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Abstract—The use of genomic datasets for phylogenetics is
complicated by the fact that evolutionary processes such as
gene duplication and loss, or incomplete lineage sorting (deep
coalescence) cause incongruence among gene trees. One well-
known approach that deals with this complication is gene tree
parsimony, which, given a collection of gene trees, seeks a species
tree that requires the smallest number of evolutionary events to
explain the incongruence of the gene trees. However, a lack of
efficient algorithms has limited the use of this approach.

Here, we present efficient algorithms for SPR and TBR
based local search heuristics for gene tree parsimony under
the (i) duplication, (ii) loss, (iii) duplication-loss, and (iv) deep
coalescence reconciliation costs. These novel algorithms improve
upon the time complexities of previous algorithms for these
problems by a factor of n, where n is the number of species in
the collection of gene trees. Our algorithms provide a substantial
improvement in runtime and scalability compared to previous
implementations and enable large-scale gene tree parsimony
analyses using any of the four reconciliation costs. Qur algorithms
have been implemented in the software packages DupTree and
iGTP, and have already been used to perform several compelling
phylogenetic studies.

Index Terms— Gene Tree Parsimony, Gene Duplication, Gene
Loss, Incomplete Lineage Sorting, Minimizing Deep Coalescences
(MDC), Phylogenomics, Phylogenetics.

I. INTRODUCTION

Genomic datasets provide a wealth of new information
for accurate phylogenetic analyses. Traditional phylogenetic
approaches make use of either a single gene or a small set of
genes taken from the chosen set of species and assume that
the evolutionary history of the chosen gene(s) represents the
evolutionary history of the species themselves. In contrast, ge-
nomic datasets allow us to study the evolution of thousands of
genes from across the genomes of the chosen species and make
it possible to infer a truly genome-scale phylogeny. However,
in order to properly incorporate information from thousands
of genes (gene families) from many taxa, one must account
for the various evolutionary phenomena like gene duplication
and loss, incomplete lineage sorting (deep coalescence), lateral
gene transfer, and recombination that affect the evolution of
gene families and confound species relationships [1]. One
well-studied approach for dealing with this complication is
gene tree parsimony (GTP) which provides a framework for
inferring species phylogenies, or species trees, from a collec-
tion of gene trees that are confounded by complex evolutionary
processes. Given a collection of gene trees, GTP seeks a
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species tree that contains all taxa represented in the gene trees
and implies the minimum reconciliation cost; that is, the fewest
number of evolutionary events that explain the incongruence
among the gene trees. The reconciliation cost for a given gene
tree and species tree is computed by a process known as
reconciliation, which involves comparing the gene tree with
the species tree and invoking evolutionary events to explain the
evolution of that gene tree inside the species tree; we refer the
reader to [1] for an introductory discussion on reconciliation.
The most widely used reconciliation costs are based either on
the gene duplication model [2], [3], where the incongruence
between gene trees and species trees is assumed to be due
to gene duplication and gene loss events, or on the deep
coalescence model [1], which assumes that the incongruence
is due to incomplete lineage sorting. The GTP problem has
been extensively studied under both of these reconciliation
models; see, for example, [4]-[23] for GTP under the gene
duplication model, and [24]-[33] for GTP under the deep
coalescence model. Even though GTP has been shown to be an
effective approach for phylogenetic analyses [11], [13], [14],
[17], [26], [34], [35], previous algorithms for GTP are too
slow to be applied to large-scale datasets, which has limited
its use in practice. In this paper, we present novel algorithms
that enable, for the first time, GTP analyses of even very large
genomic datasets based on both the gene duplication and deep
coalescence models.

Under the gene duplication model, two types of reconcilia-
tion costs have been traditionally studied in the literature: The
duplication cost, and the duplication-loss cost. Specifically,
given a gene tree and a species tree, the duplication cost is
defined to be the minimum number of duplications required
for the reconciliation, while the duplication-loss is defined to
be the minimum number of duplications and losses required.
Note that the duplication cost ignores the number of inferred
losses; this is because, in datasets with incomplete gene
sampling, it can be difficult to distinguish gene loss from
the absence of sequence data. Thus, the choice of the cost
model to be used is based on the nature of the dataset.
More recently, a third type of reconciliation cost, the loss
cost, which only counts the minimum number of required
losses, has also been studied [36]. Using these costs, GTP
makes it possible to perform truly genome-scale analyses by
making it possible to use phylogenetic information from even
those gene families that have a history of gene duplication
and loss. Conventional phylogenetic analyses are generally
unable to make use of such gene families. Under the deep
coalescence model, the deep coalescence cost is defined to
be the minimum number of extra lineages (defined formally
later) required for the reconciliation. This version of the GTP



problem — also commonly referred to as the Minimum Deep
Coalescence (MDC) problem [26] — provides a framework
to deal systematically with incomplete lineage sorting. Thus,
in all, there are four types of reconciliation costs that are
commonly used in practice: The (i) duplication cost, (ii) loss
cost, (iii) duplication-loss cost, and (iv) deep coalescence cost.
It has been shown that, for a given gene tree and species tree,
any of these four reconciliation costs can be computed in linear
time [16], [31], [36], [37] by constructing an LCA mapping
(this is defined formally in Definition 3.2 later) from the nodes
of the gene tree to the nodes of the species tree.

The GTP problem is known to be NP-hard for each of these
four formulations [10], [22], [32] (but see Section II for a more
detailed discussion of the known complexities for different
variants). Several methods have been developed to solve the
different variants of the GTP problem exactly [19], [20], [26],
[38]; while these are useful for computing exact solutions
for small datasets, they all have exponential time complexity
and therefore can not be applied to datasets with more than
a few taxa. Exact polynomial-time solutions also exist, but
only for restricted instances [12], [39]. In practice, these
problems are typically approached using local search heuristics
(e.g., [40], [41]). These heuristics start with some initial
candidate species tree and find a minimum reconciliation cost
tree in its neighborhood. This constitutes one local search step.
The best tree thus found then becomes the starting point for
the next local search step, and so on, until a local minima is
reached. Thus, at each local search step, the heuristic solves an
instance of a “local search problem”. The time complexity of
this local search problem depends on the tree edit operation
used to define the neighborhood, as well as on the type of
reconciliation cost used. The two standard tree edit operations
used most commonly in practice are the (rooted) subtree
prune and regraft (SPR) [42] operation and the (rooted) tree
bisection and reconnection (TBR) [43] operation. SPR and
TBR operations induce neighborhoods of ©(n?) and O(n?)
trees, respectively, where n is the size of the species tree [44].
Since local search heuristics typically solve the chosen local
search problem hundreds or thousands of times during each
run, their runtime depends critically on the time complexity of
the local search problem. Previous solutions to the SPR and
TBR local search problems, for each of the four reconciliation
costs, estimate the reconciliation cost from scratch for each
tree topology that is evaluated and can therefore only be
applied to small datasets.

Our contributions. We present efficient, novel algorithms for
SPR and TBR based local searches for the GTP problem under
the duplication, loss, duplication-loss, and deep coalescence
reconciliation costs. Let us assume, for convenience, that the
size of the k given gene trees differs by a constant factor
from the size of the resulting species tree. The previously best
known (naive) solutions for the SPR and TBR local search
problems, for each of the four reconciliation costs, require
O©(kn?®) and ©(kn*) time respectively, where n is the size
of the resulting species tree. Our algorithms solve these SPR
and TBR local search problems in O(kn?) and O(kn?) time
respectively. Consequently, our algorithms provide a speedup
of a factor of n over the best known SPR and TBR local

search algorithms (like the ones implemented in [40], [41])
for all four reconciliation costs.

Our efficient algorithms make it possible to perform GTP
analyses with hundreds of taxa and thousands of genes,
using either the duplication, loss, duplication-loss, or deep-
coalescence reconciliation cost. Preliminary versions of the
algorithms described in this work first appeared as conference
proceedings in [45] and [46], and were incorporated into the
software packages DupTree [47] and iGTP [48]. Since then,
our algorithms and software have already enabled several
compelling phylogenetic studies [49]-[51]. The improvement
in runtime and scalability enabled by our algorithms has
already been demonstrated earlier [47], [48]. In this work,
we further demonstrate that our SPR local search heuristic
is highly accurate. Specifically, we apply it to several bio-
logical datasets for which optimum GTP solutions had been
previously computed using exact methods and observe that the
heuristic easily computes the optimal solution on each dataset.

We also explicitly define and distinguish between “trimmed”
and “untrimmed” versions of GTP (defined in the next section)
based on exactly how the reconciliation cost is computed
when the gene tree under consideration has fewer taxa than
the species tree. Even though the distinction between these
two versions is important, it has been largely ignored by
the existing literature on GTP. We elucidate the differences
between these two versions and summarize the known com-
plexity results for each.

The current manuscript expands on the preliminary con-
ference versions [45], [46] of this paper in several important
ways. Specifically, the current manuscript includes (i) proofs
for all lemmas and theorems (previously omitted), (ii) a new
section on performing GTP under the deep-coalescence cost
(which was considered only very briefly in the preliminary
versions), (iii) simplified versions of the algorithms and lem-
mas/theorems from [45], (iv) results from both papers pre-
sented in a unified framework, (v) new experimental results in
place of those that were already performed in the preliminary
versions, and (vi) a new section discussing trimmed and
untrimmed variants of GTP and clarifying their known time-
complexities.

This paper is organized as follows: Our discussion on
the trimmed and untrimmed versions of the GTP problem
occurs in the next section. Section III introduces the basic
definitions and notation. In Sections IV, V, and VI we present
our algorithms for the GTP problem for the duplication,
loss/duplication-loss, and deep coalescence costs respectively.
In Section VII we discuss other applications of our algorithms.
Experimental results are presented in Section VIII, and con-
cluding remarks appear in Section IX.

II. ON TRIMMED AND UNTRIMMED VERSIONS OF GTP

When reconciling a set of gene trees with a species tree,
one often encounters gene trees that only contain genes from
a strict subset of the species represented in the species tree.
In such cases there are two possible alternatives: (i) We could
reconcile the gene tree with a modified species tree obtained
by restricting the species tree to just the species represented



in the gene tree, or (ii) we could reconcile the gene tree with
the original species tree. We refer to these two alternatives
as, respectively, the trimmed and untrimmed formulations of
reconciliation. For instance, under the duplication-loss cost, it
may make sense to perform untrimmed reconciliation if whole-
genome sequence data is available for each species under
consideration (i.e., any inferred losses are likely to be true
losses), and trimmed reconciliation otherwise. Much of the
existing literature on gene tree parsimony implicitly assumes
either one or the other of the two alternatives; for example, [5],
[10], [22], [32] assume trimmed reconciliation while [19], [36]
assume untrimmed reconciliation.

While the difference between the two alternatives may
appear to be a minor one, it is crucial to make this dis-
tinction when scoring optimal reconciliations or performing
gene tree parsimony. This is because the score of the opti-
mal reconciliation under the loss, duplication-loss, and deep
coalescence costs may be different depending on whether
trimmed or untrimmed reconciliation is used, which translates
into potentially different optimal species trees under gene tree
parsimony. Moreover, many of the complexity centric results
for GTP have been proved only for the trimmed versions of the
problems and, consequently, do not apply to the untrimmed
versions. Here, we explicitly consider the seven different
possible variants of GTP, depending on the reconciliation cost
used and whether the trimmed or untrimmed formulation is
used, and clarify the complexity status of each variant by
consolidating known complexity results (Table I).

The table shows that, while the complexity of the trimmed
variants of GTP is well studied, the complexity of the
untrimmed GTP variants remains poorly understood. These
untrimmed variants are conjectured to be NP-hard. The dif-
ferences between trimmed and untrimmed variants of GTP
can sometimes be overlooked, and we hope that our explicit
consideration of trimmed and untrimmed variants and con-
solidation of the known complexity results in Table I will
help clarify these differences. It is also worth noting that, for
the deep coalescence cost, an alternative formulation based on
optimally completing incomplete gene trees has been proposed
in [33], [53]. This idea of completing incomplete gene trees
is similar in spirit to the (+)-method discussed in supertree
literature, e.g., [54].

The local search algorithms presented in this paper are
applicable to both trimmed and untrimmed reconciliations and
to all four cost measures (duplication, loss, duplication-loss,
and deep coalescence), i.e., the algorithms in this manuscript
can be used to solve any of the seven GTP variants discussed
above. For the sake of brevity and clarity, in all subsequent
sections, our definitions and algorithms will address only the
trimmed versions of GTP. Adapting them to the untrimmed
versions is trivial. Furthermore, we will not explicitly define or
address the GTP problem on the loss reconciliation cost, since
our algorithm for the duplication-loss cost applies directly to
the loss reconciliation cost as well.

III. BASIC NOTATION AND PRELIMINARIES

Given a rooted tree 7', we denote its node set, edge set,
and leaf set by V' (T'), E(T'), and Le(T") respectively. The root

node of T is denoted by r#(T"). Given a node v € V(T), we
denote its parent by pa;(v), its set of children by Chr(v), and
the subtree of 7" rooted at v by T),. If two nodes in T have
the same parent, they are called siblings. The set of internal
nodes of T, denoted I(T), is defined to be V(T') \ Le(T"). We
define <t to be the partial order on V(T') where z <r y
if y is a node on the path between r#(T) and x. The least
common ancestor of a non-empty subset L C V(T') in tree T,
denoted as Icar (L), is the unique smallest upper bound of L
under <7. Given z,y € V(T),  —r y denotes the unique
path from z to y in 7. We denote by dr(z,y) the number of
edges on the path x —7 y. T is fully binary if every node has
either zero or two children. Throughout this paper, the term
tree refers to a rooted fully binary tree.

Given T and a set L C Le(T), let T” be the minimal rooted
subtree of 1" with leaf set L. We define the leaf induced subtree
T[L] of T on leaf set L to be the tree obtained from 7" by
successively removing each non-root node of degree two and
adjoining its two neighbors.

A. The (Gene) Duplication and Duplication-Loss Problems

A species tree is a tree that depicts the evolutionary rela-
tionships of a set of species. Given a gene family for a set
of species, a gene tree is a tree that depicts the evolutionary
relationships of the genes in the gene family. Thus, the nodes
in a gene tree represent genes. Species tree and gene trees
are both leaf-labelled trees; specifically, each leaf in a species
tree is uniquely labeled with the name (or label) of the
corresponding species, and each leaf of a gene tree is labelled
by the name (or label) of the species from which it was
sampled. In order to reconcile a gene tree with a species tree,
the species tree must be such that it contains all the species
represented in the gene tree. More formally:

Definition 3.1 (Comparability):  Given a gene tree G and
species tree S, we say that G is comparable to S if, for any
g € Le(G), S contains a leaf node with the same label as g.
A set of gene trees G is comparable to S if each gene tree in
G is comparable to S.

Given comparable G and S, their leaf labels define a leaf-
mapping from the leaf nodes of G to the leaf nodes of S.
The minimum number of duplications and/or losses required
to reconcile G and S can be computed by generalizing this
leaf-mapping to all nodes of the gene tree such that each node
g € V(G) maps to the most recent species in S that could
have contained g.

Definition 3.2 (Mapping): Leaf-mapping Lg,s: Le(G) —
Le(S) maps a leaf node g € Le(G) to that unique leaf node
s € Le(S) which has the same label as g. The extension
Me,s: V(G) — V(S) of Lg,g is the mapping defined by
Ma,s(9) = leas(U,erec,) Lo.5(@))-

Throughout this paper we assume that G is a set of gene
trees that is comparable to a species tree .S, and that Le(.S) =
Uceg Ugere(a) Ma,s(g). The gene tree G will be assumed
to be some tree from G.

For any node s € V(S), we use M's(s) to denote the
set of nodes in G that map to node s € V(S) under the
mapping Mg s. In addition, for any X C V(G), we use



Type of reconciliation cost H NP-hardness

\ Fixed parameter tractability \ Approximability ‘

Duplication NP-hard: shown in [10], [22]

W][2]-hard: shown in [22] Inapproximable to within
log factor: shown in [22];
APX-hard even for five
uniquely leaf-labeled gene

trees: shown in [52]

Trimmed loss NP-hard: follows from [22] W][2]-hard: follows | Inapproximable to within
from [22] log factor: follows

from [22]

Untrimmed loss Unknown Unknown Unknown

Trimmed duplication-loss NP-hard: shown in [10], [22]

W][2]-hard: shown in [22] Inapproximable to within

log factor: shown in [22]

Untrimmed duplication-loss Unknown Unknown Unknown
Trimmed deep coalescence NP-hard: shown in [32], fol- | W][2]-hard: follows | Inapproximable to within
lows from [22] from [22] log factor: follows
from [22]
Untrimmed deep coalescence || Unknown Unknown Unknown
TABLE I

Complexities of different GTP variants. THIS TABLE SHOWS KNOWN RESULTS ON THE NP-HARDNESS, FIXED PARAMETER TRACTABILITY, AND

APPROXIMABILITY OF SEVEN GTP VARIANTS. FOR FIXED PARAMETER TRACTABILITY, THE PARAMETER OF INTEREST IS THE TOTAL MINIMUM

RECONCILIATION COST. FOR THE INAPPROXIMABILITY RESULTS, n DENOTES THE NUMBER OF TAXA IN THE ANALYSIS. NOTE THAT, FOR THE

DUPLICATION COST, WE DO NOT DISTINGUISH BETWEEN TRIMMED AND UNTRIMMED RECONCILIATIONS SINCE THEY ARE IDENTICAL IN TERMS OF

THEIR OPTIMAL RECONCILIATION COSTS.

Mg s(X) to denote the set Ugex Mc, s(g). Based on the
above mapping of gene tree nodes to species tree nodes, the
minimum number of duplications and losses required for the
reconciliation can be computed as follows. Figure S1 in the
supplement illustrates how the mapping is constructed and how
the number of duplications and losses is computed.

Definition 3.3 (Duplication): A node g € I(G) is a (gene)
duplication if Mec,s(9) € Uyeeny Me,s(g) and we
define Dup(G,S) to be the cardinality of the set {g €
I(G): g is a duplication}.

Following [12], the number of losses is defined as follows.

Definition 3.4 (Losses): The number of losses
Loss(G, S, g) at a node g € I(G), is defined to be:

e 0,if Mg,s/(9) = Mag,s(9') Vg’ € Ch(g), and

b Zg’ECh(g) |ds: (MG,S’/ (g)vMG,S/ (g,)) — 1], otherwise;
where S’ S[Le(G)]. We define Loss(G,S)
>ger(c) Loss(G, S, g) to be the number of losses in G.

The reconciliation cost of G with S is defined differently
under the duplication and duplication-loss cost models. In
particular, under the duplication cost model the reconciliation
cost is simply the number of duplications necessary for the
reconciliation, while under the duplication-loss model the
reconciliation cost is the number of duplications and losses.

Definition 3.5 (Reconciliation cost):

1) Under the duplication cost model, the reconciliation
cost of G with S, denoted A9%(G,S), is defined to
be Dup(G, S). Correspondingly, the reconciliation cost
from G to S, denoted by A94(G,S) is defined to be
> ceg AYY(G,9).

2) Under the duplication-loss cost model, the reconciliation
cost of G with S, denoted A% (G, S), is defined to be

Dup(G,S)+ Loss(G, S). Correspondingly, the reconcil-
iation cost from G to S, denoted by A% (G, S) is defined
to be Y ;g AY(G, S).

We refer to the GTP problem under the duplication and
duplication-loss reconciliation costs as the duplication and
duplication-loss problems, respectively. More formally:

Problem 1 (Duplication): ~ Given a set G of gene trees,
the (Gene) Duplication problem is to find a species tree S*
comparable with G, such that A9%(G, S*) is minimized.

Problem 2 (Duplication-Loss): ~ Given a set G of gene
trees, the Duplication-Loss problem is to find a species tree
S* comparable with G, such that A%(G, S*) is minimized.

B. Local Search Problems

Here we first provide the definition of an SPR edit opera-
tion [42] and then formulate the related local search problems.
Informally, an SPR operation on a tree 7' consists of first
pruning out a subtree of 7" by deleting some edge from E(T")
and then regrafting the pruned subtree back into the tree at
any location.

Definition 3.6 (Subtree Prune and Regraft (SPR) operation):
(See Figure 1) Given a tree T, an edge {w,v} € E(T),
where w = pa(v), and a node y € V(T) \ {V(T,) U {w}},
the tree SPRr(v,y) is obtained from 7" by cutting the edge
{w, v}, thereby pruning the subtree T, and then regrafting
the subtree above node y by the same cut edge as follows:

1) Suppressing the node w. If w is not the root of T' then
suppress the degree-two node w. If w is the root of 7',
delete w and the edge incident with w, making the other
end-node of this edge the new root. Denote the resulting
tree (without 7},) as T,,.



Fig. . SPR operation. The trees S7 and S2 are obtained from .S by pruning
the subtree rooted at v and regrafting it back into S at two different locations.
Specifically, S; = SPRg(v,b) and S2 = SPRg(v,a).

2) Regrafting T, into T,. This is done in one of the
following two ways:

a) If y € V(T,) \ {rt(T,)}: Create a new node w’
which subdivides the edge {paz—(y), y} and regraft
T, by the cut edge at node w’'.

b) If y = rt(T,): Create a new root node w’ and a
new edge between w’ and the original root. Then

regraft the subtree by the cut edge at node w’.

3) Rename the node w' in the resulting tree to w. This last
step ensures that the set of internal node labels remains
the same before and after an SPR operation.

Notation. We define the following:

1. SPRT(U) = UyeT—U{SPRT(v,y)}

2. SPRr = U(w,’u)EE(T) SPRr(v)

Throughout the remainder of this manuscript, v denotes
a non-root node in V(S). We now define the relevant local
search problems based on the SPR operation.

Problem 3 (Local Search (LS)):

Given G and S, find a tree T* € SPRg with minimum
reconciliation cost.

Our goal is to solve the LS problem efficiently. To that end,
we first define a restricted version of the LS problem, called
the Restricted Local Search problem.

Problem 4 (Restricted Local Search (RLS)):

Given G, S, and v, find a tree T* € SPRg(v) with minimum
reconciliation cost.

Under the duplication cost model, the LS and RLS prob-
lems will be referred to as the Duplication-LS (D-LS) and
Duplication-RLS (D-RLS) problems respectively. Similarly,
under the duplication-loss cost model, the LS and RLS prob-
lems will be referred to as the Duplication-Loss-1L.S (DL-LS)
and Duplication-Loss-RLS (DL-RLS) problems.

Let n = | Le(S)|. In the next two sections (i.e., Sections IV
and V), we first show how to solve the D-RLS problem in
O(X_geg IV(G)|) time and then show how to solve the DL-
RLS problem in O(}_ ;¢ (|V(G)|+n)) time. Since SPRs =
Uvevs) sy SPRs(v), itis easy to see that the LS problem
can be solved by solving the RLS problem O(n) times. This
yields O(Y g [V(G)]-n)—and O(Xgeg (IV(G)] +n) -n)-
time algorithms for the D-LS and DL-LS problems respec-
tively. Later, in Section VI, we define the deep-coalescence
problem and show how to solve the corresponding local
search problem in O(3 45 (|V(G)| +n)-n) time by slightly
modifying the algorithms from Section V.

IV. SOLVING THE D-RLS PROBLEM

Throughout this section, we shall limit our attention to just
one gene tree G € G; in particular, we show how to solve the
D-RLS problem for the instance ({G}, S,v) in O(|]V(G)| +
n) time. Our algorithm extends trivially to solve the D-RLS
problem on the instance (G,T,v) in O(} g [V(G)]) time.
Next, we introduce some basic structural properties that are
helpful in the current setting. These will also be useful later
in Section V.

A. Basic Structural Properties

Let N denote the tree SPRg(v, rt(S)). Observe that, since
SPRy(v) = SPRg(v), solving the D-RLS problem on in-
stance ({G},S,v) is equivalent to solving it on the instance
({G}, N,v). Thus, in the remainder of this section, we will
work with tree IV instead of tree .S; the motivation for doing
so will become apparent as we proceed further. Also, in the
remainder of this section, we abbreviate M¢ 1 to My, for
any species tree 7.

Throughout the remainder of this work, let u denote the
sibling of v in N. We color the nodes of N as follows: (i) All
nodes in the subtree NN, are colored red, (ii) the root node of
N is colored blue, and (iii) all the remaining nodes, i.e. all
nodes in IV, are colored green. See Figure 2 for an example.
Correspondingly, we color the nodes of G by assigning to each
g € V(G) the color of the node My (g) (Figure 3).

We define a special tree I which is derived from G based
on its coloring.

S N

2 3 4 5 2 31 4 5

Fig. 2. Construction and coloring of N. The figure shows how to construct
the tree NV from S, as well as the subsequent coloring of the nodes in V.

Definition 4.1 (I"): 'We define I to be the tree obtained from
G by removing all red nodes (along with any edges incident
on these red nodes). Observe that while I' must be binary,
it might not be fully binary. Observe the trees G and I in
Figure 3 for an example.

The significance of the tree I is that if we build the mapping
Mpr n, then, for any non-red node g from V(G), the node
Mr n(g) represents the most recent common ancestor of
exactly all the green descendants of g. This fact will be used
in Lemma 4.2.

To understand the behavior of duplications and losses as
SPR operations are performed, we must first characterize
how the mapping of any node from I(G) changes as N is
modified into any S’ € SPRg(v). This characterization is
developed in the next two lemmas. Specifically, Lemma 4.1
states simply that the red and green nodes of G do not change
their mappings no matter where the pruned subtree is regrafted,



while Lemma 4.2 characterizes the mappings from the blue
nodes of G.

Lemma 4.1: Given G and N, if g € V(G) is either red or

green, then Mg/ (g) = Mn(g) for all 8" € SPRy(v).

Proof: 1f g is red, then so are all its descendants. Now,
since the subtree N, is identical in all trees in SPRy(v), g
and all its descendants must map to the same nodes under the
mappings My and Mg, for any S’ € SPRy(v).

Similarly, if g is green, then so are all its descendants.
Thus, the mappings from g and its descendants depend only
on the green nodes in any S’ € SPRy(v) and are therefore
independent of the placement of the red nodes. Since the
subtree N, is identical in all trees in SPRy(v), except for
the addition of the red nodes, g and its descendants continue
to map to the same green nodes under the mappings My and
Mg for any S’ € SPRy(v). |

Lemma 4.2: Given G and N, if g € V(G) is a blue node,
then Mg/ (g) = lcas/ (v, Mr n(g)) for any S” € SPRy(v).

Proof: Let R(g) and G(g) denote the set of red and
green descendants of g, respectively. Note that since g is
blue, neither G(g) nor R(g) may be empty, and, moreover,
V(Gy) = G(g) U R(g). Thus, for any S’ € SPRy(v), we
must have Mg (g) = lcas: (Mg (R(g)) U Mg (G(g))).

From the definition of the tree I', it follows that
lcagr (Mg (G(g))) = Mr,s(g), and consequently, by
Lemma 4.1, lcasg (Mg (G(g9))) = Mrn(g). Thus,
Myi(g) = leas: (Mg (R(g)), Mr,n(9))-

Now observe that the subtree S! contains precisely all the
red nodes in S’. Thus, lcags/ (Mg (R(g)), Mr,n(g)) must be
identical to lcag (v, Mr n(g)), yielding the lemma. [ |

We illustrate Lemma 4.2 through an example: Consider the
trees G and N depicted in Figure 3. If the subtree N, is
regrafted at the edge {u, 1}, then the nodes g1, g5, and gg
would map to the node w, and the nodes g» and g3 would
map to the newly created node which is the parent of node
labeled “1” in the new tree (i.e., to the regraft point, labeled
a by our convention).

B. Characterizing Duplications

We define a boolean function d7: V(G) — {0, 1} such that
dr(g) = 1 if node g € V(G) is a duplication w.r.t. tree T,
and d7(g) = 0 otherwise.

To solve the D-RLS problem on instance ({G}, N,v), we
rely on a strong characterization which lets us efficiently infer
the value of dg(g) for any S’ € SPRy(v) and any g € V(G).
This characterization is developed in the following six lemmas.

The next lemma follows immediately from Lemma 4.1.

Lemma 4.3: Given G and N, if g € V(G) is either red or
green, then dg/(g) = dn(g) for all S” € SPRy(v).

Thus, only the blue gene tree nodes, i.e. those gene tree
nodes that map to the root of IV, are responsible for any differ-
ence between the reconciliation costs A(G, N) and A(G, S")
for any S’ € SPRy(v).

Lemma 4.2 characterizes the behavior of the mapping from
any given blue node in G when the tree N is modified into
some other tree S’ € SPRy(v). Lemmas 4.4 through 4.7 are
based on this characterization.

Observe that any blue node g € V(G) must belong to one
of the following four categories: (i) g has two blue children,
(ii) g has one blue child and one red child, (iii) g has one
blue child and one green child, or (iv) g has one red child
and one green child. The next four lemmas consider each of
these cases separately. Figure 3 illustrates these four lemmas
through an example.

Fig. 3. Characterizing duplications. Consider the depicted trees G and N
(colored using our scheme), the corresponding tree I', and the mapping from
I" to N. This figure illustrates how Lemmas 4.3 through 4.7 characterizes the
duplication status of each internal node of G for any species tree in SPRy (v).
Lemma 4.3 implies that for nodes g4 and g7, we must have §g/(ga) =
On(9a) and 65/ (g7) = dn(g7), for all S € SPRy(v). Lemmas 4.4 and
4.5 imply that §g/(g1) = 1 and &g/(g2) = 1, respectively, for all S/ €
SPRpy(v). By Lemma we can infer that 05/(gs) = O if and only if the
pruned subtree is regrafted at the edge {u,1}, i.e., if S’ = SPRy(v,1).
Lemma 4.7 implies that, in this example, neither g3 nor gg can be duplications
since V/(Ns) \ {s} = 0 for both s = Mrp n(g3) and s = Mp n(gs)-

Lemma 4.4: If g € V(G) is blue, and g has two blue
children, then dg:(g) = 1 for all S’ € SPRy(v).

Proof: Let s denote the node Mr n(g), {s',s"} =
Chy(s), and {¢’,¢"} = Chg(g). If either Mr n(g') or
Mr n(g”) is the same as s, then it follows from Lemma 4.2
that ds/(g) = 1 for all S’ € SPRy(v). Therefore, let us
assume, without any loss of generality, that Mr n(g') € Ny
and Mrp n(g") € Ngr. Let S = SPRy(v,y) for some
y € V(NV,). There are now three possible cases:

1) y € Ng: In this case, by Lemma 4.2, we must have
Mg (g) = Mg/ (g") = s. Therefore, ds:(g) = 1.

2) y € Ngv: In this case, by Lemma 4.2, we must have
Mg (g) = Mg (g') = s. Therefore, ds/(g) = 1.

3) All other y: Here, we must have lcas/ (v, Mr n(g)) =
lcag/(v, Mr n(9')) = lcag (v, Mp n(g")). Conse-
quently, by Lemma 4.2, Mg/(9) = Mg(9) =
Mg/ (g""), and therefore, dg5/(g) = 1.

Thus, since SPRy(v) = U,cn, SPRN(v,y), we have

ds:(g) =1 for all S’ € SPRN(vg. [ |

Lemma 4.5: If g € V(G) is blue, and g has one blue and

one red child, then g/ (g) = 1 for all S" € SPRy(v).

Proof: Let g’ and ¢ denote the red and blue child of
g, respectively. By definition, since all nodes in the subtree
G4 must be red, they can not appear in the tree I'. Thus,



in T, the node g has only one child, ¢”. This implies that
Mr n(g) = Mr,n(¢9”). Consequently, by Lemma 4.2, we
must have Mg/ (g) = Mg/ (g"), i.e. ds/(g) =1, for all S €
SPRy (v). [

Lemma 4.6: Let ¢ € V(G) be a blue node and let s
denote the node Mr n(g). Let {s',s"} = Chn(s), and S’
be a tree in SPRy(v). If g has one blue and one green
child, denoted ¢’ and ¢” respectively, then ds/(g) = O if
and only if My n(g) € V(Na), Mrx(g") € V(Nyr), and
S" = SPRy(v,y) for y € V(Ny).

Proof: Suppose Mr n(g’) = s. Then, by Lemma 4.2, we
must have Mg (g) = Mg (¢'), and, consequently, ds:(g) =
1, for any S’ € SPRy(v).

Similarly, suppose Mrp n(g”) = s. We have two possible
cases: (i) y € V(N,) \ {s}, or (i) y &€ V(N; \ {s}). In case
(i), Lemma 4.2 implies that Mg (g) = s, i.e. Mg/(g9) =
Mg/ (g'). Consequently, ds:(g) = 1 in this case. In case
(ii), Lemma 4.2 implies that Mg/ (g) = Mg (g’) and hence,
ds(g) = 1.

Thus, if ds/(g) = 0 for some S’ = SPRy(v,y), then there
must exist children s, s” of s such that M n(g') € Ny and
Mr n(g") € Ngv. There are now three possibilities for y:

1) y € Ng: In this case, by Lemma 4.2, we have
Mg (g) = s. Now since Mpn(9”’) # s, by
Lemma 4.1, we know that Mp s/ (¢”) # s. And,
since Mr n(g') € Ny, we know, by Lemma 4.2, that
Mr g/(¢') # s in this case. Thus, ds/(g) = 0.

2) y € Ngv: In this case, by Lemma 4.2, we have
Msi(g) = Mg/ (¢') = s. Thus, dg/(g) = 1.

3) All other y € V(N,,): In this case, Lemma 4.2 implies
that we must have Mg/ (g9) = Mg/ (g’). Thus, ds/(g) =
1.

The lemma follows. u
Lemma 4.7: Let g € V(G) be a blue node and let s denote
the node Mr n(g). Let S” be a tree in SPRy(v). If g has
one red and one green child, then dg/(g) = 1 if and only if
S" = SPRN(v,y) for y € V(N;) \ {s}.
Proof: Let ¢’ and ¢g” denote the red and green child of
g, respectively. By definition, since all nodes in the subtree
G4 must be red, they can not appear in the tree I'. Thus,
in T, the node g has only one child, ¢”. This implies that
Mrxv(g) = Mrow(g") = 5.

Observe that My (g"”") = Mp n(g”), and consequently,
by Lemma 4.1, we must have Mg/ (¢"”) = s for all S’ €
SPRy(v). Now, Lemma 4.2 implies that Mg/ (g) = s if and
only if ' = SPRy (v, y) fory € V(N,)\{s}. Thus, it follows
immediately that ds/(g) = 1 if and only if S’ = SPRy(v,y)
for y € V(N,) \ {s}. [

C. The Algorithm

For any s € V(N,), let A(s) denote the cardinality of
the set {g € V(G): ds:(9) = 0,but én(9) = 1}, and
B(z) the cardinality of the set {g € V(G): ds(9) =
1,but dn(g) = 0}, where S’ = SPRy(v,x). Observe that
SPRy(v) = Uyen, SPRN(v,y), and therefore, to solve the
D-RLS problem we must find a node s € V(N,) for which

|A(s)|—|B(s)| is maximized. Our algorithm computes, at each
node s € V(N,), the values A(s) and B(s).

In a preprocessing step, our algorithm converts the given
tree .S into tree IV, computes the mapping My, colors the
nodes in G, obtains the tree I', and computes the mapping
Mpr n. It also creates and initializes (to 0) two counters «(s)
and ((s) at each node s € V(). This takes O(n) time.
When the algorithm terminates, the values «(x) and S(z) at
each node x € V(T,) must be the values A(x) and B(x).

The idea behind the algorithm is simple: If ¢ € I(G)
is either red or green, or if it satisfies the preconditions of
Lemmas 4.4 or 4.5, then we know that dg/(g) = dn(g) for all
S’ € SPRy(v) and, consequently, do nothing. For all other
g, we rely on the fact that there exist simple characterizations
(Lemmas 4.6 and 4.7) of the regraft locations where those
nodes change their duplication status. Specifically,

1) If g satisfies the precondition of Lemma 4.6, then we
increment the value of «(y) at each node y € V(Ny/)
(where s’ is as in the statement of Lemma 4.6). To
do this efficiently we can simply increment a counter
at node s’ such that, after all ¢ € V(G) have been
considered, a single post-order traversal of N, can be
used to compute the correct values of a(y) at each
y € V(Ny).

2) If g satisfies the precondition of Lemma 4.7, then we
increment the value of S(y) at each node y € V() \
{s} (where s is as in the statement of Lemma 4.7).
Again, to do this efficiently, we can simply increment
a counter at node s such that, after all g € V(G) have
been considered, a single post-order traversal of IV, can
be used to compute the correct values of 3(y) at each
y € V().

A formal description of our algorithm for the D-RLS

problem appears in Procedure-D-RLS (see Algorithm 1).

Theorem 4.1: The D-RLS problem on instance (G, S, v) can
be solved in O3 g [V(G)]) time.

Proof: We will show that Procedure-D-RLS solves the D-
RLS problem on instance (G, S,v) in O3 qcg |V(G)]) time.
Correctness: Since SPRy(v) = U,cn, SPRN(v,y), it is
sufficient to show that the values A(t) and B(t) are computed
correctly at each node t € V(N,), where A(t) = |{g €
Uceg V(G): 65 (g) = 0,but b (g) = 1}] and B(t) = |{g €
Ugeg V(G): 6s/(g) = 1,but 65 (g) = 0}|. Since the values
A(t) and B(t), for each t € V(N,), are computed according
to Lemmas 4.3 through 4.7, the correctness of Procedure-D-
RLS follows.
Complexity: Let us analyze Procedure-D-RLS step-by-step.
Steps 2 and 3 take O(n) time.

The ‘for’ loop of Step 4 can be executed in
O(X_geg IV(G)|+n) time as follows: During a preprocessing
step, with-in O(n) time, we can process the tree N so that lca
queries on any two nodes in V(IV) can be answered in O(1)
time; see [37] for details on how to do this. Subsequently,
the task of constructing the mapping Mg v only takes
O(JV(@)]) time. Coloring the nodes of G and constructing
the mapping Mr y also take O(|V(G)|) time. Thus, the total
time complexity of this ‘for’ loop is O3 qeq [V(G)| + n),
which is, since Y5 [V(G)| > n, simply O3 V(G)I).



Algorithm 1 PROCEDURE-D-RLS

1: Input: G, S, v

2: Construct the tree N from S.

3: Create and initialize to zero two counters «(t), and 5(t)

at each node ¢ in N,,.

4: for all each G € G do

5:  Construct the mapping Mg, n, color the nodes of G as
described in Section IV-A, and construct the mapping
Mr N

6: for all each blue node g € Jgycg V(G) do

7. Let s denote the node Mr n(g), and let {s',s"} =
C/’lN (S)
if g has a red child and a green child then

: Increment S3(s’) and S(s”) by one each.

10:  if g has children ¢’ and g” such that ¢’ is blue and g”
is green, and Mr n(¢') € V(Ny) and Mp n(g") €
V(NSH) then

11: Increment «(s’) by one.

12: for each node ¢ in a preorder traversal of N, do

13:  if t # u then

14: a(t) = alpa(t)) + a(t), and 5(t) = B(pa(t)) + B(t)

15: A tree with lowest reconciliation cost in SPRg(v) is

given by SPRg(v,t), where ¢t € V(N,) is a node that
maximizes «(t) — 3(t). The reconciliation cost of this tree
is given by A(G, N) — (a(t) — B(t)).

s

The ‘for’ loop of Step 6 involves considering
O(X_geg IV(G)|) gene tree nodes and performing some
processing at each node. We claim that the algorithm can
be executed so as to spend only O(1) time at each node.
Observe that the ‘if” block of Step 8 can be trivially executed
in O(1) time. However, to claim an O(1) time complexity
for the ‘if” block of Step 10, we must show how to check the
conditions Mr n(¢g’') € V(Ny) and Mr n(g”) € V(Ng»)
in O(1) time. This is done as follows: In a preprocessing
step, with-in O(n) time, we can perform an in-order traversal
of the tree N and label the nodes with increasing integer
values in the order in which they are traversed. Based on
the resulting order we can check whether a given node is in
V(N;) for any t € V(N) in O(1) time. Thus, the ‘if’ block
of Step 10 can be executed in O(1) time as well, yielding a
time complexity of O(} ,cq|V(G)|) for the ‘for’ loop of
Step 6.

And lastly, the ‘for’ loop of Step 12 involves traversing
through the nodes in the subtree NV,, and spending O(1) time
at each node. Therefore, this ‘for’ loop requires O(n) time.

The total time complexity of Procedure-D-RLS is thus
O(Zgeg IV (G- "

Theorem 4.2: The D-LS problem on instance (G, S) can be
solved in O3 ;g [V(G)| - n) time.

Proof: Observe that SPRS = Uyev(s)\{”(s)} SPRg(v).
The theorem therefore follows immediately from Theorem 4.1
|

The previous (naive) approach to solve the D-LS problem
involves computing the reconciliation cost for each of the
©(n?) trees in the SPR neighborhood of S separately. This

requires ©( g |V(G)| - n?) time. Our algorithm thus
improves on the previous solution for the D-LS problem by a
factor of n.

V. SOLVING THE DL-RLS PROBLEM

As before, we limit our attention to one gene tree G in
particular, we show how to solve the DL-RLS problem for
G in O(|[V(G)| + n) time. Our algorithm extends trivially
to solve the DL-RLS problem on the set of gene trees G in
O(Xgeg(IV(G)| +n)) time. In keeping with the definition
of the trimmed version of GTP, we will assume that Le(G) =
Le(S). In practice, if Le(G) # Le(S) then we simply set the
species tree to be S[Le(G)]; this takes O(| Le(G)| + n) time
and, consequently, does not affect the time complexity of our
algorithm.

To solve the DL-RLS problem for G, it is sufficient to
compute the values Dup(G, S’) and Loss(G, S’) for each S’ €
SPRg(v). In the previous section we showed how to compute
the value Dup(G, S’) for each S’ € SPRg(v), in O(m) time.
We now show how to compute the value Loss(G, S”) for each
S’ € SPRg(v) in O(m) time as well. Altogether, this implies
that the DL-RLS problem for G can be solved in O(m) time.

As in the previous section we will work with the tree N =
SPRg(v, rt(S)). Also recall the coloring scheme of the nodes
of N (Figure2), the definition of the tree I', and Lemmas 4.1
and 4.2 from Section IV-A.

A. Characterizing Losses

To solve the DL-RLS problem efficiently we rely on the
following six lemmas, which make it possible to efficiently
infer the value of Loss(G,S’,g) for any S’ € SPRy(v) and
g € I(G).

Consider any g € I(G), and let ¢’ and ¢” be its two
children. Let a = Mp(g), b = Mn(g¢’') and ¢ = Mp(g").
Without loss of generality, node g must correspond to one of
the following six categories: 1) g is red, 2) g is green, 3) g,
¢’, and ¢’ are all blue, 4) g and ¢’ are blue, and ¢” is green,
5) g and ¢’ are blue, and ¢” is red, or, 6) g is blue, ¢’ is red,
and g” is green.

Lemmas 5.1 through 5.6 characterize the behavior of the
loss cost Loss(G, S, g), for each S’ € SPRy(v), for each
of these six cases. Losses behave in a more complex manner
than duplications and, therefore, Lemmas 5.1 through 5.6 are
more technical than the corresponding lemmas for duplications
presented in the previous section. For instance, some gene
tree nodes and their children may change their mappings as
the pruned subtree is regrafted along different edges, affecting
their loss counts. For some other nodes, regrafting the pruned
subtree may not affect their mappings but may simply increase
the length of the path from a parent to one of its children,
resulting in an increase in the loss cost for the parent. In
some cases, certain nodes may either gain or lose duplication
status depending on the regraft location, affecting the way
in which losses must be computed at those nodes. All these
different possibilities complicate the characterization of losses.
The underlying idea, however, remains the same and these new



lemmas are based directly on the characterization of mappings
developed in Lemmas 4.1 and 4.2.

At this point, it would help to observe that SPRy(v) =
{SPRN(v,s): s € V(N,)}. The next two lemmas follow
easily from Lemma 4.1.

Lemma 5.1: 1f g is red then Loss(G, S’, g) = Loss(G, N, g)
for all S” € SPRy(v).

Proof: The subtree N, is identical in all trees in
SPRy (v). Moreover, g and all its descendants must map to
the same red nodes under the mappings My and Mg, for
any S’ € SPRy(v). The lemma follows. |

Lemma 5.2: If ¢ is green then Loss(G,S',g) =
Loss(G,N,g) +1if S’ = SPRy(v,x) where b <y x <y a
or ¢ <y = <y a, and Loss(G,S’,g) = Loss(G,N,g)
otherwise.

Proof: Since g is green, so are g’ and g”, and therefore,
by Lemma 4.1 we must have Mg/ (y) = Mn(y) for any S’ €
SPRy(v) and y € {g,¢',¢"}. Thus, if 8" = SPRy(v, )
where b <y = <y a or ¢ <y = <y a, then either
ds/(a,b) = dn(a,b) + 1 or dg/(a,c) = dn(a,c) + 1; and
ds/(a,b) = dn(a,b), ds/(a,c) = dn(a,c) otherwise. Hence,
following Def. 3.4, Loss(G,S’,g) = Loss(G,N,g) + 1 if
S" = SPRy(v,x) where b <y z <y aorc <y z <y a,
and Loss(G,S’, g) = Loss(G, N, g) otherwise. [ ]

The next four lemmas are more technical. While the pre-
vious two lemmas express the new loss cost for a node, g,
in terms of the change from its loss cost against tree NV, the
following lemmas will often express the new loss cost in terms
of how it changes as the pruned subtree is regrafted, step-by-
step, one edge lower in the tree (i.e., onto a child edge).

Lemma 5.3: Let g, ¢’ and g all be blue nodes, x € V(N,),
and let ' = Mr n(g), b = Mr.n(¢') and ¢ = Mrp n(g").

) If 8% = SPRy(v,z) where £y da, then
Loss(G,S’,g) = Loss(G, N, g).

2) If 8 = SPRy(v,z) where z <y a/, and S” =

SPRy (v, pa(z)), then,
a) Loss(G,S’,g) = Loss(G,S",g) + 1 if b/ <y
r<ya orcd <yx<pydad,and,
b) Loss(G,S’,g) = Loss(G, S, g) otherwise.

Proof: First, observe that if g, ¢’ and ¢” are all blue
nodes then each of g, ¢’ and ¢g” must be present in tree T';
and hence, the mappings Mr n(g), Mr n(g") and Mr n(g")
are well defined. Next, we prove the correctness of each part
separately.

e Part 1: Since x £xn o, we must have lcay(v,a’) =
lean(v,b') = lcan(v,c’). Therefore, by Lemma 4.2,
Msi(g) = Mgs(9) = Mg(¢g”) where S =
SPRy(v,z) and © #£n ao'. Thus, for each S’ in this
case, we must have Loss(G, S’,g) =0 = Loss(G, N, g).

o Part 2(a): This case is relevant only if at least one of
b or ¢ is not the same as a’. Therefore, without any
loss of generality we may assume that b’ # a’. Suppose
S’ = SPRy (v, z) where b/ <y = <y a'; then, we must
have Mg/ (g) = Mg/ (¢") = o’ and dg:(a', Ms:(¢")) =
dy(a',x). Also, if b denotes the child of a in tree
N along the path @' —py ¥, then, by Def. 3.4, we
must have Loss(G, SPRy(v,b"),g) = 1, which is in-
deed one greater than Loss(G, SPRy(v,a’),g). Thus,

Loss(G,S’,g) = Loss(G,S5",9) + 1 if b/ <y = <y d'.
The argument for the case when ¢ <y x <y da is
completely analogous.

e Part 2(b): Let b” denote the child of a along the path
a —n U, and ¢” denote the child of a along the
path @’ — N ¢/, in tree N. When = <y o’ but neither
V <y z <y a@ nor ¢ <y z <y a', we must have
either (i) x <y b” but not such that ¢/ <y = <y @,
or (ii) * <y ¢’ but not such that b/ <y z <y a'.
In case (i), we must have Mg/ (9) = Mgr(g) =
Mgi(¢") = Mg/(¢”") = d', and both Mg (g') and
Mg (g') must be nodes along the path " — g~ b such
that dg/(a’, Mg/ (¢")) = dgv(a’, Mg (g')) (note that
this is true even if ¥’ <y pa(z) <y a’). Thus, for case (i),
Loss(G, S, g) = Loss(G, S"”, g). An analogous argument
holds for case (ii).

]

Lemma 5.4: Let g and g’ be blue nodes and ¢” be a

green node, z € V(N,) \ {u}, and let a’ = Mr n(g),
b = MF,N(g’) and ¢ = MnN(g”).
) If S = SPRy(v,z) where z £y d, and S =
SPRy (v,pa(z)), then,

a) Loss(G,S',g) = Loss(G,S",g) — 1 if o/ <y
r <y U,
b) Loss(G,S’,g) = Loss(G,S",g) — 1 if d/ <y

pa(xz) <y u but z is not such that o’ <y z <y u,
and,
¢) Loss(G,S’,g) = Loss(G,S”, g) otherwise.
2) Let S = SPRy(v,z) where © <y & and S” =
SPRy (v, pa(z)).
a) If ' # b and b” denotes the child of o’ along the
path @’ —pn ¥, then,
i) Loss(G, SPRn(v,b"),g) =
Loss(G,SPRy(v,a’),g) — 2 if o/ # (.
And, Loss(G, SPRy(v,b"), g) =
Loss(G,SPRy(v,a’),g) if o’ = ¢,
i) Loss(G,S’,g) = Loss(G,S",g) +1if v/ <y
Tr <N b",
i) Loss(G,S’,g) = Loss(G,S”,g) if = is such
that z € V(Np/) but not such that b’ <y = <y
a,
iv) Loss(G,S’,g) = Loss(G,SPRy(v,a’),g) if
d <y x<yd,and,
v) Loss(G,S’,g) = Loss(G,SPRy(v,ad),g) —1
otherwise.
b) If o' =¥, then,
i) Loss(G,S’,g) = Loss(G,SPRy(v,d’),g) if
cd <y z<yd,and,
i) Loss(G,S’,g) = Loss(G,SPRy(v,d’),g) —1
otherwise.

Proof: First, observe that g and ¢’ are blue and g is
green. Thus, each of g, ¢’ and ¢” must be present in tree
I'; and hence, the nodes a’, b’ and ¢’ are well defined. Also
observe that ¢/ = c¢. Next, we prove the correctness of each
part separately.

e Part 1(a): For any ¢/ <y x <y u we must have

Mgi(g) = Mgi(¢') = pag/(x), and Mg/ (¢") = (.



Also observe that the same holds for the case when x =
u. Thus, for each z such that @’ <y =z <y u, we have
ds' (Mg (g), Ms/(g')) = dsr (Mg (g), Ms»(g") =0
and dg (Mg (g),c') = ds (Mg (g),c’) — 1. Part 1.(a)
of the lemma now follows immediately.

Part 1(b): In this case, we must have Mg/ (g) =
Ms:(g') = pay(z), and Mg/ (g") = ¢, and, Mg (g) =
Mg (g') = pag.(z), and Mgr(g"”) = ¢'. Therefore,
ds/(Ms(9), Mg (') = ds(Msr(g), Msn(g')) =0
and dg/ (Mg (g),¢) = ds(Mgn(g),c’) — 1. Hence,
Loss(G,S’,g) = Loss(G,S",g) — 1.

Part 1(c): In this case, Mg/ (9) = Mg (g)
Mg (g) = Mgi(g) = lecagr(z,a’) and
Mg (g") = Mg (q") = . Therefore,
ds/(Msi(9), Ms(g')) = ds(Ms(g), Ms(g')) =0
and dg'(Mg/(g),c) = dgr (Mg (g),c). Thus,
Loss(G, S, g) = Loss(G,S", g).

Part 2(a)(d): Let T and 7T’ denote the trees
SPRy(v,a’) and SPRy(v,b”), respectively. Then,
Mr(9) = Mr(g") = pap(a’) and Mr(g") = ¢,
and, Mrp/(g9) = d, Mp(9¢) = pap(b’) and
Mr:(g") = . For the case when a’ # ¢ we must
therefore have dr(Mr(g),cd) = dr(Mr(g),d) + 1,
and dr (Mg (g), Mr1:(g’)) = 1. Note that while g is
a duplication under mapping M, it is not one under
mapping Mp.. Thus, by Definition 3.4, we must have
Loss(G,T',g) = Loss(G, T, g) — 2. For the case when,
a’ = ¢, we must have My (g"”) = o/, and therefore,
dr(Mr(9), Mr(g")) = 1, dr(Mr(g),Mr(g')) =
0, and, dT/(MT(g),MT(g”)) = 0,
dp (Mp(9), Mr(¢')) = 1. Thus, Loss(G,T’,g9) =
Loss(G,T,g).

Part 2(a)(ii): This case is relevant only if o/ # b".
We must have Mg(9) = Mgi(g) = d,
Ms(g") = Msi(g") = <, Mgl(g) =
pag/(z) and Mgn(¢') = pag.(pa(z)). Thus,
ds/(a’,Ms(g')) = dsv(a’,Ms(g')) + 1, and
consequently Loss(G,S’, g) = Loss(G,S”,g) + 1.

Part 2(a)(iii): In this case, we must have Mg/ (g) =
Msr(g) = a', Mg(g") = Mgn(g") = ¢, and
both Mg/ (g’) and Mg~ (g’) must be nodes along
the path 8" —gr» ' such that dg/(a’, Mg/(g")) =
dgi(a', Mg (g")) (note that this is true even if ¥’ <y
pa(z) <y a’). The result follows.

Part 2(a)(iv): This case exists only if a’ # ¢. Let T
denote the tree SPRy(v,a’). We must have Mg/ (g) =
Msi(¢g') = d, and Mrp(g9) = Mrp(9') = pap(d).
Therefore, dg/(a’, ) = dp(Mr(g),¢') = dn(a’, ) +
1. Thus, if ¢ <y = <y d, then Loss(G,S’,g) =
Loss(G, SPRy(v,d’), g).

Part 2(a)(v): Let ¢’ denote the sibling of b in tree N.
Then, in this case, we must have x € N... Moreover,
2 is not such that ¢ <y 2 <y a'. Thus, we must
have Mg/ (g9) = Mg(g') = o', and Mg (¢9") = .
Also, for the tree T'= SPRy(v,a’), we have Mr(g) =
Mz (g'") = par(a’) and dp(Msg(g),c’) = ds(a’,c) +
1. Hence, Loss(G,S’, g) = Loss(G, T, g) — 1.

Part 2(b)(i): The proof for this part is identical to the

proof of part 2.(a).iv.

o Part 2(b)(ii): Let T denote the tree SPRy (v, a’). There
are two possible cases, either a/ = ¢ or a # (.
For ¢/ = ¢/, we must have Loss(G,T,g) = 1 and
Loss(G,S’,g) = 0. For a’ # ¢ we must have Mg/ (g) =
Msi(g') = o', Mr(9) = Mr(g') = parp(d), and
Mg (g") = Mr(g"”) = ¢; and hence Loss(G, S, g) =
Loss(G,T, g) — 1. Thus, part 2.(b).ii. of the lemma holds
for both cases.

Lemma 5.5: Let g and g’ be blue nodes and ¢” be a red
node, z € V(N,), and let ' = Mrp n(g).

) If 8 = SPRy(v,xz) where z <y af, and
S"” = SPRy(v,pa(x)), then Loss(G,S',q) =
Loss(G,S",g) + 1.

2) If 8" = SPRy(v,x) where x £ d, then,

a) Loss(G,S’,g) = Loss(G,N,g) if «’ <y x <n u,
and,

b) Loss(G,S’,g) = Loss(G,S",g) + 1 for S =
SPRy (v,pa(z)) otherwise.

Proof: First, observe that since both ¢ and ¢’ are blue,
they must be present in tree I'; and hence, the mappings
Mr n(g), and Mp n(g’) are well defined. Also, since g” ¢
V(T'), by the definition of I', we must have Mp n(g) =
Mr n(g'). Next, we prove the correctness of each part sepa-
rately.

e Part 1: If z <y d, then Mg/(g) = Mg(g) =
a’ and Mg/ (g") = c. Since ¢” is red, ¢ must be
a node in the pruned subtree N, therefore, assuming
S" # SPRy(v,a’), we must have dg/(Mg/(g),c) =
ds (Mg (g),c)+1 and, consequently, Loss(G, S’, g) =

Loss(G,S",g) + 1. If S = SPRy(v,d’), then
we have Mgr(g) = Mgr(¢’) = pag.(a’) and
Mg (g") = c. And therefore, again, we must have
ds'(Mgi(g),c) = dsr(Mgr(g),c) + 1, implying

Loss(G, S, g) = Loss(G,S",g) + 1.

o Part 2(a): In the tree N we have My(g) = Mn(¢') =
rt(N) and dy(rt(N),c) = dn,(v,c) + 1. Similarly, if
a <y x <y u, then Mg (9) = Mg (g") = pag (z)
and, consequently, ds: (Mg (g),c) = dn, (v, c)+1. Thus,
in this case Loss(G, S’,g) = Loss(G, N, g).

o Part 2(b): We have Mg/ (g) = Ms/(g) and Mgr(g)
Mg (g"). Now, if o/ <y pa(x) <y u, then we mu
have Mg (9) = pagn(pay(r)) and Mg (g) = pay(z
and therefore, dg/(Mgi(g),c) = dgr(Msr(g),c)
1; otherwise, we must have Mg/(g) = Mg (g)
lecan(xz,a’) and therefore, again, dg/ (Mg (g),¢) =
dg» (Mg (g), c)+1. Part 2. (b) of the lemma now follows
directly.

a

~—

i

I+

Lemma 5.6: Let g be blue, ¢’ be red, and g” be green. Let
x € V(N,) \ {u} and o/ = Mp n(g).
1) If S = SPRy(v,z) where x #£xn o/, and S" =
SPRy (v,pa(z)), then,
a) Loss(G,S’,g) = Loss(G,S",g) — 1 if d <y
r <N U,
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b) Loss(G,S’,9) Loss(G,S8",g) if o <
pa(x) <y u but z is not such that '’ <y = <y u,
and,
¢) Loss(G,S’,g) = Loss(G,S", g) + 1 otherwise.
2) If 8 = SPRy(v,z) where z <y a/, and S” =
SPRN (v,pa(z)), then,
a) Loss(G,S’,g) = Loss(G,SPRy(v,d’),g) + 2 if
x € Chy(a’), and,
b) Loss(G,S’,g) = Loss(G,S”, g) + 1 otherwise.
Proof: First, observe that since g is blue, the mapping
Mr n(g) is well defined. Moreover, by the definition of tree
I', we must have a’ = Mp ny(g) = c. Next, we prove the
correctness of each part separately.

Part 1(a): For any ¢/ <y x <y u we must have
Ma(g) = pag(z), Ms () = b and Mg (g") = o
Also observe that the same holds for the case when x =
u. Thus, for each z such that @’ <y x <y u, we have
ds (Ms:(9), Ms(g)) = dsr(Ms(g), Ms~(g")) and
ds (Ms:(9), Ms (")) = dsr(Ms(g), Msr(g"))—1.
Part 1.(a) of the lemma follows immediately.

Part 1(b): In this case, we must have Mg/ (g)
pay(z), Mg (g") b and Mg/ (g") a’, and,
Mg (g) = pagn(x), Mgn(g') = b and Mgn(g") =
a’. Therefore, dg/(Mgi(g),b) = ds(Mgr(g),b) + 1
and dg: (Mg (g),a’) = dgv(Mgsr(g),a’) — 1. Hence,
Loss(G, S, g) = Loss(G,S", g).

Part 1(c): In this case, Mg/ (g) Mg (g)
leag (b,a’), Mg (g') = Mgn(g') =b, and Mg/ (g9") =
Mg (g") = a. Now since b is a node in the
pruned subtree N,, we must have dg (Mg (g9),b) =
dgi (Mg (g),b)+1 and, consequently, Loss(G, S’, g)
Loss(G,S",g) + 1.

Part 2(a): If © € Chy(a’) then we must have
M (9) Mg (g") a’ and Mg/ (¢) b.
Thus, Loss(G,S’,g) = |ds/(a’,b) — 1| + 1. Now, let
T denote the tree SPRy(v,a’), then we must have
My (g) = pap(a’), Mr(¢") = o and Mp(g') = b.
Thus, Loss(G,T,g) = |dr(pap(a’),b) — 1|. Finally,
observe that dg/(a’,b) = dr(par(a’),b) + 1, and hence,
Loss(G,S’,g) = Loss(G, T, g) + 2.

Part 2(b): For any = <y a’, we must have Mg/ (g) =
Mgi(g") = o and Mg/(g') = b. Since b is a node
in the pruned subtree N, and in this case * <y y
for y € Ch(a’), we must have dg/(Mg(g),b)
dgs (Mg (g),b)+1 and, consequently, Loss(G,S’, g)
Loss(G,S",g) + 1.

B. The Algorithm

Observe that SPRy(v) = {SPRy(v,s): s € V(N,)}.
Therefore, the goal of our algorithm is to compute at each node
s € V(N,) the value Loss(G,S"), where S = SPRy (v, s).
To do this efficiently, we rely on the characterization of losses
given in Lemmas 5.1 through 5.6.

The first step of the algorithm is to compute the value
Loss(G, N). This “loss value” is assigned to the node u.
The basic idea behind the algorithm is the same as that for
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the algorithm for computing duplications, developed in the
previous section. Recall that the algorithm from the previous
section made use of two counters («(z) and 8(x)) to capture
the change in duplication status as characterized by the lem-
mas. Due to the increased complexity of the characterization
of losses (Lemmas 5.1 through 5.6), however, the current
algorithm requires many more types of counters to efficiently
capture the different patterns of the change in the loss cost.
Specifically, to compute the loss value for the rest of the
nodes (besides u) our algorithm makes use of six different
types of counters at each node in N,; we refer to these
counters as counter-i, for ¢ € {1,...,6}. These counters make
it possible to efficiently compute the difference between the
values Loss(G, N) and Loss(G, S’), where S’ = SPRy (v, s),
for each s € V(N,). Next, we describe each of these six
counters; throughout our description, s represents some node
in N,.

counter-1: If the value of counter-1 is = at node s then
this implies that the tree SPRy (v, s) incurs x additional
losses over the value Loss(G, N).

counter-2: If the value of counter-2 is x at node s, then
this implies that for each ¢ <y s the tree SPRy(v,t)
incurs an additional x losses over Loss(G, N).
counter-3: If the value of counter-3 is x at node s, then
this implies that for each ¢ <y s the tree SPRy(v,t)
loses x losses from Loss(G, N).

counter-4: If the value of counter-4 is x at node s, then
this implies that for each ¢t <j s the tree SPRy(v,t)
incurs oy - x additional losses over Loss(G, N), where
ap = dn(pa(s),t).

counter-5: If the value of counter-5 is x at node s, then
it is equivalent to incrementing counter-4 at the sibling
of each node on the path u —x s, except at u, by x.
counter-6: If the value of counter-6 is x at node s, then
it is equivalent to incrementing counter-4 at both children
(if they exist) of the sibling of each node along the path
u —nN S, except u, and incrementing counter-3 at each
node along the path u — s, except at u, by x.

In the remainder of this section we first show how to
compute the values of these counters, and then the final loss
values, at each node in N,,.

1) Computing the counters: We now describe how the
values of the six counters are computed. Initially, each counter
at each node in N, is set to 0. Consider any g € I(G), and
let ¢’ and g” be its two children. Recall that node g must fall
under one of the following six categories: 1) g is red, 2) g is
green, 3) g, ¢’, and ¢” are all blue, 4) g and ¢’ are blue, and
g" is green, 5) g and ¢’ are blue, and ¢” is red, or, 6) g is
blue, ¢’ is red, and ¢” is green.

Let a Mn(g), b = Mn(g¢') and ¢ Mn(9").
Also, whenever properly defined, let a’ = Mr.n (9), V' =
Mr n(¢') and ¢ Mr n(g”). Based on Lemmas 5.1
through 5.6, we now study how the six counters can be updated
so as to capture the behavior of losses in each of these cases.

e Case 1: By Lemma 5.1, we do nothing in this case.
o Case 2: Based on Lemma 5.2, the contribution of any
node ¢ that satisfies the condition of case 2 can be



captured by incrementing the value of counter-1 by one
at each node on paths a —x b and a —x b, except at
node a.

Case 3: From Lemma 5.3 it follows that in this case the
contribution of g to the loss value changes in a way that
is captured by incrementing counter-2 by 1, at each node,
except a’, on the paths ' — N b and o’ — N .

Case 4: According to Lemma 5.4, if N, is regrafted on
an edge of NN, that is not in N,, then the contribution of
g to the loss cost is captured by incrementing counter-3
by 1 at each node except u along the path u —x a’, and
at their siblings. If IV, is regrafted on an edge of [V, that
is in NN,/ then there are two possible cases:

— a’ # V': Recall that b” represents the child of a’ along
the path a’ —n '. Here, the contribution of g to the
loss cost is captured by (i) incrementing counter-3 by
two at node b”, (ii) incrementing counter-2 by one at
each node except b” along the path b — ¥/, (iii)
incrementing counter-3 by one at the sibling of b”,
and (iv) incrementing counter-1 by one at each node
except a’ on the path @’ —n .

a’ = U': In this case, the contribution of g to the
loss cost is captured by (i) incrementing counter-3
by one at both children of o/, and (ii) incrementing
counter-1 by one at each node except a’ on the path
a —pyc.

Case 5: By Lemma 5.5, for this case, the change in
the loss contribution of g is captured by incrementing
counter-5 by 1 at node a’, and by incrementing counter-4
by 1 at both children of @’ in N.

Case 6: By Lemma 5.6, for this case, the change in
the loss contribution of g is captured by incrementing
counter-6 by 1 at node @, and by incrementing counter-4
and counter-2 by 1 each at both children of ¢’ in N.

2) Computing the final loss values: Our algorithm consid-
ers each internal node of gene tree (G, one at a time, and
updates the relevant counters at the relevant nodes in NV, as
shown in the previous subsection. Then, based on the counters,
it computes, at each node s € V(INV,) the value «(s)
Loss(G,S’) — Loss(G, N ), where S’ = SPRy (v, s); this can
be achieved by performing a constant number of pre- and post-
order traversals of IV,,. A final traversal of the tree now allows
us to compute the value Loss(G,S") = «a(s) + Loss(G, N) at
each s € V(N,). A complete description of our algorithm to
solve the DL-RLS problem on instance ({G}, S, v) appears in
Procedure-DL-RLS (see Algorithm 2).

Lemma 5.7: Procedure-DL-RLS solves the DL-RLS prob-
lem on the instance ({G},S,v).

Proof: Procedure-DL-RLS computes the duplication cost
Dup(G, SPRy(v,s)), at each s € V(N,), as shown in
Section IV. It then computes the values of the six counters, i.e.
counter-i, for ¢ € {1,...,6}, in accordance with Lemmas 5.1
through 5.6. Then, in Steps 11 through 13, the algorithm
encodes the changes in loss cost implied by counter-4, counter-
5, and counter-6, at each node in N,, in terms of the values
of counter-1, counter-2, and counter-3. Procedure-Loss then
correctly computes the value of «a(s) at each s € V(N,)
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Algorithm 2 Procedure-DL-RLS
1: Input: G, S, v
2: Restrict S to the leaf set of G, i.e., update S to be the

tree S[Le(G)].

Construct the tree N from S.

: Create and initialize to zero six counters counter-z, for

i€{l,...,6}, ateach s € V(N,).

Construct the mapping Mg, ., color the nodes of /N and

G as described in Section IV-A, and construct the mapping

Mr n.

6: Compute the value Loss(G, N).

7: for each node s € V(N,,) do

Compute the duplication cost Dup(G, SPRy (v, s)) as
shown in the previous section.

: for all each node g € I(G) do

10:  Update the counters as shown in Section V-B.1.

11: Perform a post-order traversal of N, to transform counter-
5 into counter-4 (as explained in the definition of counter-
5) throughout N,,.

: Perform a post-order traversal of N, to transform counter-

6 into counter-4 and counter-3 (as explained in the defi-

nition of counter-6) throughout N,,.

Perform a pre-order traversal of N,, to transform counter-

4 into counter-2. This can be achieved by incrementing

counter-2 at node s € V(NN,) by the sum of the values of

counter-4 at each ancestor of s in N,,.

Use counter-1, counter-2, and counter-3 to compute the

value of a(s) at each s € V(IV,) by calling Procedure-

Loss (see Algorithm 3) on parameters (u, 0).

The reconciliation cost of G and the tree SPRg(v,s),

where s € V(N,), is given by Dup(G, SPRy(v,s) +

a(s) — Loss(G, N).

13:

14:

15:

Algorithm 3 Procedure-Loss
Input: A node ¢ of the tree NV, and a counter c.
¢ = ¢+ counter-2(t) — counter-3(t).
a(t) = a(t) + ¢+ counter-1(t).
if ¢ is not a leaf node of NV then
Let {t/,t"} = Chn(t).
Call Procedure-Loss on parameters (¢, c).
Call Procedure-Loss on parameters (t”, c).

based on these three counters. Thus, for any SPRg(v,s),
where s € V(N,), the values Dup(G,SPRy(v,s)) and
a(s) are computed correctly. Note that the reconciliation
cost of G and SPRgs(v,s), where s € V(N,), is given by
Dup(G, SPRy (v, s)+a(s)—Loss(G, N). The lemma follows.
|
Lemma 5.8: Procedure-DL-RLS can be implemented to run
in O(|V(G)| + n) time.

Proof: We analyze the complexity of Procedure-DL-
RLS step-by-step. The total time complexity of Step 2 is
O(JV(G)|+n) and of Steps 3 and 4 is O(n). Next, Step 5 can
be implemented in O(|V(G)|+n) time as follows: During an
O(n)-time preprocessing step we can process the tree N so
that lca queries on any two nodes in V' (N) can be answered



in O(1) time; see [37] for details. Subsequently, the task
of constructing the mapping Mg ny only takes O(|V(G)])
time. Coloring the nodes of G and N and constructing the
mapping Mr n also take O(|]V(G)|) time. Thus, the total
time complexity of this step is O(|V (G)| + n). In Step 6, the
value Loss(G, N) can be computed in O(|V (G)|+n) time by
first traversing through N to compute the depth of each node,
and then traversing through G and computing Loss(G, N, g)
for each g € I(G) according to Definition 3.4. By the result
of the previous section, the ‘for’ loop of Step 7 requires
O(|V(G)| +n) time as well.

Let us now consider the ‘for’ loop of Step 9 in detail. For
any g that satisfies the criteria for case 1, there is nothing to be
done. For any g satisfying the criterion for cases 5, or 6, we are
required to update the counters at a constant number of nodes
in N,,. Therefore, all such g can be handled within O(|V(G)))
time. However, for cases 2, 3 and 4, handling each ¢ might, in
the worst case, require updating the counters at ©(n) nodes,
yielding a total time complexity of O(n - |V (G)|) for these
cases. This happens because these cases require us to update
specific counters along the entire length of certain paths in
N, . A simple way to deal with this issue is to only mark the
start node and end node of the path for the specified counter.
Once this is done for each g satisfying the criterion for cases
2, 3 or 4, we can perform a post-order traversal and set all the
relevant counters to their correct value based on the marked
start and end nodes. In this way, cases 2, 3, and 4 can be
handled in a total of O(|]V(G)| + n) time as well. This gives
us a total time complexity of O(|]V(G)| + n) for computing
all the counters.

In Steps 11 through 13, the algorithm encodes the changes
in loss cost implied by counter-4, counter-5, and counter-6,
at each node in N,, in terms of the other counters. It is
easy to verify that each of these steps can be implemented
to run in O(n) time by doing either a post-order or pre-order
traversal of N, as appropriate. Step 14 calls Procedure-Loss
on parameters (u,0). Procedure-Loss simply performs a pre-
order traversal of the tree N, spending O(1) at each node. The
time complexity of Step 14 is thus O(n). Finally, in Step 15,
computing the reconciliation cost for each SPRg(v, s), where
s € V(N,), takes O(n) time. [ |
Thus, we have the following two theorems.

Theorem 5.1: The DL-RLS problem can be solved in
O geg(V(G)| +n)) time.

Proof: By Lemmas 5.7 and 5.8 we know that the DL-
RLS problem on the restricted instance ({G},S,v) can be
solved in O(m) time. It is straightforward to extend Procedure-
DL-RLS to solve the DL-RLS problem by considering each
gene tree in G separately and combining the computed recon-
ciliation costs. ]

Theorem 5.2: The DL-LS problem can be solved in
O geg(V(G)|+n) - n) time.

Proof: Observe that SPRs = UPGV(S)\{”(S)} SPRs(v).
The theorem therefore follows immediately from Theorem 5.1.

|

The time complexity of the best known (naive) solution
for the DL-LS problem is (Y ;cg(|V(G)| + n) - n?). Our
algorithm improves on this by a factor of n.
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VI. THE DEEP COALESCENCE COST MODEL

Our algorithms for efficient SPR local search for the
duplication-loss model also apply, with a few changes, to
the corresponding SPR local search problem for the deep
coalescence model. In the following, we first introduce the
deep coalescence model and then show how to modify the
algorithm from the previous section. As before, we assume
that Le(S) = Ugeg Le(G).

It has been shown [31] that the same mapping (M) that
minimizes the duplication and/or loss costs also minimizes
the deep coalescence cost when reconciling the gene tree
and species tree. Deep coalescence (or incomplete lineage
sorting) arises when ancestral gene copies fail to coalesce into
a common ancestral copy at their earliest opportunity on the
species tree. This is illustrated in Supplementary Figure S2.
Under the deep coalescence model [1], the reconciliation cost
of gene tree G and species tree S is defined in terms of the
number of “extra lineages” required to fit G into S. The idea
is to count the number of gene lineages present in each edge
of the species tree, and if a species tree edge has more than
one gene lineage passing through it, then this implies that the
gene lineages have not coalesced at their earliest opportunity
on the species tree (Supplementary Figure S2). More formally:

Definition 6.1 (Extra Lineages): The number of extra
lineages EL(G,S,v) at an edge {pa(v),v} € E(5'),
is defined to be |{z € I(G): Mggs(z) >g
pa(v) and 3z’ € Ch(z) such that Mg s (2') <g v} — 1,
where S’ S[Le(G)]. We define EL(G,S)
2 vevisn{ns) EL(G,S;v) to be the number of extra
lineages in S with respect to G.

Definition 6.2 (Reconciliation cost): Under the deep coa-
lescence model, the reconciliation cost of G with S, denoted
Ad¢(G, 9), is defined to be EL(G, S). Correspondingly, the
reconciliation cost from G to S, denoted by A(G,S) is
defined to be " g A¥(G, 9).

Problem 5 (Deep-Coalescence):  Given a set G of gene
trees, the Deep-Coalescence problem is to find a species tree
S* comparable with G, such that A%(G, S*) is minimized.

We refer to the LS and RLS problems under the deep
coalescence model as the Deep-Coalescence-1.S (DC-LS) and
Deep-Coalescence-RLS (DC-RLS) problems respectively.

As before, we will show that the DC-RLS problem
can be solved in O} ,cs(|V(G)| + n)) time, yielding a
O geg(lV(G)| + n) - n) time algorithm for the DC-LS
problem.

A. Solving the DC-RLS Problem

To reuse the algorithm from Section V, we explore the link
between the number of extra lineages and the definition of
Losses. As in previous sections, we limit our attention to one
gene tree (5; in particular, we show how to solve the DC-
RLS problem for G in O(|V(G)| + n) time. The algorithm
extends trivially to solve the DC-RLS problem on the set of
gene trees G in O} ;c(|V(G)| + n)) time. We will also
assume that Le(G) = Le(S). If Le(G) # Le(S) then we can
set the species tree to be S[Le(G)]; this takes O(| Le(G)|+n)



time and, consequently, does not affect the time complexity of
the algorithm.

Definition 6.3 (Stretch): The stretch of a node g € I(G)
with respect to S, denoted Stretch(G,S,g), is defined to
be > ccng) ds(Ma,s(9), Ma,s(g')). The stretch of G
with respect to S, denoted Stretch(G,S) is defined to be
>ger(c) Stretch(G, S, g).

Lemma 6.1: EL(G,S) = Stretch(G,S) — 2(n — 1).

Proof: Following the definition of EL(G,S), we must
show that:

>

veV (S)\{r(S)}
Jz' € Ch(zx) such that Mg s(z') <g v}| — 1)
= Stretch(G, S) — 2(n — 1).

Observe that |V(S) \ {r#(S)}| = 2(n — 1), thus we must
show that:

>

veV(SNr(S)}
3z’ € Ch(x) such that Mg s(z') <s v}|
= Stretch(G, S).

Following the usual convention, we refer to the left hand
side of this previous equation by LHS and the right hand side
by RHS.

Consider the LHS. Any particular 2 € I(G) is counted
once each at exactly those v € V(S) \ {rt(S)} for which
(pa(v),v) is an edge along the path between Mg s(z) and
Mg s(z') or the path between Mg s(xz) and Mg s(z”),
where z’,2” € Ch(x). In other words, each x € I(G) is
counted exactly Stretch(G, S, z) times. The LHS can thus be
written as 3, .y Stretch(G, S, x) which is, by definition,
equal to the RHS. The lemma follows. ]

Observe the similarity between the definition of
Loss(G,S,g) and Stretch(G,S,g). This is what makes
it possible for us to reuse the Lemmas and Algorithm
from Section V. We follow the setup and notation from
Section V-A. Of the six lemmas (Lemmas 5.1 through 5.1)
that characterize the behavior of the loss cost, four also
correctly describe the behavior of the deep coalescence cost.
These are Lemmas 5.1, 5.2, 5.3, and 5.5. The only change
in these four lemmas is to replace all instances of Loss(---)
with Stretch(---). The proofs of these lemmas also remain
unchanged (except for a few minor attendant changes that
are easily discerned). The remaining two lemmas also remain
largely identical to their counterparts Lemmas 5.4 and 5.6).
For completeness, these two modified lemmas appear as
Lemmas S1 and S2 in the supplement.

Due to the similarity of the characterization, we can use
Algorithm 2 to efficiently compute the stretch of all the trees
in SPRg(v). The only change is in the way the counters
are set for cases 4 and 6 (which correspond to the two
modified Lemmas S1 and S2) in Section V-B.1. The updated
descriptions for these two cases is as follows.

Updated Case 4: According to Lemma S1, if N, is
regrafted on an edge of N, that is not in N,/, then the

(l{m € I(G): Mg ,s(x) >s pa(v) and

Hz € I(G): Mg ,s(x) >g pa(v) and
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contribution of g to the stretch is captured by increment-
ing counter-3 by 1 at each node except u along the path
u —py d, and at their siblings. If N, is regrafted on an
edge of N, that is in N, then there are two possible
cases:

— a' # b': Recall that b” represents the child of a’ along
the path ' —n '. Here, the contribution of g to the
stretch is captured by (i) incrementing counter-2 by
one at each node except b’ along the path b — ¥V,
(i) incrementing counter-3 by one at the sibling of
b”, and (iii) incrementing counter-1 by one at each
node except a’ on the path o’ — ¢
a’ = V': In this case, the contribution of g to the
stretch is captured by (i) incrementing counter-3 by
one at both children of o/, and (ii) incrementing
counter-1 by one at each node except a’ on the path
a —nc.
Updated Case 6: By Lemma S2, for this case, the change
in the stretch of g is captured by incrementing counter-6
by 1 at node a’, and by incrementing counter-4 by 1 each
at all the grand-children (i.e, children of children) of o
in N.
The following theorem now follows immediately from
Lemma 6.1 and Theorems 5.1 and 5.2.
Theorem 6.1: The DC-RLS and DC-LS problems can be
solved in O} g (IV(G)] +n)) and O _qeq(IV(G)] +
n) - n) time respectively.

VII. RELATED SPEED-UPS FOR OTHER SEARCH
HEURISTICS

A. Step-wise Taxon Addition Heuristic

To improve the performance of local search heuristics in
phylogeny construction, the starting tree for the first local
search step is typically constructed using a greedy random
taxon addition procedure. This greedy procedure builds a
starting species tree step-by-step by adding one taxon at a
time at its locally optimal position. Our efficient algorithms
for the LS problem under the duplication, duplication-loss,
and deep coalescence cost models also yield a ©(n) speed-up
over naive algorithms for this greedy procedure.

B. TBR Local Search

TBR, like SPR, is a tree edit operation. Heuristics based
on the TBR local search problem significantly extend the
search space explored at each local search step; however, due
to inefficient running times, they have rarely been applied in
practice. Our solution to the RLS problem allows us to improve
the time complexity of the TBR local search problem by a
factor of n.

Intuitively, a (rooted) TBR operation may be viewed as
being like an SPR operation except that the TBR operation
allows the pruned subtree to be arbitrarily rerooted before
being regrafted. A formal definition of the TBR operation
appears in the Supplement (Definition S2). Let TBR-LS denote
the local search problem analogous to LS defined on the TBR
neighborhood of a tree. Our goal is to solve the TBR-LS



problem. Observe that there are O(n) different ways to select
a subtree of S to be pruned. Furthermore, there are O(n)
different ways to reroot the pruned subtree. In particular,

Observation 7.1: The TBR-LS problem can be solved by
solving O(n?) instances of the RLS problem.

Let D-TBR-LS, DL-TBR-LS and DC-TBR-LS denote the
TBR-LS problem under the duplication, duplication-loss and
deep coalescence cost models respectively.

Based on Observation 7.1 and Theorems 4.1, 5.1, and 6.1,
the following theorem follows immediately.

Theorem 7.1: The D-TBR-LS, DL-TBR-LS, and DC-TBR-
LS problems can be solved in O(Y ocq|V(G)| - n?),
O(Xeg(IV(G)+n) - n?), and O(F g (IV(G) +n) -n?)
times respectively.

This improves on the time complexity of the naive solutions
for these three problems by a factor of n. Note that the com-
plexity of the D-TBR-LS problem has been further reduced to
O geg IV(G)| - nlog|V(G)]) in [55].

VIII. EXPERIMENTAL EVALUATION

The algorithms presented in this paper have been im-
plemented into the software packages DupTree [47] and
iGTP [48]. DupTree implements the algorithms for the dupli-
cation problem, while iGTP incorporates DupTree as well as
the algorithms for the duplication-loss and deep-coalescence
problems into a graphical user interface. These implementa-
tions enable GTP analyses under these cost measures for thou-
sands of gene trees and hundreds of species. Both DupTree and
iGTP also implement a taxon-addition heuristic to construct
effective starting trees for the local search step, and both have
the ability to handle unrooted input gene trees. The utility
of gene tree parsimony in performing phylogenetic analyses
has already been extensively demonstrated in the literature;
see, for example, [11], [13], [14], [17], [26], [34], [35], [49]-
[51]. The run time performance as well as scalability of our
algorithms has also been rigorously studied and demonstrated
using DupTree and iGTP [47], [48]. For instance, on a dataset
with 200 taxa and 20 gene trees, iGTP required at most 5
minutes using any of the cost measures, while the fastest
previously existing software, GeneTree [40], required at least
85 hours to execute the same local search heuristic. We have
tested our implementations on datasets with up to 2000 taxa.

Thus, here we focus on testing the ability of our SPR local
search heuristic in inferring optimal or near-optimal solutions.
Several algorithms have been developed for optimally solving
the GTP problem under the duplication, duplication-loss, and
deep coalescence costs [19], [20], [26]. Even though such
exact algorithms have exponential time complexity and are
only applicable to small datasets with only a few taxa, they
allow us to evaluate the accuracy of our heuristic in inferring
optimal solutions. To that end, we identified five datasets that
have been previously analyzed using these optimal algorithms.
These include: (i) A dataset of six angiosperm species and
577 gene trees, analyzed under the duplication cost [17], (ii) a
dataset of 29 eukaryotic species and 1111 gene trees, analyzed
under the duplication cost [19], (iii) a dataset of 8 yeast
species and 106 gene trees from [56], analyzed under the
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deep coalescence cost [26], (iv) a dataset of 8 Apicomplexan
species and 268 gene trees from [57], analyzed under the deep
coalescence cost [26], and (v) a dataset of 12 plant species
and 6084 gene trees [20] analyzed under the duplication cost.
We applied our algorithms (using iGTP) to these datasets and
observed that, in each case, we obtain the optimal solution
in the very first run of the heuristic, and with each run
taking no more than a handful of seconds. These results
demonstrate the effectiveness of the SPR local search heuristic
for gene tree parsimony. Our algorithms thus make it possible
to perform large-scale gene tree parsimony analyses efficiently
and accurately.

IX. CONCLUSION

In this work, we have developed efficient local search
algorithms for performing GTP analyses under the duplication,
loss, duplication-loss, and deep coalescence cost models. We
also discuss and clarify the existing alternative problem for-
mulations for GTP under these costs, and elucidate the known
complexity results for each GTP variant. Our algorithms make
it possible to perform large-scale GTP analyses efficiently and
accurately. These algorithms have been implemented into the
software packages DupTree [47] and iGTP [48], and have
already enabled several phylogenetic studies [49]-[51].

GTP is a parsimony approach that minimizes the number
of evolutionary events that are counted and, therefore, may
not perform well when the gene families under consideration
exhibit high rates of duplication and loss or deep coales-
cence. In such cases, inferring the species tree based on
a probabilistic model of gene evolution may produce more
accurate results. Under the coalescent model, many methods
have been developed for inferring species trees from col-
lections of conflicting genes in a probabilistic framework.
These include likelihood-based approaches like STEM [58],
MT [59], STELLS [60], Bayesian approaches [61]-[64] in-
cluding BEST [65], *BEAST [66], BUCKY [67] and ST-
ABC [68], and also other statistics-based methods like
STAR [69], STEAC [69], and iGLASS [70]. However, these
method are highly computationally demanding and have only
been applied to datasets with a few taxa. Similarly, probabilis-
tic models of gene tree-species tree reconciliation that account
for duplication and loss have also been developed [71]-
[74]. However, due to their complexity, they have not been
incorporated into any tree search methods. In contrast, the
algorithms presented in this paper, make it possible to incor-
porate genome-scale information from thousands of genes for
reconstructing species phylogenies with hundreds of taxa.
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SUPPLEMENT FOR “ALGORITHMS FOR GENOME-SCALE
PHYLOGENETICS USING GENE TREE PARSIMONY”

Lemmas S1 and S2
Lemma S1: Let g and ¢’ be blue nodes and ¢’ be a green
node, z € V(N,) \ {u}, and let ¢’ = Mpn(g), V' =
Mr n(g') and ¢ = Mr n(g").
1) If 8 = SPRy(v,z) where z £nx o/, and S =
SPRy (v,pa(z)), then,

a) Stretch(G,S', g) = Stretch(G,S",g) — 1 if o/ <y
r <N U,

b) Stretch(G,S', g) = Stretch(G,S",g) — 1 if o/ <y
pa(xz) <y u but z is not such that o’ <y = <y u,
and,

¢) Stretch(G,S’, g) = Stretch(G, S”, g) otherwise.

2) Let S = SPRy(v,z) where © <y a' and S” =
SPRy (v, pa(z)).

a) If a’ # b and b” denotes the child of a’ along the

path o' —n ¥, then,

i) Stretch(G, SPRN(v,b"),g)
Stretch(G, SPRN (v,4'), g). if a’ # ¢,

i) Stretch(G,S’,g) = Stretch(G,S”,g) + 1 if
bV <yz<nyl,

iii) Stretch(G,S’,g) = Stretch(G,S",g) if z is
such that x € V/(Ny») but not such that ¥’ <y
T <y a,

iv) Stretch(G,S’,g) = Stretch(G, SPRy (v,a’), g)
if ¢ <y x <y d, and,

v) Stretch(G, S, g) = Stretch(G, SPRy (v,d’), g)
—1 otherwise.

b) If o' =¥, then,

i) Stretch(G,S’,g) = Stretch(G, SPRy(v,d’), g)
if <y z <y d, and,

i) Stretch(G,S’, g) = Stretch(G, SPRy(v,a’), g)
—1 otherwise.

Proof: First, observe that g and ¢’ are blue and ¢” is
green. Thus, each of g, ¢’ and ¢” must be a node of tree
I"; and hence, the nodes a’, b’ and ¢’ are well defined. Also
observe that ¢ = c. Next, we prove the correctness of each
part separately.

e Part 1(a): For any @/ <y x <y u we must have
Msi(g9) = Msi(¢') = pag/(z), and Mg/ (g") = .
Also observe that the same holds for the case when x =
u. Thus, for each x such that ' <y x <y u, we have
ds/(Ms(9), Mg (') = ds(Msr(g), Msn(g')) =0
and dg/ (Mg (9),¢) = ds(Mgr(g), ') — 1. Part 1.(a)
of the lemma now follows immediately.

e Part 1(b): In this case, we must have Mg/ (g) =
Mg (g") = pan(z), and Mg (¢g") = ¢, and, Mg~ (g) =
Mg (g") = pagi(x), and Mg (g") = . Therefore,
ds/(Ms(9), Ms(g') = ds(Msr(g), Msn(g')) =0
and dg/(Mg/(g),d) = dg(Mgn(g),¢) — 1. Hence,
Stretch(G, S, g) = Stretch(G, 5", g) — 1.

e Part I(c): In this case, Mg/ (g9) = Mgri(g) =
Msi(g) = Msi(g') = leagr(z,a’) and
M (g") = Mg (g") = (. Therefore,

ds (Msi(g), M (9')) = ds(Msr (g), Mg (g')) = 0
and dg/(Ms/(g),¢) = dsn(Mgr(g),c’). Thus,
Stretch(G, S, g) = Stretch(G, 5", g).

o Part 2(a)(i): Let T and 7" denote the trees SPRy (v, a’)
and SPRy(v,b”), respectively. Then, Mr(g) =
Mz (g') = par(a’) and Mz (g") = ¢, and, M1/ (g) =
a', Mri(g') = parp, (b") and Mr (g") = . Therefore,
we must have dp(Mr(g),d) = dp(Mr(g),c) +
1, and dr(Mr(g9), M1/ (¢9')) = 1. Consequently,
Stretch(G, T, g) = Stretch(G, T, g).

e Part 2(a)(ii): This case is relevant only if o/ # b".

We must have Mg (9) = Mgi(g) = o,
Msi(g") = Msi(g") = ¢, Mslg) =
pag:/(x) and Mgn(9') = pagi(pa(z)). Thus,
ds/(a',Ms(g')) = dgv(a',Ms:(g')) + 1, and

consequently Stretch(G,S’, g) = Stretch(G,S", g) + 1.

e Part 2(a)(iii): In this case, we must have Mg/ (g) =
Mgn(g) = d/, Mg(g") = Mgn(g") = ¢, and
both Mg/ (¢g’) and Mg (¢g’) must be nodes along
the path b” —gr ¥ such that dg/(a', Mg/(g")) =
dgv(a', Mg (g')) (note that this is true even if o' <y
pa(x) <y a’). The result follows.

o Part 2(a)(iv): This case exists only if a’ # . Let T
denote the tree SPRy(v,a’). We must have Mg/ (g) =
Mg (¢') = d, and Mp(g9) = Mz(9') = pap(d).
Therefore, dg/(a, ') = dp(Mr(g),c') = dn(d', ) +1.
Thus, if ¢ <y x <y d/, then Stretch(G,S’,g) =
Stretch(G, SPRy (v,d’), g).

e Part 2(a)(v): Let ¢’ denote the sibling of b in tree N.
Then, in this case, we must have x € N... Moreover,
2 is not such that ¢ <y 2 <y a'. Thus, we must
have Mg/ (g9) = Mg/ (¢') = o/, and Mg/ (¢") = (.
Also, for the tree T = SPRy(v,a’), we have Mr(g) =
Mr(g') = par(a’) and dp(Ms:(g), ') = ds/(a’, ') +
1. Hence, Stretch(G,S’, g) = Stretch(G, T, g) — 1.

o Part 2(b)(i): The proof for this part is identical to the
proof of part 2.(a).iv.

o Part 2(b)(ii): Let T denote the tree SPRy(v,a’). There

are two possible cases, either o’ = ¢ or a’ # (.
For ' = ¢, we must have Stretch(G,T,g) = 1 and
Stretch(G,S’,g) = 0. For a/ # ¢ we must have
Msi(g) = Msi(g") = d', Mr(g) = Mr(q) =

par(a’), and Mg (¢") = Mr(g”) = ¢; and hence
Stretch(G, S’,g) = Stretch(G,T,g) — 1. Thus, part
2.(b).ii. of the lemma holds for both cases.

Lemma S2: Let g be blue, ¢’ be red, and g be green. Let
x € V(N,) \ {u} and o/ = Mp n(g).
1) If Y = SPRy(v,z) where z #£x o, and S” =
SPRy (v,pa(z)), then,
a) Stretch(G, S, g) = Stretch(G,S",g) — 1 if a’ <y
T <N U,
b) Stretch(G,S’,g) = Stretch(G,S”,g) if o/ <y
pa(z) <y ubut z is not such that o’ <y z <y u,
and,
¢) Stretch(G,S',g) = Stretch(G,S”,g) + 1 other-

wise.
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Fig. S1. Counting duplications and losses. (a) Input gene tree G and species tree .S, each with three leaves labeled with species names A, B, and C.
(b) The mapping from G to S is depicted by the arrows from nodes of GG to nodes of S. The leaf-mapping is depicted by the thin black arrows, and the
mapping from the internal nodes of G is depicted by the thicker brown arrows. Based on this mapping, the node H can inferred to be a duplication node
(since Mg, g(H) = Mg,s(T)). Following the definition of losses, we can compute the number of losses at node 7" to be one and at node H to be two.
The total number of losses, Loss(G, S), is thus three.
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Fig. S2. Deep coalescence and extra lineages. (a) Input gene tree G and species tree .S, along with the mapping from G to S. (b) The embedding of the
gene tree GG into the species tree S implied by the mapping. According to this embedding, the edge {X, Y} of the species tree has two gene tree lineages
passing through it. Thus, the number of extra lineages at edge {X, Y}, i.e., EL(G, S,Y), is one. Since none of the other edges of the species tree has extra
lineages, the total number of extra lineages in S, i.e., EL(G, S), is one.

2) If Y = SPRy(v,z) where ¢ <y a/, and S” = Stretch(G, S’, g) = Stretch(G, S”, g).
SPRy (v, pa(z)), then, o Part 1(c): In this case, Mg/(9) = Mg (9) =

a) Stretch(G,S’,g) = Stretch(G, SPRy(v,d’),g) if lcasu(lz;a’), MS’(Q/)/ = MS/”(QI) = b, an.d
r € Chy(a'), and Mgi(¢") = Mgi(g”") = do. Now since b is
b) Stretch(G S/’ 2) - Stretch(G,S", g) + 1 other- a node in the pruned subtree N,, we must have
wise. ds'(Mg(g),b) = dgv(Mgr(g),b) + 1 and, conse-

quently, Stretch(G,S’, g) = Stretch(G,S"”, g) + 1.

e Part 2(a): If * € Chy(a') then we must have
Mgi(g) Mgi(g") = da and Mg/(g') = b
Thus, Stretch(G,S’,g) = dg/(a’,b). Now, let T' denote
the tree SPRy(v,a’), then we must have Mr(g) =
parp(a’), Mr(¢") = o and Myp(¢’) = b. Thus,
Stretch(G,T,g9) = dr(parp(a’),b) + 1. Finally, ob-

Proof: First, observe that since g is blue, the mapping
Mr n(g) is well defined. Moreover, by the definition of tree
I', we must have @’ = Mp n(g) = c. Next, we prove the
correctness of each part separately.

e Part 1(a): For any ¢/ <y x <y u we must have
Msi(g) = pagi(z), Mg/(g') = b and Mg (g") = d'.

Also observe that the same holds for the case when z =
u. Thus, for each = such that @’ <y =z <y u, we have
ds/(Ms/(9), Msi(g')) = dsn(Msr(g), Ms»(g')) and
ds (Msi(g), Msi(g")) = dsn(Msr(g), Ms(g"))—1.
Part 1.(a) of the lemma follows immediately.

Part 1(b): In this case, we must have Mg/ (g) =
pay(x), Mg/(¢') = b and Mg (g") = o, and,
Mg (g) = pagn(x), Msi(g') = b and Mg (g") =
a'. Therefore, ds/(Mgi(g),b) = ds(Mgn(g),b) + 1
and dg: (Mg (g),a’) = dgv(Mgr(g),a’) — 1. Hence,

serve that dg/(a’,b) = dr(par(a’),b) + 1, and hence,
Stretch(G, S’, g) = Stretch(G, T, g).

Part 2(b): For any = <y da/, we must have
Mg (9) = Mg(g") = o and Mg/(g') = b
Since b is a node in the pruned subtree N, and in
this case © <y y for y € Ch(a’), we must have
ds/(MS/(g),b) = ds//(./\/ls//(g),b) + 1 and, conse-
quently, Stretch(G,S’, g) = Stretch(G,S", g) + 1.



Definition of TBR operation
In order to define a T'BR operation formally, we need the

following definition.

Definition SI (RR operation): Let T be a tree and
x € V(T). RR(T,x) is defined to be the tree T, if
x = rt(T). Otherwise, RR(T,x) is the tree that is obtained
from T by (i) suppressing r#(T), and (ii) subdividing the
edge {pa(x),x} by a new root node.

Definition S2 (TBR operation): For technical reasons we
first define for a tree T the planted tree ®(T) to be the
tree obtained by adding an additional edge, called root edge,
{p,rt(T)} to T.

Let T be a tree, e = (u,v) € E(T) and X,Y be the
connected components that are obtained by removing edge
e from T where v € X and u € Y. We define TBRr (v, z,y)
for x € X and y € Y to be the tree that is obtained from
®(T) by first removing edge e, then replacing the component
X by RR(X,x), and then adjoining a new edge f between
' =r(RR(X,z)) and Y as follows:

1. Create a new node y’ that subdivides the edge (pa(y),y).
2. Adjoin the edge f between nodes =’ and 7/'.

3. Suppress the node u, and rename =’ as v and y’ as u.

4.  Contract the root edge.



