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ABSTRACT

Freehand sketching is a natural and crucial part of every-
day human interaction, yet is almost totally unsupported by
current user interfaces. With the increasing availability of
tablet notebooks and pen based PDAs, sketch based interac-
tion has gained attention as a natural interaction modality.
We are working to combine the flexibility and ease of use of
paper and pencil with the processing power of a computer,
to produce a user interface for design that feels as natural
as paper, yet is considerably smarter. One of the most basic
tasks in accomplishing this is converting the original dig-
itized pen strokes in a sketch into the intended geometric
objects. In this paper we describe an implemented system
that combines multiple sources of knowledge to provide ro-
bust early processing for freechand sketching. We also show
how this early processing system can be used as part of a fast
sketch recognition system with polynomial time segmenta-
tion and recognition algorithms.

1. INTRODUCTION

Freehand sketching is a familiar, efficient, and natural way
of expressing certain kinds of ideas, particularly in the early
phases of design. Yet this archetypal behavior is largely un-
supported by user interfaces in general and by design soft-
ware in particular, which has for the most part aimed at
providing services in the later phases of design. As a re-
sult, designers either forgo tool use at the early stage or
end up having to sacrifice the utility of freehand sketching
for the capabilities provided by the tools. When they move
to a computer for detailed design, designers usually leave
the sketch behind and the effort put into defining the rough
geometry on paper is largely lost.

We are working to provide a system where users can sketch
naturally and have the sketches understood. By “under-
stood” we mean that sketches can be used to convey to the
system the same sorts of information about structure and
behavior as they communicate to a human engineer.

Such a system would allow users to interact with the com-
puter without having to deal with icons, menus and tool se-
lection, and would exploit direct manipulation (e.g., specify-
ing curves by sketching them directly, rather than by spec-
ifying end points and control points). We also want users
to be able to draw in an unrestricted fashion. It should,
for example, be possible to draw a rectangle clockwise or
counterclockwise, or with multiple strokes. Even more gen-
erally, the system, like people, should respond to how an
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object looks (e.g., like a rectangle). This will, we believe,
produce a sketching interface that feels much more natural,
unlike Graffiti and other gesture-based systems (e.g., [9],
[18]), where pre-specified motions (e.g., an L-shaped stroke
or a clockwise rectangular stroke) are required to specify a
rectangular shape.

The work reported here is part of our larger effort aimed at
providing natural interaction with software, and with design
tools in particular. That larger effort seeks to enable users
to interact with automated tools in much the same man-
ner as they interact with each other: by informal, messy
sketches, verbal descriptions, and gestures. Our overall sys-
tem uses a blackboard-style architecture [7], combining mul-
tiple sources of knowledge to produce a hierarchy of succes-
sively more abstract interpretations of a sketch.

Our focus in this paper is on the very first step in the
sketch understanding part of that larger undertaking: inter-
preting the pixels produced by the user’s strokes and pro-
ducing low level geometric descriptions such as lines, ovals,
rectangles, arbitrary polylines, curves and their combina-
tions. Conversion from pixels to geometric objects is the
first step in interpreting the input sketch. It provides a
more compact representation and sets the stage for further,
more abstract interpretation (e.g., interpreting a jagged line
as a symbol for a spring).

The rest of the paper is organized as follows: We start
with a discussion of the sketch understanding task. In sec-
tion 3, we describe our stroke approximation system that
takes a raw stroke as input and returns its geometric ap-
proximation. In section 4, we present an evaluation of the
system. Section 5 presents an application using our system
for efficient sketch recognition to illustrate how our stroke
approximation scheme can be used to build sketch recog-
nizers. We conclude with a discussion of related and future
work.

2. THE SKETCH UNDERSTANDING TASK

Sketch understanding overlaps in significant ways with the
extensive body of work on document image analysis gener-
ally (e.g., [3]) and graphics recognition in particular (e.g.,
[20]), where the task is to go from a scanned image of, say,
an engineering drawing, to a symbolic description of that
drawing.

Differences arise because sketching is a realtime, interac-
tive process, and we want to deal with freehand sketches,
not the precise diagrams found in engineering drawings. As
a result we are not analyzing careful, finished drawings, but



are instead attempting to respond in real time to noisy, in-
complete sketches. The noise is different as well: noise in
a freehand sketch is typically not the small-magnitude ran-
domly distributed variation common in scanned documents.
There is also an additional source of very useful information
in an interactive sketch: as we show below, the timing of
pen motions can be very informative.

Sketch understanding is a difficult task in general as sug-
gested by reports in previous systems (e.g., [9]) of a recogni-
tion rate of 63%, even for a sharply restricted domain where
the objects to be recognized are limited to rectangles, circles,
lines, and squiggly lines (used to indicate text).

Also some domains such as the mechanical engineering
design present the additional difficulty that there is no fixed
set of shapes to be recognized. While there are a number of
traditional symbols with somewhat predictable geometries
(e.g., symbols for springs, pin joints, etc.), the system must
also be able to deal with bodies of arbitrary shape that in-
clude both straight lines and curves. As consequence, accu-
rate early processing of the basic geometry—finding corners,
fitting both lines and curves—becomes particularly impor-
tant.

3. SYSTEM DESCRIPTION

Sketches can be created in our system using any of a vari-
ety of devices that provide the experience of freehand draw-
ing while capturing pen movement. We have used tradi-
tional digitizing tablets, a Wacom tablet that has an LCD-
display drawing surface (so the drawing appears under the
stylus), a Mimio whiteboard system and Tablet PCs. In
each case the pen motions appear to the system as mouse
movements, with position sampled at rates between 30 and
150 points/sec, depending on the device and software in use.

In the description below, by a single stroke we mean the
set of points produced by the drawing implement between
the time it contacts the surface (mouse-down) and the time
it breaks contact (mouse-up). This single path may be com-
posed of multiple connected straight and curved segments
(see, Fig. 1).

Our approach to early processing consists of two phases
approximation and beautification. Approximation fits the
most basic geometric primitives-lines and curves-to a given
set of pixels. The overall goal is to approximate the stroke
with a more compact and abstract description, while both
minimizing error and avoiding over-fitting. Beautification
modifies the output of the approximation layer, primarily to
make it visually more appealing without changing its mean-
ing.

3.1 Vertex Detection and Stroke Approxima-
tion

Stroke processing consists of detecting vertices at the end-
points of linear segments of the stroke, then detecting and
characterizing curved segments of the stroke. We use the
sketch in Fig. 1 as a motivating example of what should be
done in the vertex detection phase. Points marked in Fig. 1
indicate the corners of the stroke, where the local curvature
is high.

Note that the vertices are marked only at what we would
intuitively call the corners of the stroke (i.e., endpoints of
linear segments). There are, by design, no vertices marked
on curved portions of the stroke because we want to handle
these separately, modeling them with curves (as described

Figure 1: The stroke on the left contains both curves
and straight line segments. The points we want to
detect in the vertex detection phase are indicated
with large dots in the figure on the right. The begin-
ning and the end points of the stroke are indicated
with smaller dots.

below). This is unlike the well studied problem of piecewise
linear approximation [17].

Figure 2: Stroke representing a square.

Our approach takes advantage of the interactive nature of
sketching, combining information from both stroke direction
and speed data. Consider as an example the square in Fig. 2;
Fig. 3 shows the direction, curvature (change in direction
with respect to arc length) and speed data for this stroke.
We locate vertices by looking for points along the stroke that
are minima of speed (the pen slows at corners) or maxima
of the absolute value of curvature.’

While extrema in curvature and speed typically corre-
spond to vertices, we cannot rely on them blindly because
noise in the data introduces many false positives. To deal
with this we use average based filtering.

L

Figure 3: Direction, curvature and speed graphs for
the stroke in Fig. 2. In all plots, the x axis indicates
the indices of points in the stroke.

3.1.1 Average based filtering

We want to find extrema corresponding to vertices while
avoiding those due to noise. To increase our chances at doing
this, we look for extrema in those portions of the curvature
and speed data that lie beyond a threshold. Intuitively, we

'From here on for ease of description we use curvature to
mean the absolute value of the curvature data.



are looking for maxima of curvature only where the curva-
ture is already high and minima of speed only where the
speed is already low. This will help to avoid selecting false
positives of the sort that would occur say, when there is
a brief slowdown in an otherwise fast section of a straight
stroke.

To avoid the problems posed by choosing a fixed threshold,
we set the threshold based on the mean of each data set.?
We use these thresholds to separate the data into regions
where it is above/below the threshold and select the global
extrema in each region that lies above the threshold.
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Figure 4: Curvature graph for the square in Fig. 2
with the threshold dividing it into regions.

Figure 5: Speed graph for the stroke in Fig. 2 with
the threshold dividing it into regions.

Application to curvature data

Fig. 4 shows the curvature graph partitioned into regions
of high and low curvature. Note that this reduces but doesn’t
eliminate the problem of false positives introduced by noise
in the stroke. We deal with the false positives using the
hybrid fit generation scheme described below.®

Application to speed change

2The exact threshold has been determined empirically; for
curvature data the threshold is the mean, while for the speed
the threshold is 90% of the mean.

3An alternative approach is to detect consecutive almost-
collinear edges (using some empirical threshold for collinear-
ity) and combine them into one edge, removing the vertex
in between. Our hybrid fit scheme deals with the problem
without the need to decide what value to use for “almost-
collinear.”
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Figure 6: At left the original sketch of a piece of
metal; at right the fit generated using only curvature
data.
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Figure 7: At left the speed graph for the piece; at
right the fit based on only speed data.

Our experience is that curvature data alone rarely pro-
vides sufficient reliability. Noise is one problem, but variety
in angle changes is another. Fig. 6 illustrates how curvature
fit alone misses a vertex (at the upper right) because the
curvature around that point was too small to be detected
in the context of the other, larger curvatures. We solve this
problem by incorporating speed data into our decision as an
independent source of guidance.

Just as we did for the curvature data, we reduce the num-
ber of false extrema by average based filtering, then look for
speed minima. The intuition here is simply that pen speed
drops when going around a corner in the sketch. Fig. 7
shows (at left) the speed data for the sketch in Fig. 6, along
with the polygon drawn from the speed-detected vertices (at
right). It is important to note that speed data isn’t sufficient
by itself either. We discuss the issue of generating hybrid
fits using information from both fits later in the paper.

While average based filtering performs better than simply
comparing the curvature data against a hard coded thresh-
old, it is still clearly not free of empirical constants. As
we discuss next, our scale space based technique provides
a better approach for dealing with noisy data without hav-
ing to make a priori assumptions about the scale of relevant
features.

3.1.2  Scale space approach

An inherent property of real-world objects is that they
exist as meaningful entities over a range of scales. The clas-
sical example is a tree branch. A tree branch is meaningful
at the centimeter or meter levels. However the concept of a
branch looses its meaning at very small scales where cells,
molecules or atoms make sense, or at very large scales where
forests and trees make sense.

As humans we are good at detecting features at multi-
ple scales, and we don’t realize the difficulties posed by the
multiscale nature of data interpretation. However, comput-
ers don’t have a sense of scale. When we use computers to
interpret sampled data, we have to take features at multi-



ple scales into account, because digital data is degraded by
noise and digitization.

In the case of stroke approximation, there are problems
posed by noise and digitization. In addition, selecting an a
priori scale has the problem of not lending itself to different
scenarios where object features and noise may vary. There’s
a need to remove the dependence of our algorithms on preset
thresholds.

A technique for dealing with features at multiple scales
is to look at the data through multiple scales. The scale
space representation framework introduced by Witkin [21]
attempts to remove the dependence on constant thresholds
and making a priori assumptions about the data. It provides
us with a systematic framework for dealing with the kind of
data we are interested in.

The virtues of scale-space approach are twofold. First, it
enables multiple interpretations of the data. These interpre-
tations range from descriptions with high detail to descrip-
tions that capture only the overall structure of the stroke.
Second, the scale space approach sets the stage for selecting
a scale or a set of scales by looking at how the interpretation
of the data changes and features move in the scale space as
the scale is varied.

The intuition behind scale-space representation is gener-
ating successively higher level descriptions of a signal by
convolving it with a filter that does not introduce new fea-
ture points as the scale increases.

We use the Gaussian defined as:
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where o is the smoothing parameter that controls the scale.
Higher o means coarser scales describing the overall features
of the data, while a smaller o corresponds to finer scales con-
taining the details. The Gaussian filter satisfies the restric-
tion of not introducing new feature points. The uniqueness
of the Gaussian kernel for use in scale-space filtering is dis-
cussed in [22] and [2].

In the continuous case, given a function f(zx), the convo-
lution is given by:

Fa.0) = f(@) v glw.0) = [ Flu) e

We use the discrete counterpart of the Gaussian function
which satisfies the property:

Zg(i,cf) =1

Given a Gaussian kernel, we convolve the data using the
following scheme:

T(k,o) = Z 9(1, 0)Th— [ nyj241)+i
i=0

There are several methods for handling boundary conditions
when the extent of the kernel is beyond end points. In our
implementation we assume that for £k — |[n/2 + 1] +4i < 0
and k— [n/2+4+ 1| +¢ > n the data is padded with zeroes on
either side.

Scale space provides a concise representation of the behav-
ior of the data across scales, but doesn’t provide a generic

Figure 8: A freehand stroke.

scale selection methodology. There is no known task inde-
pendent way of deciding which scales are important when
looking at the scale-space map for some data. On the other
hand it is possible to formulate scale selection methods by
observing the properties of the scale-space map for a given
task such as edge detection or ridge detection. In the follow-
ing subsections, we explain how we used the feature count
for scale selection in shape approximation. Our goal is se-
lecting a scale where the extrema due to noise disappear.

Application to curvature data

As we did in the average based filtering, we start by de-
riving direction and curvature data. Next we derive a series
of functions from the curvature data by smoothing it with
Gaussian filters of increasing o. Then we find the zero cross-
ings of the curvature at each scale and build the scale-space.

Scale-space is the (z,0)-plane where x is the dependent
variable of function f(.) [21]. We focus on how maxima of
curvature move in this 2D plane as o is varied.

Fig 8 shows a freehand stroke and Fig. 9 the scale space
map corresponding to the features obtained using curvature
data. The vertical axis in the graph is the scale index o
(increasing up). The horizontal axis ranging from 0 to 178
indicates the indices of the feature points in the scale space.
The stroke in question contains 179 points. We detect the
feature points by finding the negative zero-crossings of the
derivative of absolute value of the curvature at a particular
scale. We do this at each scale and plot the corresponding
point (o, ) for each index ¢ in the scale space plot. An easy
way of reading this plot is by drawing a horizontal line at a
particular scale index, and then looking at the intersection of
the line with the scale-space lines. The intersections indicate
the indices of the feature points at that scale.

As seen in this graph, for small o (bottom of the scale
space graph), many points in the stroke end up being de-
tected as vertices because at these scales the curvature data
has many local maxima, most of which are caused by the
noise in the signal. For increasing o, the number of feature
points decreases gradually, and for the largest scale omaz
(top of the scale space graph), we have only three feature
points left, excluding the end points.

Our goal at this stage is to choose a scale where the false
positives due to noise are filtered out and we are left with
the real vertices of the data. We want to achieve this with-
out having any particular knowledge about the noise* and
without having preset scales or constants for handling noise.

The approach we take is to keep track of the number of

4The only assumption we make is that the noise is smaller
in magnitude than the feature size.
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Figure 9: The scale-space for the maxima of the
absolute curvature for the stroke in Fig. 8. This plot
shows how the maxima move in the scale space. The
x axis is the indices of the feature points, the y axis
is the scale index.

feature points as a function of o and find a scale preserving
the tradeoff between choosing a fine scale where the data is
too noisy and introduces many false positives, and choosing
a coarse scale where true feature points are filtered out. For
example, the stroke in Fig. 8, has 101 feature points for
o = 0. On the coarsest scale, we are left with only 5 feature
points, two of which are end points. This means 4 actual
feature points are lost by the Gaussian smoothing. Because
the noise in the data and the shape described by the true
feature points are at different scales, it becomes possible to
detect the corresponding ranges of scales by looking at the
feature count graph.

For this stroke, the feature count graph is given in Fig. 10.
In this figure, the steep drop in the number of feature points
that occurs for scale indices [0, 40] roughly corresponds to
scales where the noise disappears, and the region [85,357]
roughly corresponds to the region where the real feature
points start disappearing. Fig. 11 shows the scale space be-
havior during this drop by combining the scale-space with
the feature-count graph. In this graph, the z, y, axis z,
respectively correspond to the feature point index [0,200],
o [0,400], and feature count [0,120]. We read the graph as
follows: given o, we find the corresponding location in the
y axis. We move up parallel to the z axis until we cross the
first scale space line®. The z value at which we cross the
first scale space line gives the feature count at scale index
o. Now, we draw an imaginary line parallel to the x axis.
Movements along this line correspond to different feature
indices, and its intersection with the scale space plot corre-
sponds to indices of feature points present at scale index o.
In this figure, the steep drop in the number of feature points
that occurs for scale indices [0, 40] roughly corresponds to
scales where the noise disappears, and the region [85,357]
roughly corresponds to the region where the real feature
points start disappearing. Fig. 11 shows the scale space be-
havior during this drop by combining the scale-space with
the feature-count graph. In this graph, the z, y, axis z,

5The first scale space line corresponds to the zeroth point in
our stroke, and by default it is a feature point and is plotted
in the scale space plot. This remark also applies to the last
point in the stroke.

Figure 10: The plot on the left shows the drop in
feature point count for increasing o. The plot at
right shows the scale selected by our algorithm (in
both, the y axis is the feature count, x is the scale
index).

respectively correspond to the feature point index [0,200],
o [0,400], and feature count [0,120]. The steep drop in the
feature count is seen in both Fig. 10 and Fig. 11.

Our experiments suggest that this phenomena (i.e., the
drop) is present in all hand drawn curves. For scale selec-
tion, we make use of this observation. We model the feature
count - scale graph by fitting two lines and derive the scale
using their intersection. Specifically, we compute a piecewise
linear approximation to the feature count - scale graph with
only two lines, one of which tries to approximate the portion
of the graph corresponding to the drop in the number of fea-
ture points due to noise, and the other that approximates
the portion of the graph corresponding to the drop in the
number of real feature points. We then find the intersection
of these lines and use its x value (i.e., the scale index) as
the scale. Thus we avoid extreme scales and choose a scale
where most of the noise is filtered out.

Fig. 10 illustrates the scale selection scheme via fitting
two lines [1, l2 to the feature count - scale graph. The al-
gorithm to get the best fit simply finds ¢ that minimizes
Ol)(ll7 {PJ}) + OD(ZQ, {Pk}) for 0 <j <, i<k <n.
OD(l,{Pn}) is the average orthogonal distance of the points
Py, to the line [, P is the array of points in the feature count
- scale graph indexed by the scale parameter and 0 < i <n
where n is the number of points in the stroke. Intuitively,
we divide the feature count - scale graph into two regions,
fit an ODR line to each region, and compute the orthogonal
least squares error for each fit. We search for the division
that minimizes the sum of these errors, and select the scale



Figure 11: Joint scale-space feature-count graph for
the stroke in Fig. 8. This plot simultaneously shows
the movement of feature points in the scale space
and the drop in feature point count for increasing
o. Here the z axis is the feature count [0,120], the
x axis is the feature point index [0,200], and the y
axis is the scale index [0,400].

Figure 12: The summed error for the two lines fit to
Fig. 10 during scale selection for the stroke in Fig. 8.

corresponding to the intersection of the lines for which the
division is optimal (i.e., has minimum error).

Interestingly enough, we have reduced the problem of
stroke approximation via feature detection to fitting lines
to the feature count graph, which is similar in nature to the
original problem. However, now we know how we want to
approximate the data (i.e., with two lines). Therefore even
an exhaustive search for i corresponding to the best fit be-
comes feasible. As shown in Fig. 12 the error as a function
of i is a U shaped function. Thus, if desired, the minima
of the summed error can be found using gradient descent
methods by paying special attention to not getting stuck in
the local minima. For the stroke in Fig. 8, the scale index
selected by our algorithm is 47.

While we try to choose a scale where most of the false
maxima due to noise are filtered out, feature points at this
scale we may still contain some false positives. The problem
of false extrema in the scale space is also mentioned in [15],
where these points are filtered out by looking at their sepa-
ration from the line connecting the preceding and following

Figure 13: The input stroke (above) and the fea-
tures detected by looking at the scale space of the
curvature (below).

feature points. They filter these points out if the distance is
less than one pixel.

The drawback of the filtering technique in [15] is that the
scale-space has to be built differently. Instead of comput-
ing the curvature for ¢ = 0 and then convolving it with
Gaussian filters of larger o to obtain the curvature data at a
particular scale, they treat the stroke as a parametric func-
tion of a third variable s, path length along the curve. The
x and y components are expressed as parametric functions
of s. At each scale, the x and y coordinates are convolved
with the appropriate Gaussian filter and the curvature data
is computed. It is only after this step that the zero crossings
of the derivative of curvature can be computed for detecting
feature points. The x and y components should be con-
volved separately because filtering out false feature points
requires computing the distance of each feature point to the
line connecting the preceding and following feature points,
as explained above. This means the Gaussian convolution, a
costly operation, has to be performed twice in this method,
compared to a single pass in our algorithm.

Because we convolve the curvature data instead of the
x and y coordinates, we can’t use the method mentioned
above. Instead we use an alternate 2-step method to re-
move the false positives. First we check whether there are
any vertices that can be removed without increasing the
least squares error between the generated fit and the orig-
inal stroke points®. The second step in our method takes
the generated fit, detects consecutive collinear’ edges and
combines these edges into one by removing the vertex in be-
tween. After performing these operations, we get the fit in
Fig. 13.

One virtue of the scale space approach is that works ex-
tremely well in the presence of noise. In Fig. 14 we have a
very noisy stroke. Figures 15 and 16 show the feature-count
and scale-space respectively. Fig. 17 combines these two
graphs, making it easier to see simultaneously what the fea-
ture count is at a particular scale, and what the scale-space
behavior is in that neighborhood.

The output of the scale-space based algorithm is in Fig. 18.
This output contains only 9 points. For comparison pur-
poses, the output of the average based feature detection al-
gorithm based on curvature is also given in Fig. 18. This fit
contains 69 vertices. (The vertices are not marked for the

5Tt is also possible to relax this criteria and remove points
if the increase in the least squares error of the segment they
belong to remains within some percentage of the original
error.

"The collinearity measure is determined by the task in hand.
In our system, lines intersecting with an angle of /32 or less
are considered to be collinear.



Figure 14: A very noisy stroke.

Figure 15: This plot shows the drop in feature point
count for increasing o. y axis is the feature count,
and the x axis is the scale index. Even in the pres-
ence of high noise, the behavior in the drop is the
same as it was for 8. Fig. 17 combines this graph
with the feature count graph to illustrate the drop
in the feature count and the scale-space behavior.
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Figure 16: The scale space map for the stroke in
Fig. 14. Fig. 17 combines this graph with the fea-
ture count graph to illustrate the drop in the feature
count and the scale-space behavior.

Figure 17: Joint feature-count scale-space graph ob-
tained for the noisy stroke in Fig. 14 using curvature
data. This plot simultaneously shows the movement
of feature points in the scale space and the drop in
feature point count for increasing o. Here the z axis
is the feature count [0,120], the x axis is the feature
point index [0,400], and the y axis is the scale index
[0,800].

sake of keeping the figure clean.)
Application to speed change

We applied the scale selection technique mentioned above
on speed data. The details of the algorithm for deriving the
scale-space and extracting the feature points are similar to
that of the curvature data, but there are some differences.
For example, instead of looking for the maxima, we look for
the minima.

Fig. 19 has the scale-space, feature-count and joint graphs
for the speed data of the stroke in Fig. 14. As seen in these
graphs, the behavior of the scale space is similar to the be-
havior we observed for the direction data. We use the same
method for scale selection. In this case, the scale index
picked by our algorithm was 72. The generated fit is in
Fig. 18 along with the fit generated by the average based
filtering method using the speed data.

For the speed data, the fit generated by scale-space method
has 7 vertices, while the one generated by the average based
filtering has 82. In general, the performance of the average
based filtering method is not as bad as this example may sug-
gest. For example, for strokes as in Fig. 8, the performance
of the two methods are comparable, but for extremely noisy
data as in Fig. 14, the scale-space approach pays off. This
remark also applies to the results obtained using curvature
data. Because the scale-space approach is computationally
more costly®, using average based filtering is preferable for
data that is less noisy. There are also scenarios where only
one of curvature or speed data may be more noisy. For ex-
ample, in some platforms, the system generated timing data
for pen motion required to derive speed may not be precise
enough, or may be noisy. In this case, if the noise in the
pen location is not too noisy, one can use the faster average
based method for generating fits from the curvature data

8Computational complexity of the average based filtering
is linear with the number of points where the scale space
approach requires quadratic time if the scale index is chosen
to be a function of the stroke length.



a. (9) b. (7)
c. (69) d. (82)

Figure 18: Above, curvature (a) and speed (b) fits
generated for the stroke in Fig. 14 with scale space
filtering. Below, fits generated using average based
filtering (c,d). For each fit, the number of vertices
is given in parenthesis.

and the scale-space method for deriving the speed fit. This
is a choice that the user has to make based on the accu-
racy of hardware used to capture the strokes, and and the
computational limitations.

3.1.3 Generating hybrid fits

Above we introduced methods for vertex detection using
curvature and speed data. As we pointed out, curvature
data itself was not sufficient to detect all vertices, motivat-
ing our use of speed data. However, using speed data alone
has its shortcomings as well. Polylines formed by a combi-
nation of very short and long line segments can be problem-
atic: the maximum speed reached along the short segments
may not be high enough to indicate the pen has started
traversing another edge, causing the entire short segment to
be interpreted as a corner. This problem arises frequently
when drawing thin rectangles, common in sketches of me-
chanical devices. Fig. 20 illustrates this phenomena. In this
figure, the speed fit misses the upper left corner of the rect-
angle because the pen failed to gain enough speed between
the endpoints of the corresponding short segment. Fig. 21
shows pen speed for this rectangle. The curvature fit, by
contrast, detects all corners, along with some other vertices
that are artifacts due to hand dynamics during freehand
sketching.

Because both curvature and speed data alone are insuffi-
cient for generating good fits in certain scenarios, a method
to combine these two information sources is needed. We
use information from both sources, and generate hybrid fits
by combining the candidate set F. obtained using curvature
data with the candidate set Fs obtained using speed infor-
mation, taking into account the system’s certainty that each
candidate is a real vertex.

Hybrid fit generation occurs in three stages: computing
vertex certainties, generating a set of hybrid fits, and select-
ing the best fit.

Our certainty metric for a curvature candidate vertex v;
is the scaled magnitude of the curvature in a local neighbor-

800 0

Figure 19: The scale-space, feature-count and joint
graphs for the speed data of the stroke in Fig. 14.
In this case, the scale selected by our algorithm is
72.

hood around the point, computed as |d;—r — ditx|/l. Here
l is the curve length between points S;_x, Si+r and k is a
small integer defining the neighborhood size around v;. The
certainty metric for a speed fit candidate vertex v; is a mea-
sure of the pen slowdown at the point, 1 — v; /Umaz, Where
Umaz 18 the maximum pen speed in the stroke. The certainty
values are normalized to [0, 1].

While both of these metrics are designed to produce val-
ues in [0, 1], they have different scales. As the metrics are
used only for ordering within each set, they need not be
numerically comparable across sets. Candidate vertices are
sorted by certainty within each fit.

The initial hybrid fit Ho is the intersection of Fy and Fs. A
succession of additional fits is then generated by appending
to H; the highest scoring curvature and speed candidates
not already in H;. To do this, on each cycle we create two
new fits: H, = H,; + vs (i.e., H; augmented with the best
remaining speed fit candidate) and H;' = H; + vq (i.e., H;
augmented with the best remaining curvature candidate).
We use least squares error as a metric of the goodness of a
fit: the error g, is computed as the average of the sum of
the squares of the distances to the fit from each point in the
stroke S:

1
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Here ODSQ stands for orthogonal distance squared, i.e., the
square of the distance from the stroke point to the relevant
line segment of the polyline defined by H;. We compute the
error for H; and for H;'; the higher scoring of these two (i.e.,
the one with smaller least squares error) becomes H;41, the
next fit in the succession. This process continues until all
points in the speed and curvature fits have been used. The



- 7 ——— 7 =7
(a) Input, 63 (b)  Using (c) Using
points curvature speed data,

data, 7 4 vertices
vertices

Figure 20: Average based filtering using speed data
misses a vertex. The curvature fit detects the missed
point (along with vertices corresponding to the ar-
tifact along the short edge of the rectangle on the
left).

Figure 21: The speed data for the rectangle in
Fig. 20.

result is a set of hybrid fits.

In selecting the best of the hybrid fits the problem is as
usual trading off more vertices in the fit against lower error.
Here our approach is simple: We set an error upper bound
and designate as our final fit Hy, the H; with the fewest
vertices that also has an error below the threshold.

3.1.4 Handling curves

The approach described thus far yields a good approxima-
tion to strokes that consists solely of line segments, but as
noted our input may include curves as well, hence we require
a means of detecting and approximating them.

The polyline approximation H; generated in the process
described above provides a natural foundation for detecting
areas of curvature: we compare the Euclidean distance [y
between each pair of consecutive vertices in Hy to the accu-
mulated arc length l2 between those vertices in the input S.
The ratio l2/l; is very close to 1 in the linear regions of S,
and significantly higher than 1 in curved regions.

We approximate curved regions with Bézier curves, de-
fined by two end points and two control points. Let u = S;
v = Sj, i < j be the end points of the part of S to be ap-
proximated with a curve. We compute the control points
as:
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where #; and f» are the unit length tangent vectors pointing
inwards at the curve segment to be approximated. The 1/3
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Figure 22: Examples of arbitrary stroke approxima-
tion. Boundaries of Bézier curves are indicated with
crosses, detected vertices are indicated with dots.
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factor in k controls how much we scale £; and £2 in order to
reach the control points; the summation is simply the length
of the chord between S; and Sj.9

As in fitting polylines, we want to use least squares to
evaluate the goodness of a fit, but computing orthogonal dis-
tances from each S; in the input stroke to the Bézier curve
segments would require solving a fifth degree polynomial.
(Bézier curves are described by third degree polynomials,
hence computing the minimum distance from an arbitrary
point to the curve involves minimizing a sixth degree poly-
nomial, equivalent to solving a fifth degree polynomial.) A
numerical solution is both computationally expensive and
heavily dependent on the goodness of the initial guesses for
roots [16], hence we resort to an approximation. We dis-
cretize the Bézier curve using a piecewise linear curve and
compute the error for that curve.

If the error for the Bézier approximation is higher than
our maximum error tolerance, the curve is recursively sub-
divided in the middle, where middle is defined as the data
point in the original stroke whose index is midway between
the indices of the two endpoints of the original Bézier curve.
New control points are computed for each half of the curve,

and the process continues until the desired precision is achieved.

Examples of the capability of our approach is shown in
Fig. 22, a hastily-sketched mixture of lines and curves. Note
that all of the curved segments have been modeled curves,
rather than the piecewise linear approximations that have
been widely used previously.

3.2 Handling Circular Arcs and Ovals

Handling arcs require a circular arc to be fit to the input
data. We do this writing the equation for a circle as (x; —

°The 1/3 constant was determined empirically, but works
very well for freehand sketches. As we discovered subse-
quently, the same constant was independently chosen in [19].
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Figure 23: At left the original sketch of a piece of
metal revisited, and the final beautified output at
right.

cz)? + (yi — ¢y)? = r? where (cz,c,) is the center of the
circular arc and r is the radius of the arc. We then find the
least squares solution for:
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Here r'? = 72 —¢,2 —cy2. Finally we calculate the starting
angle and the extent for the arc.

Oval fit is generated by finding the bounding box of the
input stroke and computing the parameters for the oval with
the same bounding box. Oval fit is generated separately
from the arc fit because the arc fit is strictly circular. As we
also mention later, our approximation methods for arcs and
ovals work even when objects are drawn using overtracing
(See Fig. 25).

3.3 Beautification

Beautification refers to the (currently minor) adjustments
made to the approximation layer’s output, primarily to make
it look as intended. We adjust the slopes of the line seg-
ments in order to ensure the lines that were apparently
meant to have the same slope end up being parallel. This
is accomplished by looking for clusters of slopes in the fi-
nal fit produced by the approximation phase, using a simple
sliding-window histogram. Each line in a detected cluster is
then rotated around its midpoint to make its slope be the
weighted average of the slopes in that cluster. The (new)
endpoints of these line segments are determined by the in-
tersections of each consecutive pair of lines. This process
(like any neatening of the drawing) may result in vertices
being moved; we chose to rotate the edges about their mid-
points because this produces vertex locations that are close
to those detected, have small least square errors when mea-
sured against the original sketch, and look right to the user.
Fig. 23 shows the original stroke for the metal piece we had
before, and the output of the beautifier. Some examples of
beautification are also present in Fig. 30.

4. EVALUATION

We have conducted a user study to measure the degree to
which the system is perceived as easy to use, natural and
efficient. Study participants were asked to create a set of
shapes using our system and XFig, a Unix tool for creating
diagrams. XFig is a useful point of comparison because it
is representative of the kinds of tools that are available for
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Figure 24: Examples of the shapes used in the user
study.

drawing diagrams using explicit indication of shape (i.e.,
the user indicates explicitly which parts of the sketch are
supposed to be straight lines, which curves, etc.) Asin other
such tools, XFig has a menu and toolbar interface; the user
selects a tool (e.g., for drawing polygons), then creates the
shapes piece by piece.

Thirteen subjects participated in our study, including com-
puter science graduate students, computer programmers and
an architecture student. Subjects were given sufficient time
to get familiar with each system and then asked to draw a
set of 10 shapes (examples given in Fig 24). All of the sub-
jects reported our system being easier to use, efficient and
more natural feeling. The subjects were also asked which
system they would prefer when drawing these sort of infor-
mal shapes on a computer. All but one subject preferred
our system; the sole dissenter preferred a tablet surface that
had the texture and feel of paper.

Overall users praised our system because it let them draw
shapes containing curves and lines directly and without hav-
ing to switch back and forth between tools. We have also
observed that with our system, users found it much easier
to draw shapes corresponding to the gestures they routinely
draw freehand, such as a star.

While the central point of this comparison was to deter-
mine how natural it felt to use each system, we also evalu-
ated our system’s ability to produce a correct interpretation
of each shape (i.e., interpret strokes appropriately as lines
or curves). Overall the system’s identification of the vertices
and approximation of the shapes with lines and curves was
correct 96% of the time on the ten figures.

In addition to the user studies, for evaluation purposes, we
tested our system by integrating it with the first generation
sketch recognition system written earlier in our group for
the domain of mechanical engineering drawings. The higher
level recognizer took the geometric descriptions generated by
our system and combined them into domain specific objects.

Fig. 30 shows the original input and the program’s anal-
ysis for a variety of simple but realistic mechanical devices
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Figure 25: Examples of overtracing. Overtraced ob-
jects on the left, system’s output on the right.

drawn as freehand sketches. The last two of them are differ-
ent sketches for a part of the direction reversing mechanism
for a tape player. Recognized domain specific components
include gears (indicated by a circle with a cross), springs (in-
dicated by wavy lines), and the standard fixed-frame symbol
(a collection of short parallel lines). Components that are
recognized are replaced with standard icons scaled to fit the
sketch.

An informal comparison of the raw sketch and the sys-
tem’s approximations shows whether the system has selected
vertices where they were drawn, fit lines and curves accu-
rately, and successfully recognized basic geometric objects.
While informal, this is an appropriate evaluation because
the program’s goal is to produce an analysis of the strokes
that “looks like” what was sketched.

We have also begun to deal with overtracing, one of the
(many) things that distinguishes freehand sketches from care-
ful diagrams. Fig. 25 illustrates one example of the limited
ability we have thus far embodied in the program.

S. APPLICATION: FAST SKETCH RECOG-
NITION

So far, we have described a stroke approximation scheme
to be used for sketch recognition, but we have not yet de-
scribed how these approximations can be used. In this sec-
tion we present an application that uses the approximations
generated by our system to achieve fast sketch recognition.
As we confirmed with user studies, people have personal
sketching styles. They sketch objects with predictable stroke
orderings. The novel approach we present in this section
shows how viewing sketching as an interactive process allows
us to model sketching styles of users using Hidden Markov
Models (HMMs). This method enables us to have polyno-
mial time algorithms for structural sketch recognition and
segmentation, unlike the conventional methods with expo-
nential complexity.

5.1 Sketch recognition

We characterize the sketch recognition task in terms of
three processes:

e Segmentation: The task of grouping strokes so that
those constituting the same object end up in the same
group. At this point it is not known which object
the strokes form. For example, in Fig. 26, the correct
segmentation gives us four groups of strokes.

o C(lassification: Classification follows segmentation; it
is the task of determining which object each group
of strokes represent. For Fig. 26, recognition would
indicate that the first object in the sketch is a stick
figure.

e Labeling: The task of labeling components of a recog-
nized object (i.e., the head, the torso, the legs and the
arms in the stick figure in Fig. 26).
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Figure 26: An example sketch.

Current sketch recognition systems treat sketches as im-
ages and employ well known object recognition methods to
recognize sketches. These systems have two major limita-
tions: First, they are indifferent to who is using the system,
employing the same recognition routines for all users even-
though sketching styles for users vary. Second, recognition
algorithms employed in these systems suffer from the expo-
nential nature of object recognition. As noted in [12], treat-
ing sketches as images requires recognition algorithms with
exponential time complexities. There is no known generic
method for symbolic object recognition that works in poly-
nomial time. Some of the methods used for symbolic object
recognition include subgraph isomorphism based methods
with exponential time complexities, or decision-tree based
approaches that have exponential storage requirements [13].

We exploit characteristics of sketches separating them from
images to build a sketch recognition framework that allows
recognition in polynomial time. This framework also makes
it possible to learn user sketching styles allowing the recog-
nition parameters to be set based on the current user. We
now review characteristics separating sketches from images.

5.2 Characteristics of sketching

Sketches have a number of static properties. Unlike for-
mal drawings, they are messy, and are usually iconic (e.g.,
a stick figure or a house icon). Sketches are often compo-
sitional, for example, a house is formed by composing an
isosceles triangle with a rectangle with the triangle above
the rectangle.

When viewed as a dynamic process, sketching can be char-
acterized as incremental, with strokes put on the sketching
surface one at a time. Sketch recognition can be thought as
an interactive process, because in a sense there is a two way
communication channel: from the user to the computer in
terms of strokes drawn and the editing operations; and from
the computer to the user in terms of computer’s interpre-
tation of the strokes and editing operations. This interac-
tive nature of sketching is an important source of knowledge
when it comes to confirming the correctness of a system’s in-
terpretation: The longer the user lets an interpretation exist,
the more certain the system can be about its interpretation
[1]. Finally, sketching is a highly stylized process; people
have strong biases in the way they sketch. This property of
sketching forms the basis for our approach to addressing the
limitations of traditional approaches to sketch recognition,
so we conducted a user study to assess its validity.

5.3 User studies

We ran user studies to assess the degree to which people
have sketching styles, by which we mean the way in which
they draw an item. For example, if one starts drawing a
stick figure with the head, then draws the torso, the legs



and the arms respectively, we regard this as a style different
from the one where the arms are drawn before the legs.
Our user study asked users to sketch various icons, diagrams
and scenes from six domains. Example tasks given to the
participants included drawing:

e Finite state machines performing simple tasks such as
recognizing a regular language.

e Unified Modeling Language (UML) diagrams depicting
the design of simple programs.

e Scenes with stick figures playing certain sports.

e Course of Action Diagram symbols used in the military
to mark maps and plans.

e Digital circuit diagrams that implement a simple logic
expression.

e Emoticons expressing happy, sad, surprised and angry
faces.

We asked 10 subjects to sketch three instances from each
of the six domains, a total of 18 sketches each. Users were
asked to sketch scenes in an arbitrary order to intersperse
domains and reduce the correlation between sketching styles
used in different instances of sketches from the same domain.
Sketches were captured using a digitizing LCD tablet.

Our analysis of the sketches involved constructing multi-
ple sketching style diagrams for each user, one for each ob-
ject in our domains. Sketching style diagrams provide a con-
cise, graphical way of representing how different instances of
the same object were drawn. Nodes of a sketching style di-
agram correspond to partial drawings of an object; nodes
are connected by arcs that correspond to strokes. Fig. 27
illustrates the sketching style diagram for the stick figure ex-
ample described above. Our inspection of the style diagrams
revealed that:

e People sketch objects in a highly stylized fashion. In
drawing the stick figure, for example, one of our sub-
jects always started with the head and the torso, and
finished with the arms or the legs (Fig. 27).

e Sketching styles for individual users agree across ses-
sions.

e Subjects preferred an order (e.g., left-to-right) when
drawing symmetric objects (e.g., the two arms) or ar-
rays of similar objects (e.g., three collinear circles).

e Enclosing objects were usually drawn first (e.g., the
outer circle in happy faces).

The user study confirmed our conjecture about the styl-
ized nature of sketching. In order to capitalize on this struc-
ture we used Hidden Markov Models (HMMs) to model dif-
ferent sketching styles. HMMs are appropriate for this task
because sketching can be seen as generating a sequence of
strokes (observations), and HMMs have successfully been
used to analyze sequence data. Next we briefly review HMMs
and explain how we applied them to the problem at hand.
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Figure 27: Sketching style diagram for a stick fig-
ure illustrating two different ways of drawing stick
figures: In both cases the stick figure was drawn us-
ing four strokes, but the order in which the legs and
arms were drawn is different.

5.4 Overview of HMMs

An HMM X(A, B, 7) is a doubly stochastic process for
producing a sequence of observed symbols. Intuitively, an
HMM is a finite state machine with probabilities attached
to node transitions and observation emissions. An HMM is
specified by three parameters A, B,w. A is the transition
probability matrix ai;; = P(qt+1 = j|g: = i), B is the obser-
vation probability distribution B;(v) = P(O¢ = vlg: = j),
and 7 is the initial state distribution. @ = {q1, ¢z, ...qn}
is the set of HMM states and V' = {wv1,v2,...va} is the set
of observations symbols. Readers are referred to [14] for a
comprehensive tutorial on HMMs.

Given an HMM A(A, B, ), we can answer three questions:

e Given a sequence of observations O = 01,02, .., 0k,
we can efficiently (i.e., in polynomial time) compute
P(O|\) using the Forward-Backward algorithm.

e For a given sequence O, we can efficiently compute
the best sequence of state transitions for generating
O. This is done using the Viterbi algorithm.

e Given a set of observations, we can estimate HMM
parameters A, B and 7 to maximize P(O|)). This is
done with the Baum-Welch parameter estimation pro-
cedure.

5.5 The recognition system

HMDMs have been successfully used in speech recognition,
and our approach was in part inspired by this, because both
speech and sketching are linear in time and compositional.
In speech, phonemes form words, words form sentences and
in sketching strokes form objects, objects form scenes. Hav-
ing pointed out this similarity, we now describe how we use
the stoke approximation scheme we introduced in this paper
within our framework for sketch recognition.

5.5.1 Encoding

Given a stroke, we generate a geometric approximation of
the stroke using our system, so we get one of oval, line, poly-
line, curve, or a mixture of curves and polylines. We encode
the approximations to convert sketches into observation se-
quences to be used in HMM training and classification. Our
encoding has a total of 13 symbols. Four of them encode
lines: positively and negatively sloped lines, horizontal and
vertical lines. Three encode ovals: circles, horizontal and
vertical ovals. Four symbols encode polylines with 2, 3, 4,
and 5+ edges, and one symbol encodes complex approxima-
tions (i.e., mixture of curves and lines). Finally we have a



symbol that we use to denote two consecutive intersecting
strokes.

Instances of the same object sketched in different styles
may have encodings of different lengths. For example, if
the user draws a square in four separate strokes instead of
three, the corresponding encoding will be longer. Thus, our
training data will have varying length encodings, and both
training and classification routines take this into account.
Below we describe how we formulate training and recogni-
tion using a single model per input length of each class.

5.5.2 Modeling with HMMs

Assume we have n object classes. Encodings of train-
ing data for class ¢ may have varying lengths, so let L; =
{li1, li2, ...Li, } be the distinct encoding lengths for class i.
We partition the training data into K = »-7_, |L;| sets such
that the data in each partition comes from the same ob-
ject and have the same length. Now we train K HMMs,
one for each set, using the Baum Welch method. Note that
each training set has uniform length, thus we know the in-
put length for each HMM. In this framework, each class i is
represented by |L;| HMMs, and we have an inverse mapping
that tells us which HMMs correspond to which classes.

With the above setup, performing isolated object recogni-
tion is quite easy. We run the Forward-Backward procedure
with the encoding O generated from the isolated object as
its input. The Forward-Backward procedure gives us the
probability P(O|A;). We simply do this for each HMM, find
the model with the highest likelihood, and use the inverse
mapping to get the object class. Unfortunately isolated ob-
ject recognition requires the input sketch to be segmented,
and segmentation is itself a hard problem.

We perform segmentation and classification at the same
time by transforming the problem into a shortest path prob-
lem such that the shortest path in a graph that we generate
gives us the segmentation. We then perform classification
as described above. We begin by building a graph G(V, E):
V consists of |O| vertices, one per observation, and a special
vertex vy denoting the end of observations. Let k be the
input length for model ;. Starting at the beginning of the
observation O, for each observation symbol O, we take a
substring O s1+x. Next we compute the loglikelihood of this
substring given the current model, log(P(Os,s+k|Ai)), and
add a directed edge from vertex vs to vertex vsyr in the
graph with an associated cost of |log(P(Os,s+x|Xi))|- No
edges are added if the destination index s + k exceeds the
index of vy. We complete the construction of G by repeating
this operation for all models. In the constructed graph, hav-
ing a directed edge from vertex v; to v; with cost ¢ means
that it is possible to account for the observation sequence
O;,; with some model with a loglikelihood of —c. It is impor-
tant to note that the constructed graph may have multiple
edges connecting two vertices, each with different costs. By
computing the shortest path from v; to vy in G, we min-
imize sum of negative loglikelihoods which is equivalent to
maximizing the likelihood of the observation O. The indices
of the shortest path gives us the segmentation. Classifica-
tion is achieved by finding the models that account for each
computed segment.

A nice feature of the graph based approach is that the
shortest path in G gives us the most likely segmentation
of the input, but it is also possible to get next k-best seg-
mentations using a k-shortest path algorithm. We use the
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algorithm described in [6] to get alternate segmentations.
This information can directly be used by another algorithm
for dealing with ambiguities or by the user as it is done in
speech recognition systems with n-best lists.

Also, this framework allows fast, scalable segmentation
and classification for sketches. Both the Baum-Welch learn-
ing algorithm and the Forward-Backward algorithm have
polynomial time complexities. In sketch recognition, classi-
fication is the time critical operation and unlike other sys-
tems with exponential complexities, in our model, comput-
ing P(O|)\;) takes only O(N?T) operations, where N is the
number of states in \;, and T is the length of the encoded
observation. This makes real time recognition feasible.

5.5.3 System performance

We conducted an experiment to evaluate the method de-
scribed above, learning 10 object classes from the domains
of geometric objects, military course of action diagrams,
stick figure diagrams, and mechanical engineering drawings.
Training data was sketched using up to 6 styles with 10
examples per style to capture the variations in encoding
for each style. The examples were manually segmented to
obtain training data. The test data included 88 objects
sketched using the same sketching styles.

Because sketching is incremental, we preferred Bakis (left-
to-right) HMM topology where the state index increases or
remains the same. This is done by initializing a;; = 0 for
¢ > j. B, m and the other entries in A are set to random val-
ues preserving stochastic properties. We used the maximum
number of nodes in the sketching style diagrams obtained
from our user study to set the number of states per HMM
to 10. The system’s correct identification rate was above
95%. Obviously a more through evaluation of system per-
formance with larger training and test sets is desirable, but
we regard the above results as encouraging early results sup-
porting the appropriateness of our approach. Fig. 28 shows
our system’s output in one of the example sketches using the
second method. The shortest path graph generated during
recognition is shown in Fig. 29.

This recognition framework features fast recognition and
segmentation algorithms, and user user adaptability. On the
other hand, it is limited in some aspects because it assumes
that users sketch with styles that the system knows about.
We are also working on generic sketch recognition algorithms
that don’t assume a drawing order to objects.

The recognition framework we described in this section
is one of the many ways in which the output of our stroke
approximation system can be used for sketch recognition.
The generic sketch recognition algorithms we are developing
also use our stroke approximation system to preprocess the
incoming strokes and generate concise descriptions in terms
of geometric primitives to be used for recognition of domain
specific objects. We now move on to describe work related
to our stroke approximation system.

6. RELATED WORK

In general, other systems supporting freehand sketching
lack one or more of the properties that we believe a sketching
system should have:

e It should be possible to draw arbitrary shapes with a
single stroke, (i.e., without requiring the user to draw
objects in pieces).



Figure 29: Shortest path graph for the scene depicted in Fig. 28. Edges corresponding to the shortest path
are indicated with bold arrows. Nodes 1, 7, 13, 20 and 25 corresponding to beginning and end of objects.

Only some of the edges are drawn to avoid cluttering the graph.

In Fig. 28, objects were drawn in the

following order: CS2, CS1, stick figure, and the rectangle.
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Figure 28: The output of our system for the test
case shown in Fig. 26 with drawing order CS2, CS1,
stick fig., and rectangle.

e The system should do automatic feature point detec-
tion. The user should not have to specify vertex posi-
tions by hand.

e The system should not have sketching modes for draw-
ing different geometric object classes (i.e., modes for
drawing circles, polylines, curves etc.).

e The sketching system should feel natural to the user.

The Phoenix sketching system [19] had some of the same
motivation as our work, but a more limited focus on inter-
active curve specification. While the system provided some
support for vertex detection, its focus on curves led it to
use Gaussian filters to smooth the data. While effective for
curves, Gaussians tend to treat vertices as noise to be re-
duced, obscuring vertex location. As a result the user was
often required to specify the vertices manually.

Work in [5] describes a system for sketching with con-
straints that supports geometric recognition for simple strokes
(as well as a constraint maintenance system and extrusion
for generating solid geometries). The set of primitives is
more limited than ours: each stroke is interpreted as a line,
arc or as a Bézier curve. More complex shapes can be formed
by combinations of these primitives, but only if the user lifts
the pen at the end of each primitive stroke, reducing the
feeling of natural sketching.

The work in [4] describes a system for generating realtime
spline curves from interactively sketched data. They focus
on using knot removal techniques to approximate strokes
known to be composed only of curves, and do not handle sin-
gle strokes that contain both lines and curves. They do not
support corner detection, instead requiring the user to spec-
ify corners and discontinuities by lifting the mouse button,
or equivalently by lifting the pen. We believe our approach
of automatically detecting the feature points provides a more
natural and convenient sketching interface.

Zeleznik [23] describes a mode-based stroke approxima-
tion system that uses simple rules for detecting the drawing
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mode. The user has to draw objects in pieces, reducing
the sense of natural sketching. Switching modes is done by
pressing modifier buttons in the pen or in the keyboard.
In this system, a click of the mouse followed by immediate
dragging signals that the user is drawing a line. A click fol-
lowed by a pause and then dragging of the mouse tells the
system to enter the freehand curve mode. Our system allows
drawing arbitrary shapes without any restriction on how the
user draws them. There is enough information provided by
the freehand drawing to differentiate geometric shapes such
as curves, polylines, circles and lines from one another, so
we believe requiring the user to draw things in a particu-
lar fashion is unnecessary and reduces the natural feeling
of sketching. Our goal is to make computers adapt to user
styles and understand what the user is doing rather than
requiring the user to sketch in a way that the computer can
understand.

Among the large body of work on beautification, Igarashi
et al. [8] describes a system combining beautification with
constraint satisfaction, focusing on exploiting features such
as parallelism, perpendicularity, congruence and symmetry.
The system infers geometric constraints by comparing the
input stroke with previous ones. Because sketches are inher-
ently ambiguous, their system generates multiple interpreta-
tions corresponding to different ways of beautifying the in-
put, and the most plausible interpretation is chosen among
these interpretations. The system is interactive, requiring
the user to do the selection, and doesn’t support curves. It
is, nevertheless, more effective then ours at beautification,
but beautification is not the main focus of our work and is
present for the purposes of completeness.

The works in [19] and [4] describe methods for generating
very accurate approximations to strokes known to be curves
with precision several orders of magnitude below the pixel
resolution. The Bézier approximations we generate are less
precise but are sufficient for approximating free-hand curves.
We believe techniques in [19] and [4] are excessively pre-
cise for free-hand curves, and the real challenge is detecting
curved regions in a stroke rather than approximating those
regions down to the numerical machine precision.

7. FUTURE WORK

We see three main directions for future work: making im-
provements to the current system, carrying out user studies,
and integrating this system with other systems that require
stroke approximation functionality.

7.1 Potential improvements

In the scale space literature, some authors proposed scale
selection methods for computer vision tasks. In particu-
lar, in [11] and [10] Lindeberg describes how what he calls
the normalized ~y derivatives can be used to guide the scale



selection in edge and ridge detection. We plan to explore
whether this technique can be adapted for the problem of
feature point detection and curve approximation.

7.2 User studies

User studies require choosing a number of domains where
users sketch extensively and asking users to sketch naturally
as they would with pencil and paper. The studies would
measure the degree to which the system is natural i.e., sup-
plies the feeling of freehand sketching while still successfully
interpreting the strokes.

Another interesting task would be to observe how design-
ers’ sketching styles vary during a sketching session and how
this may be used to improve stroke approximation. For ex-
ample, humans naturally seem to slow down when they draw
things carefully as opposed to casually. It would be inter-
esting to conduct user studies to verify this observation and
explore the degree to which one can use the time it takes
to draw a stroke as an indication of how careful and precise
the user meant to be.

7.3 Integration with other systems

We are also trying to integrate this system to other work
in our group that has focused on higher level recognition
of mechanical objects via Bayesian networks [1]. This will
provide the opportunity to add model-based processing of
strokes in the Bayesian network case so that early operations
like vertex localization may be usefully guided by knowledge
of the current best recognition hypothesis.

8. CONCLUSION

We have built a system capable of using multiple sources
of information to produce good approximations of freehand
sketches. Users can sketch on an input device as if drawing
on paper and have the computer detect the low level geome-
try, enabling a more natural interaction with the computer,
as a first step toward more natural user interfaces generally.
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