth provided valuable suggestions, particularly with regards to factor graphs and the graphical

models in Figure 5(a). This work was funded by the Nippon Telegraph and Telephone Corporation as part

of the NTT/MIT Collaboration Agreement, in addition to the Texas Instruments DSPS Leadership University

Program. MFT was funded by an NDSEG Fellowship from the Department of Defense.

Appendix

Here, we give the two-dimensional propagation equations for the super resolution problem. The natural

image prior and reconstruction constraints are shown graphically in Figure 20. For the natural image con-

straint, we use the derivative kernel [−1, 0, 1] and apply it in four directions (horizontal, vertical, and two

diagonal directions) as shown in Figure 20(a)-(d). The propagation equation is given by:

µ2(x2)← max
x1

µ1(x1)
∏

p∈{a,b,c,d}

exp

(

−
1

2

(

|xp
2 − x

p
1|

σN

)α)

. (15)

The reconstruction constraint is shown graphically in Figure 20(e) and is given by the propagation equation:

µ4(x4)← max
x1

max
x2

max
x3

µ1(x1)µ2(x2)µ3(x3) exp

(

−
1

2

(
W ∗ x′ − y1

σR

)2
)

(16)

where W is a 3× 3 Gaussian kernel and:

x′ =

xa
1 xc

1 xa
3

xb
1 xd

1 xb
3

xa
2 xc

2 xa
4

. (17)

21

{ . . .x i

x1

µ1 µ2 x2

x1

x2

x1

x2 x

x

x2 x4

x3

y1

x1

......

......

......

... ...

...
...

...

......

......

...

...

...
...

...

......

...

...

...
...

...
...

... ...

......

µ2

1µ
µ1

µ2 µ
µ2

1

1

2 1

µ2

µ3

µ4

µ

PSfrag replacements

(a)

(b) (c) (d) (e)

(f)

(g)

1

S

xa
i

xb
i

xc
i

xd
i

Figure 20: (a)-(d) Factor graph segment for the directional derivative constraint (horizontal, vertical, and
two diagonal directions respectively). (e) The graph segment for the reconstruction constraint. In each of
the segments, it is important to remember that the latent nodes xi represent patches, not individual pixels. In
(f), we pictorially show that for a given latent node, there are S candidate patches. In (g), we show in detail
a given patch candidate for xi.

References

[1] Altamira Genuine Fractals 2.5, www.lizardtech.com.

[2] S. Baker and T. Kanade. Hallucinating faces. Fourth International Conference on Automatic Face and

Gesture Recognition, 2000.

[3] S. Baker and T. Kanade. Limits on super-resolution and how to break them. IEEE Conf. Computer

Vision and Pattern Recognition, 2000.

[4] B. E. Bayer. Color imaging array. US Patent No. 3,971,065, 1975.

[5] M. Belge, M. Kilmer, and E. Miller. Wavelet domain image restoration with adaptive edge-preserving

regularity. IEEE Trans. Image Processing, 9(4):597–608, 2000.

[6] J. Dias. Fast GEM wavelet-based image deconvolution algorithm. IEEE International Conference on

Image Processing-ICIP’03, 2003.

[7] M. Figueiredo and R. Nowak. Image restoration using the EM algorithm and wavelet-based complexity

regularization. IEEE Transactions on Image Processing, 2002.

[8] W. Freeman, E. C. Pasztor, and O. T. Carmichael. Learning low-level vision. International Journal of

Computer Vision, 40(1):25–47, 2000.

[9] W. T. Freeman. Median filter for reconstructing missing color samples. U.S. Patent No. 5,373,322,

1988.

[10] W. T. Freeman, T. R. Jones, and E. C. Pasztor. Example-based super resolution. IEEE Computer

Graphics and Applications, 2002.

[11] W. T. Freeman, E. C. Pasztor, and O. T. Carmichael. Learning low-level vision. International Journal

of Computer Vision, 40(1):25–47, 2000.

22

[12] H. Greenspan, C. Anderson, and S. Akber. Image enhancement by nonlinear extrapolation in frequency

space. IEEE Trans. on Image Processing, 9(6), 2000.

[13] H. H. Hou and H. C. Andrews. Cubic splines for image interpolation and digital filtering. IEEE Trans.

Acoust. Speech Signal Processing, ASSP-26(6):508–517, 1978.

[14] R. Keys. Cubic convolution interpolation for digital image processing. IEEE Trans. Acoustics, Speech,

Signal Processing, 29(6):1153–1160, 1981.

[15] K. Knopf and R. Morf. A new class of mosaic color encoding patterns for single-chip cameras. IEEE

Transactions on Electron Devices, ED-32(8), August 1985.

[16] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger. Factor graphs and the sum-product algorithm. IEEE

Transactions on Information Theory, 42(2):498–519, 2001.

[17] A. Levin, A. Zomet, and Y. Weiss. Learning to perceive transparency from the statistics of natural

images. Neural Information Processing Systems, 2002.

[18] C. Liu, H. Shum, and C. Zhang. A two-step approach to hallucinating faces: global parametric model

and local nonparametric model. Proceedings of the Conference on Computer Vision and Pattern Recog-

nition, 2001.

[19] P. Longere, P. B. Delahunt, X. Zhang, and D. H. Brainard. Supplementary material for perceptual ass-

esment of demosaicing algorithm performance. http://color.psych.upenn.edu/depreference/index.html.

[20] P. Longere, P. B. Delahunt, X. Zhang, and D. H. Brainard. Perceptual assessment of demosaicing

algorithm performance. Proceedings of the IEEE, 90:123–132, 2002.

[21] S. G. Mallat. A theory for multiresolution signal decomposition: the wavelet representation. IEEE

Transaction on Pattern Analysis and Machine Intelligence, 11(7):674–694, July 1989.

[22] B. Morse and D. Schwartzwald. Image magnification using level set reconstruction. Proc. International

Conf. Computer Vision (ICCV), pages 333–341, 2001.

[23] S. K. Nayar and S. G. Narasimhan. Assorted pixels: Multi-sampled imaging with structural models.

In ECCV (4), volume 2353 of Lecture Notes in Computer Science, pages 636–652. Springer, 2002.

[24] R. Neelamani, H. Choi, and R. Baraniuk. Wavelet-based deconvolution for ill-conditioned systems.

IEEE Trans. on Image Processing, 2001.

[25] B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field properties by learning a

sparse code for natural images. Nature, 381:607–609, 1996.

[26] R. Ramanath, W. E. Snyder, G. L. Bilbro, and W. A. S. III. Demosaicking methods for bayer color

arrays. Journal of Electronic Imaging, 11(3):306–315, July 2002.

[27] W. F. Schreiber. Fundamentals of Electronic Imaging Systems. Springer-Verlag, New York, 1986.

[28] R. R. Schultz and R. L. Stevenson. A Bayesian approach to image expansion for improved definition.

IEEE Trans. Image Processing, 3(3):233–242, 1994.

[29] E. P. Simoncelli. Statistical models for images: Compression, restoration and synthesis. In 31st

Asilomar Conference on Signals Systems, and Computers, pages 673–678, Pacific Grove, CA., 1997.

[30] E. P. Simoncelli. Bayesian denoising of visual images in the wavelet domain. In P. Muller and B. Vi-

23

dakovic, editors, Bayesian Inference in Wavelet Based Models, volume 141 of Lecture Notes in Statis-

tics, pages 291–308. Springer-Verlag, New York, 1999.

[31] E. P. Simoncelli and R. W. Buccigrossi. Embedded wavelet image compression based on a joint

probability model. In 4th IEEE International Conference on Image Processing, 1997.

[32] A. Storkey. Dynamic structure super-resolution. Neural Information Processing Systems, 2002.

[33] J. Sun, N. Zheng, H. Tao, and H. Shum. Image hallucination with primal sketch priors. Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2003.

[34] S. Thurnhofer and S. Mitra. Edge-enhanced image zooming. Optical Engineering, 35(7):1862–1870,

1996.

[35] A. Torralba and W. T. Freeman. Properties and applications of shape recipes. In IEEE Conf. Computer

Vision and Pattern Recognition, volume 2, pages 383–390, 2003.

[36] Y. Wan and R. Nowak. A wavelet-based approach to joint image restoration and edge detection. SPIE

Conference on Wavelet Applications in Signal and Image Processing VII, 1999.

[37] Y. Weiss and W. T. Freeman. On the optimality of solutions of the max-product belief propagation

algorithm in arbitrary graphs. IEEE Trans. Information Theory, Special Issue on Codes on Graphs and

Iterative Algorithms, 47(2):723–735, 2001.

[38] M. A. Wober and R. Soini. Method and apparatus for recovering image data through the use of a color

test pattern. U.S. Patent 5,475,769, December 1995.

[39] S. Zhu and D. Mumford. Prior learning and Gibbs reaction-diffusion. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 19(11), 1997.

24

