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Abstract— A desirable property of path planning for robotic
manipulation is the ability to identify solutions in a suffi-
ciently short amount of time to be usable. This is particularly
challenging for the manipulation problem due to the need to
plan over high-dimensional configuration spaces and to per-
form computationally expensive collision checking procedures.
Consequently, existing planners take steps to achieve desired
solution times at the cost of low quality solutions. This paper
presents a planning algorithm that overcomes these difficulties
by augmenting the asymptotically-optimal RRT" with a sparse
sampling procedure. With the addition of a collision checking
procedure that leverages memoization, this approach has the
benefit that it quickly identifies low-cost feasible trajectories
and takes advantage of subsequent computation time to refine
the solution towards an optimal one. We evaluate the algorithm
through a series of Monte Carlo simulations of seven, twelve,
and fourteen degree of freedom manipulation planning prob-
lems in a realistic simulation environment. The results indicate
that the proposed approach provides significant improvements
in the quality of both the initial solution and the final path,
while incurring almost no computational overhead compared
to the RRT algorithm. We conclude with a demonstration of
our algorithm for single-arm and dual-arm planning on Willow
Garage’s PR2 robot.

I. INTRODUCTION

Motion planning algorithms intended for manipulation
tasks must quickly provide plans that not only obey the
constraints embedded in the environment, but also take ad-
vantage of the full capabilities of the platform in order for the
robot to perform challenging tasks in cluttered environments.
Along with the requirement of generating paths that leverage
the full maneuverability of the platform in some optimal
sense, at least two other major challenges play a fundamental
role in most manipulation planning tasks.

Firstly, the configuration space of most manipulation
platforms is inherently high-dimensional. Robotic arms are
typically equipped with joints that result in as many as ten
degrees of freedom, making algorithms based on a naive a
priori discretization of the configuration space impractical.
Secondly, as close proximity to certain obstacles is funda-
mental for manipulation, e.g., for the purpose of grasping, the
planning process requires high-precision collision checking
of potential trajectories. Often achieved by creating a fine
mesh of the manipulator and its surroundings, these collision-
checking procedures incur significant computational costs.
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(a) RRT (b) BT+RRT*

Fig. 1. Given the goal of taking both arms of the PR2 from an initial pose
underneath the table to the pre-grasp pose with the end effectors near the
mug, (a) the RRT typically results a plan involving unnecessary actuation
of several joints while (b) our method identifies more efficient plans.

In light of the first challenge, sampling-based algorithms
have been shown to generate solutions swiftly in high-
dimensional configuration spaces [1]. Arguably, one of the
most widely-used algorithms of this class is the Rapidly-
exploring Random Tree (RRT) algorithm [2], which grows a
search tree starting from the initial configuration by adjoining
states sampled randomly from the configuration space.

Most sampling-based algorithms are probabilistically com-
plete, i.e., the probability that the algorithm finds a solution,
if one exists, converges to one as the number of samples
approaches infinity [1], [2]. Indeed, the probability that the
algorithm fails to find a solution, when one exists, typically
decays to zero very rapidly [2], [3]. The RRT algorithm
exhibits this property, efficiently finding an initial feasible
solution. However, the algorithm often provides solutions
that result in maneuvers that unnecessarily actuate a large
number of the platform’s joints, paths that traverse round-
about trajectories to reach nearby goal configurations, and
solutions that require jerky movements. To alleviate this
problem, it is common for the solutions returned by the
RRT algorithm to be post-processed, e.g., using smoothing
algorithms [4]. Even though these methods usually improve
the quality of the path considerably, the improvements tend
to be local and such algorithms fail to guarantee that the
resulting path is an optimal solution in any sense.

Recently, Karaman and Frazzoli [5] have shown that
the probability that the RRT algorithm converges to an
optimal solution is zero. In the same paper, they propose
an alternative method, the RRT*, an incremental sampling-
based algorithm with the asymptotic optimality property, i.e.,
almost-sure convergence to an optimal solution. Moreover, it
was shown that the RRT* algorithm achieves the asymp-
totic optimality absent from the RRT, without incurring



a substantial computational overhead. These properties of
RRT* provide substantial benefits for manipulation planning.
Namely, they enable the planner to quickly find a feasible
motion plan and to take advantage of remaining computation
time to improve the plan, monotonically converging to the
global optimum.

In this paper, we leverage the asymptotic optimality
property of the RRT* algorithm to provide close-to-optimal
solutions for path planning for manipulation platforms with
high-dimensional configuration spaces. We present an imple-
mentation of the RRT* that significantly reduces the number
of collision checks and, therefore, the computational effort,
while still considering numerous paths at every iteration,
assuring almost-sure convergence to an optimal solution. We
extend this implementation with the Ball Tree algorithm [6]
and a memoization technique to improve the performance of
the algorithm. Our Monte Carlo evaluations and experimental
results on Willow Garage’s PR2 platform show that our
algorithm is able to plan in high-dimensional configuration
spaces, providing significant improvements in the quality of
the path without incurring substantial computational over-
head, when compared to the RRT.

II. RELATED WORK

The robot motion planning problem has been widely stud-
ied for at least three decades [7]. Although the problem has
been shown to be computationally challenging [8], several
practical approaches have been proposed. Most recently,
algorithms that take the quality of the solution into account
have received significant attention.

A popular approach is to apply a variant of optimal graph
search algorithms like A* to a discretization of the config-
uration space that is generated offline [9]. Such algorithms
have been successfully implemented on robotic cars [10],
and very recently applied to manipulation planning problems
involving a six-dimensional configuration space [11]. These
algorithms, however, are complete and optimal only with
respect to the resolution of this discretization. Moreover, the
number of discretization points scales exponentially with the
number of degrees of freedom, making them impractical for
manipulation platforms with a large number of joints.

A more recent line of research has been the investigation of
efficiently generating smooth trajectories using, for instance,
gradient descent [4] and stochastic optimization [12], which
have been applied to solving planning problems for manipu-
lation tasks involving up to seven-dimensional configuration
spaces. However, these algorithms are optimal only locally,
and are designed for a special class of cost functions that
only considers smoothness.

The approach proposed in this paper is globally optimal
for a wide class of cost functions, and leverages the efficiency
of sampling-based algorithms in high-dimensional configu-
ration spaces. It also has an anytime flavor in the sense that
the proposed algorithm provides a feasible solution quickly,
and monotonically improves the solution towards an optimal
one in the remaining computation time.

III. PROBLEM DEFINITION AND ALGORITHMS
A. Problem Definition

Let X C RY, referred to as the configuration space, be a
compact set. The elements of X are called configurations.
Let Xops, Xgoa1 C X be open sets, called the obstacle region
and the goal region, respectively. The set defined as Xy :=
X \ Xobs is called the obstacle-free space. A path in X is
a continuous function o : [0,1] — X. The path o is said to
be collision-free, if o(7) € Xgee for all 7 € [0,1]. The set
of all collision-free paths is denoted by Yfce.

Given an initial configuration zj,;;, an obstacle region
Xobs, and a goal region Xgoa1, the motion planning problem
is to find a collision-free path o : [0,1] — Xfe that starts
from the initial configuration o(0) = ;i and reaches the
goal region o (1) € Xgoal.

Let ¢ : Ygee — R be a cost functional that maps each
collision-free trajectory to a non-negative cost. The optimal
motion planning problem is to find a collision-free path o™ :
[0,1] = Xfee that solves the motion planning problem, and
moreover minimizes the cost functional ¢(-), i.e., ¢(c*) =
infyres,., (o).

B. RRT algorithm

The RRT algorithm was proposed by LaValle and
Kuffner [2] as an incremental sampling-based motion plan-
ning algorithm. In this section, we first describe some
primitive procedures that govern the RRT, and then provide
the RRT algorithm in our notation.

Sampling: The Sample procedure returns independent
uniformly distributed samples from the obstacle-free space.

Collision Checking: Given a path o : [0,1] — X, the
CollisionFree(o) procedure returns true iff o is collision-
free, i.e., 0(T) € Xgee for all 7 € [0, 1].

Steering: Given two configurations z,2’ € X, the
Steer(x,a’) procedure returns a path o : [0,1] — X that
connects x and 2/, i.e., 0(0) = x and (1) = 2’. The Steer
procedure used in this paper does so with a straight path,
ie,o(r)=(1—7)x+ 72 forall 7 €[0,1].

Nearest Vertex: Given a set V' C X of configurations and
a configuration z € X, the Nearest(V, z) procedure returns
the configuration in V' that is closest to = with respect to the
Euclidean norm, i.e., argmin,, o ||z’ — z||.

Finally, in the description of all algorithms to follow,
each set A is equipped with add and remove, which add
and remove elements from A, i.e., A.add(a) corresponds to
setting A to AU {a}.

Algorithm 1 presents the RRT algorithm. The algorithm
maintains a tree, denoted as T = (V, E), where V. C X
and £ C V x V are called the sets of vertices and edges,
respectively. Initially, the set vertices of vertices includes
only the initial configuration zj,;; and the set of edges is
empty (Line 1). In each iteration (Lines 2-8), the algorithm
samples a new configuration Zpe, from Xge (Line 4),
computes the verteX Tpearest that is closest to Tyey (Line 4),
and generates a path o that connects Zpearest and Znew
(Line 5). If this path is collision-free (Line 6), then the new
vertex is added to the tree 1" as a child of xc, (Lines 7-8).



Algorithm 1: The RRT Algorithm

Algorithm 2: The RRT* Algorithm

1V {Ziith; E+ 0; T+ (V,E);
2 for i =11t N do

3 Znew <— Sample(i);

4 Tnearest Neares‘t(‘/’ «Tnew);
5 g Steer($new, xnearest);

6 if CollisionFree(o) then

7 Vadd(lvnew);

8 L E.add( (J,’nearest» xnew) );

9 return T = (V, E).

C. RRT* Algorithm

The RRT*, first introduced by Karaman and Frazzoli [5],
is an incremental sampling-based motion planning algo-
rithm that provides an asymptotic optimality guarantee, i.e.,
almost-sure convergence to optimal solutions, which the RRT
algorithm lacks, without incurring substantial computational
overhead. In this section, we present the RRT* algorithm
along with a set of modifications tailored to reduce the
number of calls to the CollisionFree procedure, after
introducing some extra primitive operations employed by the
RRT* algorithm.

Near Vertices: Given a finite set V' C X of configurations
and a configuration « € X, roughly speaking, the Near(V, x)
procedure returns the set of all configurations in V' that are
close to x, where we define closeness as follows. Letting
n := |V| be the number of configurations in V, we define
Near(V,z) := {2/ € V : ||/ —z| < 'y((logn)/n)l/d}7
where « is a constant independent of n [5]. In other words,
Near(V, z) is the set of all configurations in V" that lie inside
a ball of volume O((logn)/n) centered at x.

Lists and Sorting: A list L is an ordered set of elements.
Just like sets, each list L is equipped with the L.add(a)
method. We will also consider lists of cost, configuration,
and path triplets, i.e., triplets of the form (¢;, x;, 0;), where
¢i € Ryo, ; € X, and 0; € Ygee. Given a list L of such
pairs, the L.sort() method sorts the elements of L according
to their cost in the ascending order. When the algorithms
iterate through the list’s elements, they do so respecting the
list ordering.

Cost Functional: Given a vertex x of the tree maintained
by the RRT* algorithm, we let Cost(z) be the cost of the
unique path that starts from the root vertex xi,;; and reaches
z along the vertices of the tree. With a slight abuse of
notation, we denote the cost ¢(o) of a path o : [0,1] — X
as Cost(co) for notational simplicity.

Algorithm 2 outlines the implementation of the the RRT*
algorithm, specifically tailored to reduce the number of
calls to the CollisionFree procedure. In what follows, we
present the algorithm.

Similar to the RRT algorithm, the RRT* iteratively main-
tains a tree structure, with four key phases.

In the first phase, the RRT* algorithm samples a new
configuration ey from Xpee (Line 3), and computes the
set X ear Of all vertices that are close to Zpey (Line 4). If
Xhear 18 an empty set, then X, is updated to include the

1 Ve A{zmih E+ 0, T+ (V,E);

2 for i =11t N do

3 Znew <— Sample(i);

4 Xnear < Near(V, Tnew);

5 if Xyear = 0 then

6 L Xnear < Nearest(V, Tnew);

7 Lyear + PopulateSortedList(Xnear, Tnear);
8 Zparent < FindBestParent(Lncar, Tnew);

9 if Zparent 7 NULL then

10 V.add(Znew);

11 Eadd( (xparenty xnew) )s

12 E + RewireVertices(E, Xyear, Tnew);

13 return T = (V, E).

Algorithm 3: PopulateSortedList(Xyear; Znew)

1 Lnear < 0;

2 for zhear € Xnear do

3 Onear < Steer(xneary Crnew);

4 Cnear < COSt(Znear) + Cost(o);
5 Lnear-add( (Cnear7 Tnear; Onear );

6 Lnear-sort();
7 return Lycar;

Algorithm 4: FindBestParent(Lyear, Tnew)

1 for (Cneah Tnear, Unear) S L do
2 if CollisionFree(onear) then
3 L return Toear;

4 return NULL

Algorithm 5: RewireVertices(E, Lycar; Tnew)

1 for (Cnear7 Tnear, U'near) €L do

2 if COSt(mnew) + C(Unear) < COSt(mnear) then
3 if CollisionFree(onear) then

4 ZToldparent < Parent(E, Z’near);

5 E.remove( («:Coldparean xncar) );

6 Eadd( (xll€W7 mnear) );

7 return E

vertex in the tree that is closest to x,q (Lines 5-6).

In the second phase, the algorithm calls the
PopulateSortedList(Xyear; Tnear) procedure (Line 7).
This procedure, given in Algorithm 3, returns a sorted triplets
of the from (cnear;Znears Tnear), fOr all Znear € Xnear
where (i) opear 18 the straight path that connects e,y and
Tnew and (i1) Cpear 1S the cost of reaching x,.y by following
the unique path in the tree that reaches Z,e.r and then
following opear (see Line 4 of Algorithm 3). The triplets of
the returned list are sorted according ascending cost. Note
that at this stage, the paths oy, are not guaranteed to be
collision-free.

In the third phase, the RRT* algorithm calls the
FindBestParent procedure, given in Algorithm 4, to de-
termine the minimum-cost collision-free path that reaches
Tnew through one of the vertices in X,,..,. With the vertices



presented in the order of increasing cost (to reach Zpjear),
Algorithm 4 iterates over this list and returns the first vertex
Tnear that can be connected to x,., With a collision-free
path. If no such vertex is found, the algorithm returns NULL.

If the FindBestParent procedure returns a non-NULL
verteX Zparent, the final phase of the algorithm inserts
ZTnew into the tree as a child of Zparens, and calls the
RewireVertices procedure to perform the “rewiring” step
of the RRT* [5]. In this step, the RewireVertices proce-
dure, given in Algorithm 5, iterates over the list Lye,, of
triplets of the form (Chear; Znear, Onear). If the cost of the
unique path that reaches x,.,, along the vertices of the tree
is higher than reaching it through the new node ey, then
Tnew 1S assigned as the new parent of Zyeqr.

This implementation of the RRT* is only slightly different
than that presented in [5], preserving both computational
efficiency and the asymptotic optimality. This implemen-
tation is specifically tailored for cases when the collision
checking procedure is computationally expensive. Our im-
plementation avoids calling this procedure several time in
two places. Firstly, inside the FindBestParent procedure,
the CollisionFree procedure is called until a vertex xpear
that can be connected to x,., Wwith a collision-free path
is found. The authors have empirically noticed that such a
vertex is most often found quickly without iterating through
the whole list. Secondly, in the RewireVertices procedure,
the CollisionFree procedure is called only if the cost of
the resulting path improves the cost to reach to a particular
verteX Tpear € Xnear-

D. Ball Tree Algorithm

The Ball Tree algorithm, presented by Shkolnik and
Tedrake [6], is a sampling-based method similar to the RRT
that approximates connected regions of free space with balls
instead of points. Treated as sets of reachable points, the
algorithm uses these balls to perform rejection sampling,
resulting in trees that are sparser than those of the standard
RRT while maintaining probabilistic completeness.

Algorithm 6 outlines the “inexact” version of the Ball Tree
algorithm. A tree is grown in a similar manner as the RRT.
Each node in the Ball Tree consists of a ball in configuration
space, and is parameterized by the location of the center of
the ball and its radius. The ball approximates a portion of
configuration space that is reachable from the center of the
ball, as the algorithm makes the implicit assumption that
any point within a ball is reachable from the ball’s center,
until proven otherwise. An edge in the tree corresponds to
a feasible (verified collision-free) action from the center of
one ball to the center of the next ball.

When a node is added to the tree, the algorithm initializes
the radius of it’s corresponding ball to ry. In our implemen-
tation, 1 is co. The method performs rejection sampling to
find a point in configuration space that is not within any of
the balls in the tree. Rejected samples are collision checked.
If a collision is found, the radius of the nearest enclosing ball
is reduced to the distance between the sample and the center
of the ball. Note that verifying a single point for collision is
relatively inexpensive.

Algorithm 6: The Ball Tree Algorithm

1V A{Zinit,r =0} B« 0; T+ (V,E);

2 for i=11t0 N do

3 while frue do

4 Tnew ¢ Sample(i);

5 if InsideBall(Znew,l’) then

6 if | CollisionFree(Znew) then

7 Znearest < NearestBall(V, Znew);
8 L TrimRadius (xnearesh Hxnew — Tnearest H),
9 else

10 | break;

11 Tnearest < NearestBall(V, Tnew);

12 0 4 Steer(Tnew, Tnearest);

13 if CollisionFree(c) then

14 V.add(Znew, 70);

15 L E-add( (xnearesm xnew) );

16 else

17 L TrimRadius (mncarcsh Hxncw — Tnearest ”),

18 return T = (V, E).

When a sample is found to lie outside all balls in the tree,
the Steer procedure extends the tree towards the accepted
sample. If a collision-free path is found, a ball centered
around the sample point is added to the tree. On the other
hand, if a collision is encountered, the radius of the parent
node, Tpearest, 1S trimmed to be equal to the length of the
collision-free portion of the path.

In this manner, the Ball Tree algorithm fills easy-to-reach
neighborhoods with balls. Using rejection sampling, the algo-
rithm focuses its attention on expanding towards unexplored
(or previously unattainable) regions of configuration space.

E. Memoized Collision Checking

Memoization [13] is a technique commonly used to avoid
redundant function calls by recording results of previous
queries. We implement this technique in the CollisionFree
procedure to alleviate the computational burden typically
associated with checking paths for collisions.

The MemoizedCollisionFree(z) procedure estimates
the collision status of a configuration z. To do so, the proce-
dure maintains and queries a cache of collision checks that
takes the form of a hash table. The HashIndex(x) function
generates the configuration state’s index within this table. In
the case of a manipulator, this function incorporates an array
of resolution values for each joint to discretize its range of
motion. Higher resolutions are assigned to joints with move-
ments that result in significant changes to the position of the
end effector. When queried, MemoizedCollisionFree(x)
uses the index returned by HashIndex(z) to search for the
matching cell in the hash table. If the cell is populated, the
stored value is returned. If no match exists, the procedure
calls CollisionFree(x) and stores the result.

This procedure results in a non-conservative approxima-
tion of a precise collision checker and is used as an admissi-
ble heuristic. In this paper we verify the final solutions with
the regular CollisionFree procedure before execution.



Fig. 2. The planner is tasked with finding a collision-free solution from (left) an initial pose in which the arm is under the table to (right) the goal pose.

F. BT+RRT*: RRT* with Ball Trees and Memoization

We propose a manipulation planning algorithm that offers
two compelling advantages. Firstly, it is noticeably faster
than conventional planners at identifying an initial, low-cost,
feasible path to the goal in configuration space. Secondly,
the algorithm is uniquely able to take advantage of available
computation time to refine this solution towards an optimal
one. We achieve these characteristics by combining the Ball
Tree algorithm, which maintains sparse trees to efficiently
reach the goal, with the RRT* algorithm, presented in Sec-
tion III-C, which provides the anytime refinement of the tree.
The memoized collision checking procedure, meanwhile,
enables efficient implementation of the Ball Tree sampling
and steering functions.

More precisely, the algorithm operates as described in
Algorithm 2 subject to the following modifications. Firstly,
each call to the CollisionFree procedure is replaced with
the MemoizedCollisionFree process. Among them are
those calls within the RRT* algorithm as well as the Ball
Tree, including the collision checking that is performed as
part of the rejection sampling for the “inexact” version of the
algorithm. Secondly, until the first feasible solution is found,
the sampling step (Line 3) is replaced with Lines 2-9 of
the Ball Tree algorithm (Algorithm 6) and the TrimRadius
procedure (Line 16 of Algorithm 6) is executed whenever
the MemoizedCollisionFree(o) procedure fails, i.e., the
path o is not collision-free.

In the next section, this approach is evaluated in Monte-
Carlo simulation experiments and compared with other ap-
proaches, including both the RRT and the RRT* algorithms.

IV. RESULTS

In this section, we evaluate the effectiveness of our algo-
rithm through both simulation as well as through experiments
on the PR2 robot. We first perform a Monte Carlo study
to analyze the algorithm’s performance on two different
planning problems for the PR2 robot. The first involves
finding an collision-free path through configuration space
that brings a single, seven degree of freedom arm to a
pre-grasp pose. In the second scenario, we consider jointly
planning trajectories for both arms. The experiments were
performed in the OpenRAVE simulation environment [14].

A. Single-Arm Scenario (Seven Degrees of Freedom)

In the first scenario, we simulate an environment in which
the PR2 is at rest with its left arm underneath a table as

depicted in Figure 2. The task is to plan the trajectories of
the seven joints that bring the left arm from this initial pose
to a pre-grasp pose above the table. The primary challenge
is to negotiate the narrow region of configuration space that
is induced by the close proximity of the table.

We applied our planning method to this problem along
with the RRT, the RRT*, and a variant of our algorithm in
which rewiring takes place only after an initial solution is
found (referred to as the BT/RRT*). Each planner performed
memoized collision checks and ran for a total of 4000 itera-
tions. We performed a total of 100 Monte Carlo simulations
for each algorithm.

TABLE I
SEVEN DEGREE OF FREEDOM MONTE CARLO RESULTS

BT+RRT™ RRT RRT™ BT/RRT

Success Rate (100 runs) 100.00% 87.00% 99.00% 100.00%
) - Time (5) 252 3.07) 9775 (12.52) 7.92 (10.97) 251 (2.48)
First Solution Cost 761 210 | 1473 (549 811 (1.67) | 17.99 (5.63)
) - Time (5) 7704 (449) | 5496 (4.75) | 7185 (395 | 7921 (441
Final Solution Cost 357053 | 1473 G40 | 565 050 | 567030
Time per lteration (ms) 1933 (1.13) | 1378 (119 | 1951 (099) | 19.85 (L.12)

Table I summarizes the performance of the different mo-
tion planning algorithms. All four planners find a feasible
solution in this seven-dimensional configuration space in the
majority of the runs. Our method is successful for all of the
100 simulations as is the other planner that utilizes the Ball
Tree algorithm. The RRT* is successful in all but one run
while the standard RRT planner succeeds 87% of the time.
As we discuss later, the improved performance of the RRT*
is a consequence of our variation whereby we connect a
sample with the lowest cost node in the tree that is collision
free. This has the effect of increasing the number of nodes
in the tree, improving the likelihood of finding a solution.

The algorithms differ more significantly with regards to the
time required to find a solution and its corresponding cost.
The RRT and RRT* required a similar amount of time to find
an initial solution, with the RRT* being slightly faster with
an average time of 7.92 seconds as opposed to 9.75 seconds.
We attribute this improvement to the memoized collision
checking, without which the average time required for the
RRT* to find the first solution is 18.96 seconds compared to
14.22 seconds for the RRT. Not surprisingly, however, the
RRT* yielded solutions with significantly lower cost (mean
of 8.11 radians) than those of the RRT (mean of 14.73 radi-
ans). Meanwhile, with an average time of 2.51 seconds, the
Ball Tree-only algorithm required far less time to identify
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Fig. 3. Solution cost as a function of computation time, averaged over the
set of single-arm Monte Carlo simulations for the four planning algorithms.
Vertical bars indicate standard deviation over the 100 runs while the open
circles denote the average completion time. The bottom figure presents an
inset view that compares the mean behavior of the three algorithms that
utilize the RRT*.

an initial solution, in exchange for a greater solution cost
(mean of 17.99 radians). In contrast, our algorithm found
solutions in the same amount of time while also consistently
outperforming the other planners in terms of cost. Of the
100 Monte Carlo runs, our method returned solutions with a
mean cost of 7.61 radians in an average of only 2.52 seconds.
This performance was consistent, as demonstrated by the low
variance in the first solution time and the corresponding cost.

Upon finding the an initial solution, our algorithm forgoes
the rejection sampling of the Ball Tree and proceeds to build
and rewire the tree. In this way, the algorithm attempts to
utilize available computation time to improve the quality
of the solution. In essence, by effectively switching to an
RRT*, one would expect our algorithm and the Ball Tree-
only variation to behave similarly to the RRT* given enough
iterations. Indeed, this is what we see, as Figure 3 indicates.
The plot depicts the solution cost as a function of time
averaged over the Monte Carlo simulations for each of the
four planners. The vertical bars depict the standard deviation
of the cost. Our algorithm exhibits convergence very similar
to that of the RRT*, with the advantage of an earlier initial
solution time. This is evident in the lower plot in which the
two cost profiles are the same, but with that of our algorithm
shifted forward in time. The final solution cost after 4000
iterations is nearly identical for these two algorithms as well
as the BT/RRT™, as reflected by the values in Table I. While
slightly lower, the average cost of the final trajectory for
the BT+RRT" is nearly identical to that of the RRT* and
the BT/RRT* and exhibits similarly low variance. The RRT,
on the other hand, does not refined the initial solution and
generates greater average cost.

While our algorithm is faster at finding initial solutions
whose cost is similar to the RRT™, this does not come at the
expense of increased computational overhead. The average

time for each iteration is nearly identical to that of the RRT*
and of the BT/RRT™ algorithm.

B. Dual-Arm Scenario (Twelve Degrees of Freedom)

Next, we consider jointly planning the motion of both
robot arms to achieve a pre-grasp pose. We omit the roll
joint of each wrist, resulting in a twelve-dimensional search
space. In this scenario, depicted in Figure 4, the robot
starts with both arms below the table and is tasked with
finding a collision-free trajectory that ends with both grippers
positioned to execute a grasping maneuver. We performed
100 simulations of each of the four planning algorithms,
each to a total of 6000 iterations. All simulations utilized
the memoized collision checking.

Fig. 4. In the second scenario, the planner is tasked with finding an
collision-free trajectory from (left) an initial pose in which both arms are
under the table to (right) a pre-grasp goal pose.

TABLE 11
TWELVE DEGREE OF FREEDOM MONTE CARLO RESULTS

BT+RRT* RRT RRT* BT/RRT

Success Rate (100 runs) 100.00% 58.00% §5.00% 100.00%
- - Time (5) 974 (12.84) 7992 (34.05) 74.61 (32.09) 894 (11.06)
First Solution | —~r 559 016 | 1976 669 87T 030 | 03 07
- - Time (5) 13508 (15.08) | 11241 (19.46) | 13138 (14.49) | 16528 (28.16)
Final Solution | —~3 753 (1.21) 1976 (5.69) 797 (1.70) 8383 (1.73)
Time per lteration (ms) 7258 (2.50) 1877 _(3.25) 2193 (242) 3759 _(4.70)

Table II depicts the results of the Monte Carlo simulations.
Both algorithms that utilize the Ball Tree were able to find
a solution in each run, while the RRT and RRT* succeeded
58% and 85% of the time, respectively. We again attribute
the higher success rate for the RRT* to its choice of the best
collision-free parent when adding nodes. As with the seven
degree of freedom experiments, both the BT/RRT* algorithm
and our planner identify initial solutions in significantly less
time than the RRT and RRT*. The average cost of the first
solution that our algorithm returns, however, is consistently
lower and similar to that of the initial RRT* solution.

The algorithm then proceeds to use the available com-
putation time to refine this solution. Figure 5 depicts the
average improvement in cost as a function of time along with
an indication of the standard deviation. We again see that
our algorithm behaves similarly to the RRT* with regards
to solution cost. After the maximum number of iterations,
our method yields final costs that are slightly lower than the
average RRT* cost, with similarly low variance. The results
suggest that the same is true of the BT/RRT* planner and we
expect that the three algorithms would converge if given a
sufficient number of iterations, as in the single-arm scenario.

C. Dual-Arm Scenario (Fourteen Degrees of Freedom)

In the final set of Monte Carlo evaluations, we again
consider the dual-arm scenario with the addition of the roll



——BT+RRT*
—RRT
251 —RRT"
.y =-==-BT/RRT*
é 201 \
B15 i
3 R, j—
Stor T T T et B SRPPIIY
I T T T T
s i
0 Il Il Il Il Il Il Il Il
0 20 40 60 80 100 120 140 160
Time (seconds)
Fig. 5. Solution cost as a function of computation time for the dual-

arm planning problem with twelve degrees of freedom. The plots reflect
the average over the set of Monte Carlo simulations for the four planning
algorithms. Vertical bars indicate standard deviation over the 100 runs while
the open circles denote the average completion time.

joint for each wrist, giving a total of fourteen degrees of
freedom. We performed 100 simulations of the four planners,
allowing each to run for a total of 10,000 iterations.

TABLE III
FOURTEEN DEGREE OF FREEDOM MONTE CARLO RESULTS

BT+RRT* RRT RRT* BT/RRT*

Success Rate (100 runs) 100.00% 75.00% 59.00% 99.00%
First Sofution Time (5) 34.76 (60.06) 70.78 (82.90) | 106.20 (108.65) 2381 (38.79)
0o Cost (rad) 982 (2.99) 2100 (7.69) 1003 (26D 7546 (9.08)
- - Time (5) 374.65 (46.46) | 263.16 (30.40) | 380.82 (34.20) | 40600 (39.20)

Final Solution

Cost (rad) 864 (1.95) 2100 (7.69) 928 (.14 1058 (232
Time per lteration (ms) 3750 (4.65) 2634 (3.04) 3812 (342 30.64 (5.93)

Table III presents the simulation results. With a maximum
of 10,000 iterations, the RRT* was able to find a solution
in 59 of the runs and the RRT was successful in only 25.
The BT/RRT* planner identified a solution in all but one
run while our algorithm found a trajectory every time. Much
like the seven and twelve degree of freedom simulations, the
BT+RRT* and BT/RRT* Ball Tree planners return an initial
solution much sooner than the RRT and RRT*. On average,
our algorithm takes longer than the BT/RRT* to isolate
an initial solution, though with the benefit of a significant
improvement in cost that resembles that returned much later
by the RRT*, both in terms of mean cost and variance. After
10,000 iterations, the BT+RRT* yields an average trajectory
cost slightly better than that of the RRT* and BT/RRT*.

D. PR2 Experimental Validation

In addition to the Monte Carlo simulations, we utilized
our algorithm to execute both the single-arm and dual-arm
scenarios on the actual PR2 platform. We demonstrated our
planner together with the standard RRT approximately a
dozen times for each of the two cases. In the single-arm
scenario, both algorithms were permitted 1000 iterations,
while the dual-arm application considered 2000 iterations.
Figure 1(b) presents a time lapse image that shows the typical
trajectories that result from our planner. We compare this
with the RRT solutions that typically require excessive arm
motion. The consistency with which our algorithm plans
efficient paths through configuration space supports the small
variance in the lower cost solutions found in the Monte
Carlo simulations. Videos that show single-arm and dual-arm
planning with our algorithm on the PR2 robot are available at
http://ares.lids.mit.edu/videos/manipulation/.

V. CONCLUSION

Incremental sampling-based motion planners, such as the
RRT, are able to identify feasible motion plans quickly, mak-
ing them appealing for manipulation. However, the solutions
returned by these planners are often far from optimal and
the exploration of the space is commonly sacrificed to avoid
computationally-expensive collision checking. This paper
described a sampling-based planning algorithm that leverages
the efficient planning capabilities of the Ball Tree algorithm
together with the asymptotic optimality provided by the
RRT*. Moreover, the algorithm delays checking paths for
collision until it is absolutely necessary and leverages mem-
oization to reduce its computation time. We employed Monte
Carlo simulations to evaluate the ability of this algorithm
to provide low-cost solutions for high-dimensional planning
problems in a timely fashion. We further demonstrated the
algorithm’s performance through experiments that involved
planning single and dual-arm trajectories on the PR2 robot.
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