
A Recognizer for Free-Hand Graph Drawings

Hamdi Dibeklioglu
Bogazici University

Dept. of Computer Eng.
Istanbul, Turkey

Hamdi.Dibeklioglu@cmpe.boun.edu.tr

Tevfik Metin Sezgin
University of Cambridge

Computer Laboratory
Cambridge, UK

Metin.Sezgin@cl.cam.ac.uk

Ender Ozcan
Yeditepe University

Dept. of Computer Eng.
Istanbul, Turkey

eozcan@cse.yeditepe.edu.tr

Abstract

Interactive multimedia such as computer simulations
and animations received increased attention over the years
as supplementary teaching tools and have now become in-
tegral components of most engineering and science curricu-
lums. We believe one way to boost the utility of such simula-
tions and animations is to make them easier to use. In this
paper, we describe a pen-based interface for constructing
weighted and unweighted graphs which functions as a front-
end to a shortest path and minimum spanning tree (MST)
algorithm simulators that we have developed. We compare
the usability of this pen-based interface to that of a WIMP-
based interface and a hybrid interface that uses a mixture of
pen-based and WIMP-based input methods. We report eval-
uation results on the usability of the three types of interfaces
that we have developed. Our results show that a purely pen-
based approach to graph creation may actually suffer from
the relatively higher misrecognition rates of the harder-to-
recognize symbols and inhibit usability. We conclude that
a hybrid approach which combines a soft-keyboard with
graph recognition outperforms interfaces that are purely
pen-based or WIMP-based.

1. Introduction

Interactive multimedia such as computer simulations and
animations received increased attention over the years as
supplementary teaching tools and have now become integral
components of most engineering and science curriculums.

Although there is a wealth of resources for interactive

animations, these applications usually employ traditional
WIMP-based interfaces regardless of the appropriateness of
such interfaces for the task at hand. For example, a quick
web search for shortest path graph algorithms returns over
a hundred applets/applications with WIMP-based interfaces
despite the fact that drawing a graph – the first step of in-
teraction for all these applications – could naturally be done
using a pen-based interface due to its diagrammatic nature.

Pen-based interfaces are not only better suited for this
task, but also make it possible to interact with the applica-
tion in question in a relatively standard diagrammatic lan-
guage unlike their WIMP counterparts. For example, quick
examination of the WIMP-based shortest-path animation
applications reveals that they show considerable variation
on how the user is expected to construct the graphs. For
adding nodes to the graph some applications use buttons
with images, text, or both. Some use pull-down menus,
some use a drag-and-drop interface while others use a com-
bination of choice menus and buttons. Textual labels asso-
ciated with the GUI elements also show variation. For ex-
ample, the words “node/vertex,” and “edge,” “link,” “arc,”
“line” and “connector” are used interchangeably although
they conceptually refer to the same thing and have standard
graphical/visual representations.

The above observations give us reasonable support to
believe that an intelligent pen-based interface which inter-
prets free-hand pen input would be preferred over tradi-
tional WIMP-based interfaces for constructing graphs in our
target domain of shortest path graphs. The usefulness of
such a system will depend on many factors including the
degree to which we can correctly interpret free-hand ink,
the perceived ease-of-use for the users, the efficiency of the
input method and the overall satisfaction of the users. To



answer these questions, we have built three interfaces for
constructing graphs:

1. a pen-based interface where the graph structure and
weights are entered using free-hand ink

2. a WIMP-based PowerPoint-like interface for graph
construction and a soft-keyboard for inputting edge
weights

3. a hybrid interface using pen input for graph construc-
tion and a soft-keyboard for inputting edge weights

All of these three interfaces function as front-ends to a
shortest path algorithm simulator that we have developed.
In the rest of this paper, we describe the architecture of our
application including a summary of each front-end interface
in detail. We also report evaluation results on the usability
of each interface. Our results show that the benefits of a
purely pen-based approach to graph creation may actually
be undermined by the relatively poor recognition rates of
the harder-to-recognize symbols and inhibit usability. We
conclude with a discussion of the related and future work.

2 Application Architecture

We have designed our application to have a clear sepa-
ration between the graph construction module and the algo-
rithm animation module. We use a graph adjacency matrix
representation to interface the front-end and the animation
modules. This makes it easy to extend the system by adding
a new input method or a new animation module.

2.1. Graph Construction Front-Ends

2.1.1 Ink recognition method

The ink-based graph construction method has three com-
ponents that respectively support graph structure recogni-
tion, digit recognition, and editing. The control flow chart
in Fig. 1 shows how the graph structure recognition and the
editing modules fit together. The digit recognition compo-
nent is a separate module.

Recognizing the graph structure
As seen in Fig. 1, the graph structure is constructed by rec-
ognizing circles and lines (for nodes and edges) and points
(for entering the edge-weight editing mode). We only sup-
port single stroke objects. So we assume that the users draw
nodes and links using single strokes, and also write digits in
single strokes.

Node and edge recognition
In our pen-based interface, nodes and edges are recognized
by fitting circles and lines to the input stroke, and choosing
the interpretation that has a lower least squares error.

Figure 1. Flowchart for the ink recognition
process.

To find a line fit, we use the first and last points in the
stroke, (x1, y1) and (xn, yn), to derive the line equation
ax + by + c = 0 using the following equation of a line
with two known points:

(y − y1)(xn − x1) = (yn − y1)(x− x1)

To fit a circle, we find the rectangular bounding box
with corner positions (xmin, ymin) and (xmax, ymax) for
the stroke at hand where xmin, ymin, xmax and ymax are
the minimum and maximum values for the x and y po-
sitions of the points in the stroke. Then the equation
(x − h)2 + (y − k)2 = r2 gives us the circular fit to the
stroke where (h, k) is the center of the circle and r is the
radius and

h =
xmin + xmax

2
,

k =
ymin + ymax

2
.

After the line and circle fits are computed, we compute
the distance of each point (px, py) in the stroke to the line
and circle fits using the following error functions:

Errorline(px, py) =
∣∣∣∣
apx + bpy + c√

a2 + b2

∣∣∣∣ ,



(a)

(b)

Figure 2. Gestures for indicating deletion (a),
and the completion of the edge-weight spec-
ification.

Errorcircle(px, py) =
√

(h− px)2 + (k − py)2 − r.

We compute the average fitting error for circle and line
fits using all points in the stroke and classify it to have the
label of the fit with the lowest average error. Circles indicate
that the user has drawn a node, and lines indicate an edge. If
the end points of the stroke lie on previously drawn nodes,
then those nodes become the source and destination nodes.
If the user is drawing a directed graph, the direction of the
stroke also determines the direction of the edge. If either
of the stroke’s end-points don’t lie inside a node, then the
stroke is ignored.

If the recognized shape is a circle that surrounds a set
of nodes, then it is interpreted as a selection operation and
passed onto the graph editing module.

Handwritten digit recognition
Digit recognition allows the edge weights to be specified
by pen input. We have implemented two digit recognition
methods. The first one uses Kohonen networks [14]. The
other recognition method is based on the iterative closest
point [10] and parallel sampling algorithms, and we de-
scribe it in detail in [2]. The method based on Kohonen
networks has outperformed the latter algorithm and it was
our algorithm of choice for the version of the system used
in the evaluation.

In addition to digits, we have trained the system to recog-
nize two simple gestures as shown in Fig. 2. A leftward dash
deletes the last digit that was recognized, and a checkmark
signals that the user is done entering the current weight.

The users can edit their graphs using the pen interface.
Nodes are selected by drawing a closed loop around them.
Once the nodes are selected, the selection can be dragged
around to move the nodes. Drawing a line across the selec-
tion deletes the selected nodes and any edges connected to
them. Tapping the weight of an edge with the stylus puts
the system into edge-weight editing mode where the user
can update the weight value using the pen interface.

Figure 3. The soft-keyboard interface used
for entering edge weights in the hybrid and
WIMP-based interfaces.

2.1.2 Hybrid Method

The hybrid method uses the graph recognition method de-
scribed above for specifying the graph structure. We use a
soft-keyboard for entering the edge weights. Fig. 3 shows
the layout of our soft-keyboard. It works much like the soft-
keyboard included with the Windows XP Tablet PC version.
The user taps in the keys with a stylus or another point-
ing device to enter the edge weights. Editing in the hy-
brid method works the same way as in the ink recognition
method, except the edge weights are entered using the soft
keyboard.

2.1.3 WIMP-based method

Fig. 4 shows our WIMP based interface. The WIMP based
method uses image-buttons with textual labels for con-
structing the graph structure. The image-buttons form a
toolbar, and the user selects the operation that needs to be
performed by clicking on the appropriate button in the tool-
bar. This interface is representative of most WIMP-based
tools such as MS PowerPoint. As it was the case for the
hybrid method, the edge weights are entered using the soft-
keyboard interface. The graph editing operations are se-
lected using the toolbar.

2.2 Graph Animation Module

All three interfaces have a ”RUN” button that the user
can click or tap to launch the graph algorithm simula-
tion module once the graph construction step is completed.
Fig. 5 shows a snapshot of the graph animation module
simulating Dijkstra’s shortest path algorithm on a problem
specified by the user. As seen in the figure, the graph is
color coded, and there is an English annotation of the al-
gorithm’s current status displayed in the bottom of the win-
dow. We support all combinations of directed/undirected
and weighted/unweighted graphs and have implemented
simulation modules for Dijkstra’s and Kruskall’s shortest
path algorithms.



Figure 4. The WIMP-based interface.

Figure 5. The graph animation module show-
ing the simulation of the Dijkstra’s algorithm
on a problem specified by the user.

3. Evaluation

To find out how each of the three interfaces compare,
we have conducted a user study. Among the goals of the
user study were to determine which interface would best
suit users who were somewhat knowledgeable in graph the-
ory.

For the user study, we recruited 10 students who had re-
cently taken an undergraduate algorithms course. One sub-
ject was left-handed, while the rest were right-handed.

The study consisted of three parts. In part 1, the subjects
were shown a weighted directed graph with five nodes and
10 edges. They were asked to:

• construct the graph
• remove three edges
• remove a node and all the edges connected to that node
• edit the weights of three edges
• move two of the nodes

In part 2, the subjects were shown a weighted undirected
graph with nine nodes and 13 edges. They were asked to:

• construct the graph
• remove three nodes and all connected edges
• move the nodes around to obtain a specified layout
In part 3, we asked the subjects to draw an undirected

graph depicting the relative positions of five cities that the
subjects were familiar with. They were then asked to add at
least seven edges to their graph labeled by the pairwise dis-
tance between the source and destination cities to the best of
their knowledge. The goal of part 3 was to have the subjects
draw a graph from memory, as opposed to copying one that
they were shown.

The subjects were asked to complete all three parts using
the pen-based, hybrid and the WIMP-based interfaces in an
arbitrary order. For each task in the three parts, we also
measured the time spent for the task as well as the number
of recognition/input errors and the number of corrections
the users had perform. At the end of the study, the subjects
have completed a survey.

We have observed that 8 of the participants drew the
weighted graphs starting with the vertices first. After draw-
ing all vertices, they filled in the edges. On average, all
parts were completed in an hour. Based on the average
time spent, the hybrid method ranked first and the pen-based
method ranked last.

Fig. 6 lists the questions that the subjects answered at the
end of the study. They were asked to assign a score 1-7 for
each question, based on how much they agreed with each
statement. The scores were defined as: 1 strongly agree,
2 somewhat agree, 3 slightly agree, 4 neural, 5 slightly dis-
agree, 6 disagree, 7 strongly disagree. We applied the Fried-
man’s non-parametric test with a degree of freedom 2 to



Input Method
Pen-based Hybrid WIMP

1. The functions I expected to complete the tasks were available 2.40 1.60 2.40

2. The interface was intuitive 2.40 1.50 2.70

3. I was satisfied with how the interface worked 2.40 1.30 2.20

4. The interface was simple to use 2.50 1.30 2.30

5. I could effectively complete the tasks 2.60 1.90 2.60

6. I could complete the tasks quickly 3.10 1.60 2.70

7. I could complete the tasks efficiently 2.90 1.70 2.60

8. I thought the ”look” of interface was pleasant 2.20 1.50 2.90

9. Drawing the nodes and the edges was easy 1.80 1.00 2.10

10. Entering the weights was easy 4.90 2.00 2.20

11. I could easily recover from errors 2.40 1.70 1.80

12. I really liked using the GUI. 3.00 1.30 2.80

average score 2.72 1.53 2.44

Figure 6. Aggregated results for the exit survey given to the users. The first column lists a number
of statements. The users were asked to assign scores to each interface based on how much they
agreed with the statements.

evaluate the consistency of the ratings for the GUIs. The
results show that the changes obtained for the statements
#6, #7, #10 and #12 were significant within a confidence
interval of 95%. In summary, the participants preferred the
hybrid interfaces over the other two and they felt it allowed
them to complete the tasks more efficiently. The task com-
pletion times that we have measured, which are summarized
in Fig. 7, agree with this statement. Furthermore, the users
found it easier to enter the weights with the hybrid method.
Again, the figures summarized in Fig. 7 support this. The
table also shows that the pen-based interface had the most
number of errors during drawing and weight entry.

Finally, although the ratings for statement #9 in Fig. 6
were not consistent across users, the average rating is bet-
ter for the hybrid and pen-based interfaces compared to the
WIMP-based interface. It seems that with a better digit rec-
ognizer, a purely pen-based approach would have been pre-
ferred.

4. Related Work

Previous research in interpreting free-hand pen input can
be categorized as online methods that interpret ink as it is
laid on the drawing surface, and offline systems that inter-
pret previously recorded drawings. Our system uses online
recognition.

SILK and DENIM [7] are amongst the earliest tools to
demonstrate the use of intelligent processing of free-hand
input in enhancing user interfaces. Work in [4, 11, 8, 9,
3, 13, 12, 6, 5] and [1] describe sketch recognition sys-
tems for a number of domains including electrical circuit

diagrams, UML diagrams, graphs and family trees. Among
these systems, some put more emphasis on the usability and
user interface issues of their application, while others aim
to push forward the state of the art in sketch recognition.
From this perspective, our work is closer to the first group
of work, because our main contribution is our user study
which compares three different user interfaces of varying
degrees of intelligent ink processing to achieve the same
task. Rather than focusing on developing the best recogni-
tion techniques, we have explored the trade-off between the
added convenience of doing intelligent ink-processing and
the inconvenience created by misrecognitions. We believe
we have identified a mixture of pen-based and WIMP-based
input methods that significantly outperform either method
alone.

5. Discussion and Future Work

We have presented a pen-based interface for construct-
ing weighted and unweighted graphs which functions as a
front-end to a shortest path algorithm simulator that we have
developed. We compare the usability of this pen-based in-
terface to that of a WIMP-based interface and a hybrid inter-
face that uses a mixture of pen-based and WIMP-based in-
put methods. Our evaluation of the three types of interfaces
has revealed that the hybrid interface is preferred by users
over only pen-based and only WIMP-based input methods.
We believe the main reason for this is the high error rates
for digit recognition as indicated by values in Fig. 7. It is
very likely that a combination of the relatively low resolu-
tion sampling rates for pen-based input and the kinesthetic



Part 1 Part 2 Part 3
Input Method Pen-based Hybrid WIMP Pen-based Hybrid WIMP Pen-based Hybrid WIMP

µ 0.8 0.9 0.6 0.4 0.7 0.3 0.3 0.2 0.5
σ 0.63 0.99 0.84 0.70 0.67 0.67 0.67 0.42 0.53

Statistics for the number of errors made during graph structure specification.

Part 1 Part 2 Part 3
Input Method Pen-based Hybrid WIMP Pen-based Hybrid WIMP Pen-based Hybrid WIMP

µ 2.90 1.00 1.20 3.40 1.10 1.00 3.00 0.40 0.70
σ 1.29 1.41 1.14 1.51 1.10 1.15 0.94 0.52 1.25

Statistics for the number of errors made during weight specification.

Part 1 Part 2 Part 3
Input Method Pen-based Hybrid WIMP Pen-based Hybrid WIMP Pen-based Hybrid WIMP

µ 268.4 217.3 252.7 276.1 191.4 250.1 230.1 140.3 183.1
σ 101.71 56.88 54.70 77.67 40.37 86.07 69.82 54.63 67.23

Statistics for the amount of time spent on each of the three parts in seconds.

Figure 7. Mean (µ) and standard error (σ) for the number of errors made during graph structure
specification, weight entry and the amount of time spent for each part by the subjects.

properties of writing on a capturing device as opposed to
paper is responsible for the low recognition rates. This sug-
gests that building robust user independent digit recognizers
as a critical research problem despite the high recognition
rates obtained for scanned images of digits.

References

[1] C. Alvarado. Sketchread: A multi-domain sketch recogni-
tion engine. In Proceedings of ACM Symposium on User
Interface Software and Technology, 2004.

[2] H. Dibeklioglu. A sketch recognizer for graphs. Engineer-
ing Project Report, Yeditepe Univ. Dept. of Computer Eng.,
2006.

[3] A. S. Forsberg, M. Dieterich, and R. C. Zeleznik. The music
notepad. In ACM Symposium on User Interface Software
and Technology, pages 203–210, 1998.

[4] L. Gennari, L. B. Kara, and T. F. Stahovich. Combining ge-
ometry and domain knowledge to interpret hand-drawn di-
agrams. AAAI Fall Symposium Series, Making Pen-Based
Interaction Intelligent and Natural, 2004.

[5] M. Gross. Recognizing and interpreting diagrams in design.
In 2nd Annual International Conference on Image Process-
ing, pages 308–311, 1995.

[6] T. Hammond and R. Davis. Tahuti: A geometrical sketch
recognition system for uml class diagrams. Proceedings of
the 2002 AAAI Spring Symposium on Sketch Understanding,
March 2002.

[7] M. A. Hearst, M. D. Gross, J. A. Landay, and T. F. Sta-
hovich. Sketching intelligent systems. IEEE Intelligent Sys-
tems, 13(3):10–19, May-June 1998.

[8] H. Hse and A. R. Newton. Recognition and beautification of
multi-stroke symbols. AAAI Fall Symposium Series, Making
Pen-Based Interaction Intelligent and Natural, 2004.

[9] B. Krishnapuram, C. Bishop, and M. Szummer. Generative
bayesian models for shape recognition. IWFHR ’04, Japan,
2004.

[10] D. Liu and T. Chen. Soft shape context for iterative closest
point registration. IEEE International Conference on Image
Processing, 2004.

[11] E. Saund. Pen-based drawing and editing of node-link dia-
grams. Invited Workshop on Pen-Centric Computing, March
2007.

[12] T. M. Sezgin and R. Davis. Sketch interpretation using mul-
tiscale models of temporal patterns. IEEE Computer Graph-
ics and Applications, 1(27):28–37, Jan-Feb 2007.

[13] M. Shilman and P. Viola. Spatial recognition and grouping
of text and graphics. Eurographics, 2004.

[14] B.-J. van der Zwaag. Handwritten digit recognition: A neu-
ral network demo. LNCS 2206, pages 762 – 771, 2001.


