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Abstract

With transfer learning, one set of tasks is used to bias learning and im-
prove performance on another task. However, transfer learning may ac-
tually hinder performance if the tasks are too dissimilar. As described
in this paper, one challenge for transfer learning research is to develop
approaches that detect and avoid negative transfer using very little data
from the target task.

1 Introduction

Transfer learning involves two interrelated learning problems with the goal of using knowl-
edge about one set of tasks to improve performance on a related task. In particular, learning
for some target task—the task on which performance is ultimately measured—is influenced
by inductive bias learned from one or more auxiliary tasks, e.g., [1, 2, 8, 9]. For example,
athletes make use of transfer learning when they practice fundamental skills to improve
training in a more competitive setting.

Even for the restricted class of problems addressed by supervised learning, transfer can
be realized in many different ways. For instance, Caruana [2] trained a neural network
on several tasks simultaneously as a way to induce efficient internal representations for
the target task. Wu and Dietterich [9] showed improved image classification by SVMs
when trained on a large set of related images but relatively few target images. Sutton and
McCallum [7] demonstrated effective transfer by “cascading” a class of graphical models,
with the prediction from one classifier serving as a feature for the next one in the cascade.
In this paper we focus on transfer using hierarchical Bayesian methods, and elsewhere we
report on transfer using learned prior distributions over classifier parameters [5].

In broad terms, the challenge for a transfer learning system is to learn what knowledge
should be transferred and how. The emphasis of this paper is the more specific problem of
deciding when transfer should be attempted for a particular class of learning algorithms.
With no prior guarantee that the auxiliary and target tasks are sufficiently similar, an algo-



rithm must use the available data to guide transfer learning. We are particularly interested
in the situation where an algorithm must detect, perhaps implicitly, that the inductive bias
learned from the auxiliary tasks will actually hurt performance on the target task.

In the next section, we describe a “transfer-aware” version of the naive Bayes classification
algorithm. We then illustrate that the benefits of transfer learning depend, not surprisingly,
on the similarity of the auxiliary and target tasks. The key challenge is to identify harmful
transfer with very few training examples from the target task. With larger amounts of
“target” data, the need for auxiliary training becomes diminished and transfer learning
becomes unnecessary.

2 Hierarchical Naive Bayes

The standard naive Bayes algorithm—which we call flat naive Bayes in this paper—has
proven to be effective for learning classifiers in non-transfer settings [3]. The flat naive
Bayes algorithm constructs a separate probabilistic model for each output class, under the
“naive” assumption that each feature has an independent impact on the probability of the
class. We chose naive Bayes not only for its effectiveness but also for its relative sim-
plicity, which facilitates analysis of our hierarchical version of the algorithm. Hierarchical
Bayesian models, in turn, are well suited for transfer learning because they effectively
combine data from multiple sources, e.g., [4].

To simplify our presentation we assume that just two tasks, A and B, provide sources of
data, although the methods extend easily to multiple A data sources. The flat version of
naive Bayes merges all the data without distinction, whereas the hierarchical version con-
structs two ordinary naive Bayes models that are coupled together. Let θA

i and θB
i denote

the i-th parameter in the two models. Transfer is achieved by encouraging θA
i and θB

i to
have similar values during learning. This is implemented by assuming that θA

i and θB
i are

both drawn from a common hyperprior distribution, Pi, that is designed to have unknown
mean but small variance. Consequently, at the start of learning, the values of θA

i and θB
i

are unknown, but they are constrained to be similar.

As with any Bayesian learning method, learning consists of computing posterior distribu-
tions for all of the parameters in the two models, including the hyperprior parameters. The
overall model can “decide” that two parameters are very similar (by decreasing the variance
of the hyperprior) or that two other parameters are very different (by increasing the vari-
ance of the hyperprior). To compute the posterior distributions, we developed an extension
of the “slice sampling” method introduced by Neal [6].

3 Experiments

We tested the hierarchical naive Bayes algorithm on data from a meeting acceptance task.
For this task, the goal is to learn to predict whether a person will accept an invitation to
a meeting given information about (a) the current state of the person’s calendar, (b) the
person’s roles and relationships to other people and projects in his or her world, and (c) a
description of the meeting request including time, place, topic, importance, and expected
duration.

Twenty-one individuals participated in the experiment: eight from a military exercise and
13 from an academic setting. Each individual supplied between 99 and 400 labeled ex-
amples (3966 total examples). Each example was represented as a 15-dimensional feature
vector that captured relational information about the inviter, the proposed meeting, and any
conflicting meetings. The features were designed with the meeting acceptance task in mind
but were not tailored to the algorithms studied. For each experiment, a single person was
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Figure 1: Effects of B training set size on performance of the hierarchical naive Bayes al-
gorithm for three cases: no transfer (“B-only”) and transfer between similar and dissimilar
individuals. In each case, the same person served as the B data source. Filled circles de-
note statistically significant differences (p<0.05) between the corresponding transfer and
B-only conditions.

chosen as the target (B) data source; 100 of his or her examples were set aside as a holdout
test set, and from the remaining examples either 2, 4, 8, 16, or 32 were used for training.
These training and test sets were disjoint and stratified by class. All of the examples from
one or more other individuals served as the auxiliary (A) data source.

Figure 1 illustrates the performance of the hierarchical naive Bayes algorithm for a single
B data source and two representative A data sources. Also shown is the performance for the
standard algorithm that ignores the auxiliary data (denoted “B-only” in the figure). Transfer
learning has a clear advantage over the B-only approach when the A and B data sources are
similar, but the effect is reversed when A and B are too dissimilar.

Figure 2a demonstrates that the hierarchical naive Bayes algorithm almost always performs
at least as well as flat naive Bayes, which simply merges all the available data. Figure 2b
shows the more interesting comparison between the hierarchical and B-only algorithms.
The hierarchical algorithm performs well, although the large gray regions depict the many
pairs of dissimilar individuals that lead to negative transfer. This effect diminishes—along
with the positive transfer effect—as the amount of B training data increases. We also ob-
served qualitatively similar results using a transfer-aware version of the logistic regression
classification algorithm [5].

4 Conclusions

Our experiments with the meeting acceptance task demonstrate that transfer learning often
helps, but can also hurt performance if the sources of data are too dissimilar. The hierar-
chical naive Bayes algorithm was designed to avoid negative transfer, and indeed it does
so quite well compared to the flat algorithm. Compared to the standard B-only approach,
however, there is still room for improvement. As part of ongoing work we are exploring
the use of clustering techniques, e.g., [8], to represent more explicitly that some sources of
data may be better candidates for transfer than others.
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Figure 2: Effects of B training set size on performance of the hierarchical naive Bayes al-
gorithm versus (a) flat naive Bayes and (b) training with no auxiliary data. Shown are the
fraction of tested A-B pairs with a statistically significant transfer effect (p<0.05). Black
and gray respectively denote positive and negative transfer, and white indicates no statis-
tically significant difference. Performance scores were quantified using the log odds of
making the correct prediction.
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