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Abstract—In cooperative navigation, teams of mobile robots
obtain range and/or angle measurements to each other and
dead-reckoning information to help each other navigate more
accurately. One typical approach is moving baseline navigation,
in which multiple Autonomous Underwater Vehicles (AUVs) ex-
change range measurements using acoustic modems to perform
mobile trilateration. While the sharing of information between
vehicles can be highly beneficial, exchanging measurements
and state estimates can also be dangerous because of the risk
of measurements being used by a vehicle more than once;
such data re-use leads to inconsistent (overconfident) estimates,
making data association and outlier rejection more difficult and
divergence more likely.
In this paper, we present a technique for the consistent

cooperative localization of multiple AUVs performing mobile
trilateration. Each AUV establishes a bank of filters, performing
careful bookkeeping to track the origins of measurements and
prevent the use any of the measurements more than once.
The multiple estimates are combined in a consistent manner,
yielding conservative covariance estimates. The technique is il-
lustrated using simulation results. The new method is compared
side-by-side with a naive approach that does not keep track of
the origins of measurements, illustrating that the new method
keeps conservative covariance bounds whereas state estimates
obtained with the naive approach become overconfident and
diverge.
Index Terms—Cooperative Localization, Cooperative Navi-

gation, Sensor Fusion

I. MOTIVATION

As mobile robots become more affordable and reliable,
the use of a groups of many robots becomes more feasible.
While the primary reason to use a group of robots is often
to speed up tasks such as map building, or add redundancy,
more recently the concept cooperative navigation (CN) has
been explored. In CN a member A of the group obtains
exteroceptive measurements such as range or bearing (or
both) to another member B and uses these measurements
together with B’s own position estimate, obtained through a
status broadcast, to improve its own position. Robots often
broadcast status information to coordinate with one another
or to provide telemetry information to an operator and are
equipped with sensors which enable them to locate other
members. As a result, adding the CN capability often does
not require any extra hardware and represents a cost-effective
way to improve the navigation accuracy of the individual
vehicles.
With the price and size of Global Positioning System

(GPS) units having dropped significantly in the past two
decades, it is now possible to outfit each member of large
groups of robots with its own unit. Having access to very
accurate, absolute position information at rates of several Hz

Fig. 1. An Autonomous Underwater Vehicle (AUV) on the crane and two
Autonomous Surface Craft (ASC) on deck after a cooperative navigation
experiment. The GPS-derived position of the ASCs is obtained by the
submerged AUV through an acoustic modem. Using time-stamped messages
and globally synchronized clocks on all vehicles the AUV is also able to
determine its range to the ASC through time-of-flight measurements.

has simplified the robot navigation problem significantly for
many areas. There are, however, many environments where
GPS signals are either intermittently or not available at all.
This mostly affects robots operating indoors or underground,
but also those operating underwater such as AUVs. Vehi-
cles operating in these environments may occasionally have
access to absolute position information by surfacing for a
GPS update in the case of an AUV, or when the camera
on an indoor robot recognizes a landmark with a known
position [1]. In between these absolute position updates,
robots have to rely on dead-reckoning sensors. When relying
only on dead-reckoning sensors the uncertainty in their
position estimate grows without bound.
For scenarios where some members have intermittent

access to absolute position information, the uncertainty of
their position estimate may be significantly lower than the
position uncertainty of those that rely solely on dead-
reckoning for a long period of time. By broadcasting their
low-uncertainty position estimate, all receiving members of
the group, which also obtain a range or bearing measurement
to the broadcasting vehicle, are then able to improve their
own estimate.
When robot A uses the position estimate of another robot

B to update his own, their position estimates become cor-
related. Not taking these cross-correlations into account can



have a negative effect if there is a chain of updates back to B,
often leading to an overconfidence in B’s position, estimate
which then diverges as a result [2]. Various approaches
have been devised to either properly account for the cross-
covariance or to use very conservative uncertainty bounds
to avoid overconfidence. The resulting failure modes and
are outlined in later sections, but many of the algorithms
impose additional requirements which make them unfeasible
for many CN-scenarios.
Our approach requires that each robot includes additional

information within their status broadcast. The receiving
robots can then use this information to ensure that the cross-
covariances are properly accounted for. The approach does
not require centralized data storage and processing as all
updates are done locally on each vehicle using only data
from the broadcasting vehicle. It does not enforce a par-
ticular communication hierarchy or topology and individual
members can join and leave the group and do not need any
awareness of previous communications or the size of the
group. Unlike other methods, broadcasts do not need to be
received by all participating vehicles as each transmission
contains all the information which is required for a position
update which accounts for the cross-correlations.
The main motivation for our approach comes from work-

ing with AUVs (figure 1). In the harsh underwater envi-
ronment, an unreliable navigation estimate may result in
the loss of an expensive vehicle. When submerged, AUVs
have to rely on dead-reckoning sensors and the number
of surfacings for a GPS fix needs to be minimized to
save energy or maintain covertness in military applications.
Through CN, the surfacing of a single vehicle can then
benefit a large number of submerged vehicles. As submerged
vehicles can only communicate acoustically over a very slow
and unreliable channel [3], the approach can only rely on
unacknowledged broadcast-based communication. While the
underwater scenario enforces particularly hard constraints,
these constraints ensure that our approach works for many
other multi-robot applications outside a very controlled lab
environment.

II. RELATED WORK

Roumeliotis et al. have contributed a large body of work
to the field of CN. Early work relies on a central site for
data storage and processing [4]. With this setup, the authors
make useful insights into relationship between the number
of cooperating robots and the individual position uncertainty.
The result is an analytical expression for the upper bound on
the positioning uncertainty increase rate for the group [5]. In
another experiment, the central filter that keeps track of the
state and covariance of all vehicles is replaced by distributed
filters that run on the individual members. The exchange of
only local data is necessary, but as both vehicles are required
to transmit, this approach does not scale as well as others that
rely only on one-way broadcasts [6]. Caglioti et al. also use
a distributed filter approach. While they only require one-
way data exchange (broadcast), these broadcasts occur very

frequently and their method relies on perfect communication
as each vehicle is required to receive every broadcast.
The problem of fusing measurements from several sources

while properly keeping track of common information has
been addressed by Grime [7] and Nettleton [8]. Unlike
the work of Roumeliotis et al., they track the information
parametrization of the Gaussian rather than the standard
form. In the information form, the update step is sim-
ply an addition and joint information, which models co-
dependencies among different states, can be subtracted if the
communication topology is known.
A general approach to the problem of fusing correlated

estimates has been proposed by Julier and Uhlmann [9], [10].
Their Covariance Intersection (CI) algorithm fuses two dif-
ferent estimates for a random variable, each represented
by their estimated mean and covariance much like the
update step in the Kalman filter. The result is a posterior
covariance that guarantees consistency under the assumption
of Gaussian noise. Arambel et al. present an application
of the CI algorithm for a group of space vehicles, where
relative position measurements are communicated in a ring
topology [2]. Each of these works have examples of how
the state estimator can diverge if estimates are fused with
a simple Kalman update without accounting for correlation
among the estimates. A disadvantage of CI algorithm is that
it can only fuse two state estimates. Additionally, unlike
the standard Kalman Filter, it cannot perform a partial
update such as those that apply to vehicles that only have
a range or bearing sensor. As a result, robots that only
have a bearing sensor, such as a monocular camera, or have
only range information from time-of-flight-based techniques
cannot participate in a setup which relies on CI for the update
of position estimates.
The previous work presented thus far relies on the Kalman

Filter in its original and modified (CI) form, or its in-
verse, the information filter, to compute an estimate. Fox
et al. [11] use sample-based Markov techniques to per-
form cooperative localization. They represent the distribution
by a large number of Monte Carlo samples rather than
as a Gaussian distribution. This representation allows for
complex, multi-modal uncertainty distributions and avoids
problems with the linearization that is required for Kalman
Filter-based methods. Transferring the distribution between
vehicles requires a comparably fast communication channel
which might not always be available [12]. Their approach
also requires information exchange such that broadcast-based
approaches cannot be used, which further increases the
bandwidth necessary.
The remainder of the paper is structured as follows. In

section IV, we outline the assumptions we make for our
group of vehicles cooperating for localization. Section III
then gives a brief review of Extended Kalman Filter(EKF)-
based CN for the special case where only intra-vehicle range
measurements are available. Section V describes the Inter-
leaved Update (IU) algorithm that we propose to fuse intra-
vehicle range measurements together with status broadcasts
from other vehicles to update our own position estimate.



Section VI shows an example of the algorithm at work for a
group of vehicles over several time steps. Section VII shows
simulated results for a group of cooperating vehicles and
shows how the naive approach of not taking proper care
of cross-correlations leads to an overconfident (inconsistent)
position estimate. Section VIII presents the conclusions and
provides an outlook to future work.

III. EXTENDED KALMAN FILTER (EKF)-BASED
COOPERATIVE NAVIGATION

EKF-based approaches are the algorithms most commonly
used for CN. All EKF-based methods model the estimated
random variables as Gaussians, typically parametrized in
terms of their mean and covariance, and generally assume
that the sensor noise is zero mean, white noise. The short-
comings of these methods, such as the unimodal distribution
of the state estimate and the error introduced through the
required linearization, have given rise to alternative meth-
ods [11],[12],[13]. The EKF outlined below describes a vari-
ant that only uses range measurements for its updates. For a
more detailed description of the EKF and how to incorporate
bearing measurements or range/bearing measurement pairs
please refer to [14].
For EKF-based CN, we assume that all n vehicles Vi, i =

[1 . . . n] maintain a vector xi(k) = [xi(k), yi(k), zi(k)]T that
contains an estimate of their position at time k, and the
covariance matrix

P i(k) =
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describing the uncertainty associated with that estimate.

A. Prediction
Whenever vehicle i = 1 obtains proprioceptive measure-

ments u1(k) from its dead-reckoning sensors, x1(k) and
P 1(k) are propagated

x1(k + 1) = g(u1(k),x1(k)) (1)
P 1(k + 1) = G1(k + 1)P 1(k)GT

1 (k + 1)

+Q1(k + 1) (2)

where Q1(k +1) is a diagonal matrix where the elements
contain the variance of the proprioceptive sensor noise,
which is modeled as mean-free Gaussian noise andG1(k+1)
is the Jacobian containing the partial derivatives of g

∂g(u1(k + 1),x1(k))

∂x1(k)

B. Update
If vehicle 1 at a later time l receives a broadcast from ve-

hicle 2 that contains x2(l) and P 2(l) together with an intra-
vehicle range measurement r1,2(l), it uses this information
to update its estimate of its own position as follows:
First, it computes what the predicted range z1,2(l) between

the two vehicles would be, based on their estimated position.

z1,2(l) = ‖x1(l) − x2(l)‖2

The difference between the predicted measurement and the
measured distance z1,2(l)−r1,2(l) represents the innovation.
It then builds the combined covariance matrix

P 1,2(l) =

[

P 1(l) 0
0 P 2(l)

]

and computes the Jacobian H1,2(l) that contains the
derivatives of the range measurement with respect to the
position of vehicle 1 and 2 (time index l omitted on matrix
components).

H1,2(l) =
[

∂r
∂x1

∂r
∂y

1

∂r
∂z1

∂r
∂x2

∂r
∂y

2

∂r
∂z2

]

Using the residual covariance and the variance

S1,2(l) = H1,2(l)P 1,2(l)H
T
1,2(l) + σr

and σr associated with the exteroceptive (range) sensor
we compute the Kalman gain

K1,2(l) = P 1,2(l)H
T
1,2(l)S

−1
1,2(l)

that represents a weighting factor for how much the
measurement will affect the updated position. Using the
innovation z1,2(l)−r1,2(l) and the Kalman gain, the updated
position estimate is

x1(l) = x1(l) + K1,2(l)
(

z1,2(l) − r1,2(l)
)

(3)

and the combined covariance is

P 1,2(l) =

[

P 1(l) 0
0 P 2(l)

]

=
(

I6×6 − K1,2(l)H1,2(l)
)

P 1,2(l) (4)

from which we can extract the updated covariance estimate
for vehicle 1 P 1(l). Note that we also obtain an updated
estimate for the position and covariance of vehicle 2 P 2(l)
and x2(l).

IV. PROBLEM STATEMENT
We make the following assumptions with regard to our

group of vehicles.
Vehicles

The group consists of an arbitrary number of
vehicles. Vehicles are not required to maintain a
hierarchy, but each of them has a unique id. No
vehicle needs to be aware of the size of the group.

Sensors
Each vehicle needs to have proprioceptive sensors
to obtain dead-reckoning results and a single or sev-
eral exteroceptive sensors to obtain a range, bear-
ing or both to another vehicle. While covariance
intersection, the standard algorithm for consistent
data fusion, requires a range and bearing estimate,



the particular strength of our approach lies in its
ability to incorporate measurements from only one
such sensor.

Communication
Vehicle to vehicle communication is based on un-
acknowledged broadcast only. Our approach does
not require any vehicle to receive all messages that
were broadcasted.

V. THE INTERLEAVED UPDATE ALGORITHM
A. Initialization
For the Interleaved Update algorithm, each vehicle i at

time k now maintains a set X i(k) of state estimate vectors
together with a set Pi(k) of associated covariance matrices.
In the elements of X i(k) and Pi(k) the superscript q
indicates the filter consisting of the state x

q
i (k) and the

covariance P
q
i (k). As we will explain later, the maximum

size of the set is 2n where n is the total number of vehicles
cooperating for navigation.

X i(k) =
{

x1
i (k), . . . ,xq

i (k), . . . ,x2n

i (k)
}

Pi(k) =
{

P 1
i (k), . . . ,P q

i (k), . . . ,P 2n

i (k)
}

Before vehicle i receives information from any other vehicle
the only contents of X i(k) and Pi(k) are x1

i (k) and P 1
i (k).

X i(k) =
{

x1
i (k)

}

Pi(k) =
{

P 1
i (k)

}

B. Prediction
Each time vehicle i receives proprioceptive sensor read-

ings it uses the Kalman Filter prediction steps for state and
covariance (eq. (1) and (2)) to propagate x1

i (k) and P 1
i (k).

x1
i (k)

(1)
−→ x1

i (k + 1)

P 1
i (k)

(2)
−→ P

1
i (k + 1)

C. First Update
When vehicle i receives a broadcast from vehicle j at time

l, it first instantiates a second filter x2
i (l),P

2
i (l) by copying

the state and covariance matrix from x1
i (l),P

1
i (l) the forward

predicted version of the initial filter.

x2
i (l) = x1

i (l)

P
2
i (l) = P

1
i (l)

The vehicle also instantiates a matrix T i where each row
represents a filter and each column represents a vehicle
number. The entry in matrix T i(q, i) is the time when vehicle
i was last used to update filter q.
Using the Kalman update equations (eq. (3) and (4)), we

now only update x2
i (l) and P

2
i (l). After this update, our sets

X〉(l), Pi(l) and the matrix T i(l) look as follows.
All elements of column i in T i(l) are l as all filters are

forward predicted using (1) and (2) up to the actual time l.
Row 1 in T i(l) represents the filter which has never been

updated by any other vehicle and contains the initial state
forward predicted up to l.

X i(l) =
{

x1
i (l),x

2
i (l)

}

Pi(l) =
{

P 1
i (l),P

2
i (l)

}

T i(l) =

[

0 . . . l 0 . . . 0 0 . . . 0
0 . . . l 0 . . . l 0 . . . 0

]

↑ ↑
i j

D. Subsequent Predictions
The first prediction for vehicle i after the update, prop-

agates both filters using eq. (1) and (2) to X i(l + 1) and
Pi(l + 1) and all elements in column i in T i(l + 1) are set
to l + 1.

T i(l + 1) =

[

0 . . . l + 1 0 . . . 0 0 . . . 0
0 . . . l + 1 0 . . . l 0 . . . 0

]

↑ ↑
i j

Matrix T i therefore keeps track of which vehicles have been
used to update a particular filter as well as the age of the
updates. Predictions after l + 1 up to the next update are
propagated the same way, both filters are propagated and all
elements in column i of T i are set to the actual time. All
other columns remain unchanged.

E. Broadcast
Every time vehicle i sends out a broadcast, the transmitted

data consists out of X i, Pi and T i. By maintaining a state
x1

i on vehicle i which is continuously propagated and has not
been updated with information from vehicle j, we make sure
that a future broadcast from vehicle i received by vehicle j
contains a state which is not cross-correlated with vehicle j
and can therefore be used by vehicle j for an update.

F. Subsequent Updates
The general update case when vehicle i receives a broad-

cast from j after both vehicles have received broadcasts from
various other vehicles and have incorporated those to update
their navigation filters looks as follows.
We define Si as the set of allm vehicle ids which vehicle i

received updates from. Si not only contains the ids of which
vehicle i has directly received broadcasts from, but also those
ids which have been propagated to it through other vehicles.
The power set 2Si than contains all 2m possible subsets of
these ids. Each subset

A
1
i , . . . ,A

q
i , . . . ,A

2m

i ⊆ (2Si ∪ i) (5)

then corresponds to a filter maintained in x
q
i ,P

q
i which

maintains a state that has been updated by the ids in the
corresponding subsetAq

i and therefore has cross-correlations
with these vehicles. The information about which ids are in
the individual subsets is maintained in line q of T i as each
line in T i corresponds to a subset of Ai.



Similarly there is a set Sj for all o ids which vehicle j
has received broadcasts from.

A
1
j , . . . ,A

p
j , . . . ,A

2o

j ⊆ (2Sj ∪ j)

When vehicle i receives X j ,Pj and T j from vehicle j it
first adds entries in X i,Pi and T i for all elements of Aj

which are not in Ai. As a result vehicle i then maintains
filters for a new set Ai

Ai ∪ Aj → Ai

Each filter x
q
i ,P

q
i represented by A

q
i is now updated without

introducing any additional cross-correlations. This means
that A

q
i = A

q
i . To update x

q
i ,P

q
i we now find all possible

combinations of sets from Ai and Aj s.t.

A
g
i ∪ A

h
j → A

q
i (6)

Each of these combinations represents a possible update for
x

q
i ,P

q
i

x
g
i

(3) with x
h
i−→ x

q
i (7)

P
g
i

(4) with P
h

i−→ P
q
i (8)

We now select g and h s.t. P
q
i has the smallest trace of all

possible combinations.

(g∗, h∗) = argmin
g,h s.t. (6)

(

trace
(

P
q
i

)

)

(9)

Using g∗ and h∗ determined through eq. (9) we use eq. (7)
to update the state.

x
g∗
i

(3) with x
h∗

i−→ x
q
i

Line q in T i is updated to reflect the age of updates.

T
q
i (i, u) = T

g∗
i (g∗, u) ∀u ∈ A

g∗
i

T
q
i (i, u) = T

h∗
j (h∗, u) ∀u ∈ A

h∗
j

All steps in section (V-F) are repeated for all 2n filters on
vehicle i and all other vehicles which overheard the broadcast
update their local filters accordingly.

G. Enforcing Constant Set Size
The amount of information which needs to be transmitted

during each broadcast, as well as the number of local
prediction and update steps grows with O(m2) where m is
the size of set Si as defined in section V-F. The amount
of data which needs to be transmitted per filter however
is fairly small (≈ 10 bytes) and the update of each filter
only requires 4 [2 × 6] · [6 × 6] matrix multiplications for a
3D environment where range and heading measurements are
available. Assuming a data packet size of 10 kBytes set sizes
up to 30 ids are feasible.
If CN is implemented on a group of robots which is

much larger than 30 it is worth noting that Roumeliotis et
al. show in [15] that for a group of robots with the same
level of uncertainty in their proprioceptive measurements the
uncertainty growth is inversely proportional to the number of

robots thus the contribution of each additional robot follows
a law of diminishing return. This suggests that set sizes of 30
and less are sufficient to obtain an improvement of navigation
accuracy which is close to the theoretical maximum obtained
when broadcasts of all available vehicles are incorporated.
Based on our available communications bandwidth and

available processing cycles we can choose an upper bound
b for the size of Si. If our set size grows larger than b we
can incorporate the new broadcast according to section V-F
and than resize Si by eliminating the id which contributes
the least amount of information. The resize process consists
of two steps. First we determine the vehicle (id) which con-
tributes the least amount of information. Second we remove
this id from Si and modify X i,Pi and T i accordingly.
1) Compare: One method to determine the vehicle with

id q which contributes the least amount of information is
to compare the trace difference between the filter which
was only updated by {q, i} with the filter that has the dead
reckoning result only {i}.

q∗ = argmin
q

(

trace
(

P
g
i

)

− trace
(

P h
i

)

)

∀q ∈ Si, q ,= i

P
g
i s.t. Ag = {i, q}

P h
i s.t. Ah = {i}

2) Eliminate: After we determined q∗ we remove all
filters depending on q∗ from our sets X i,Pi and obtain
our new sets X

−
i and P

−
i and our updated matrix T−

i by
removing all lines which have a non-zero entry in column
q∗.

X i
x

h
i if q∗ /∈Ah

−→ X
−
i (10)

Pi
P

h
i if q∗ /∈Ah
−→ P

−
i (11)

T i
T i(g,h) ∀g, with T i(g,q∗)=0

−→ T−
i (12)

VI. EXAMPLE
The four frames in figure 2 and the tables I through IV

show how the sets X i,Pi and the matrix T i evolve over
time.
k=1 Up to this point all four vehicles have only used

dead-reckoning information so none of their po-
sitions are cross-correlated. All sets X i,Pi only
contain a single state and covariance matrix.

k=2 Vehicle 1 broadcasts its state x1(2) which is re-
ceived by vehicle 2 and 3. Both vehicles instanti-
ate a second filter x2

2(2),P 2
2(2) and x3

2(2),P 2
3(2)

respectively which are updated with the broadcast
and range received from vehicle 1, while the other
filter in both vehicles are not.

k=3 Up to k=3 all filters (filter 1 in vehicle 1 and 4,
filter 2 in vehicle 2 and 3) are propagated using the
Kalman time prediction step. At k=3 the broadcast
from 2 is received at 4. As 2 has been previously
updated with 1 the set of filters received by 4
contains 2 new ids (1 and 2). Vehicle 4 therefore



instantiates 3 additional filters, each containing a
possible permutation of S4 as specified in eq. (5).

k=4 At k=4 vehicle 3 receives a broadcast from vehicle
4. After the update vehicle 3 now maintains the
maximum set of 8 filters.

1
x1(1)

2
x2(1)

3
x3(1)

4
x4(1)

1
x1(2)

2
x1(2), x2(2)

3
x1(2), x3(2)

4
x4(2)

1 1
x1(3)

2
x1(2), x2(3)

3
x1(2), x2(3),
x3(3)

4
x1(2), x2(3)x4(3)

x1(4)
2

x1(2), x2(4)

3
x1(2), x2(3)
x3(4), x4(4)

4
x1(2), x2(3)x4(4)

Fig. 2. Four vehicles exchanging navigation information for Cooperative
Navigation from time k=1 (top left) to k=4 (bottom right). The arrows
indicate which vehicle broadcasts during a particular time step and which
vehicles received the broadcast. Below each vehicle are the states which
were used to update this vehicle’s various position filters.

TABLE I
CONTENTS OF X ,P AND T AT TIME k = 1

T1(1) X1(1) P1(1)

1 x1
1
(1) P

1

1(1)

T2(1) X2(1) P2(1)

1 x1
2
(1) P

1

2(1)

T3(1) X3(1) P3(1)

1 x1
3
(1) P

1

3(1)

T4(1) X4(1) P4(1)

1 x1
4
(1) P

1

4(1)

TABLE II
CONTENTS OF X ,P AND T AT TIME k = 2

T1(2) X1(2) P1(2)

2 x1
1
(2) P

1

1(2)

T2(2) X2(2) P2(2)

2 x1
2
(2) P

1

2(2)

2 2 x2
2
(2) P

2

2(2)

T3(2) X3(2) P3(2)

2 x1
3
(2) P

1

3(2)

2 2 x2
3
(2) P

2

3(2)

T4(2) X4(2) P4(2)

2 x1
4
(2) P

1

4(2)

TABLE III
CONTENTS OF X ,P AND T AT TIME k = 3

T1(3) X1(3) P1(3)

3 x1
1
(3) P

1

1(3)

T2(3) X2(3) P2(3)

3 x1
2
(3) P

1

2(3)

2 3 x2
2
(3) P

2

2(3)

T3(3) X3(3) P3(3)

3 x1
3
(3) P

1

3(3)

2 3 x2
3
(3) P

2

3(3)

3 3 x3
3
(3) P

3

3(3)

2 3 3 x4
3
(3) P

4

3(3)

T4(3) X4(3) P4(3)

3 x1
4
(3) P

1

4(3)

2 3 x2
4
(3) P

2

4(3)

3 3 x3
4
(3) P

3

4(3)

2 3 3 x4
4
(3) P

4

4(3)

TABLE IV
CONTENTS OF X ,P AND T AT TIME k = 4

T1(3) X1(4) P1(4)

4 x1
1
(4) P

1

1(4)

T2(4) X2(4) P2(4)

4 x1
2
(4) P

1

2(4)

2 4 x2
2
(4) P

2

2(4)

T3(4) X3(4) P3(4)

4 x1
3
(4) P

1

3(4)

2 4 x2
3
(4) P

2

3(4)

3 4 x3
3
(4) P

3

3(4)

2 3 4 x4
3
(4) P

4

3(4)

4 4 x5
3
(4) P

5

3(4)

2 4 4 x6
3
(4) P

6

3(4)

3 4 4 x7
3
(4) P

7

3(4)

2 3 4 4 x8
3
(4) P

8

3(4)

T4(4) X4(4) P4(4)

4 x1
4
(4) P

1

4(4)

2 4 x2
4
(4) P

2

4(4)

3 4 x3
4
(4) P

3

4(4)

2 3 4 x4
4
(4) P

4

4(4)

VII. SIMULATION
To validate that the Interleaved Update (IU) algorithm

provides consistent estimates we ran a simulation where three
moving vehicles took turns exchanging navigation informa-
tion. Whenever a vehicle did broadcast position information
the other two would obtain this information together with
a noisy range measurement. No vehicle got a position fix
through a simulated GPS update. We ran several simulations
where all vehicles used the standard EKF algorithm and
naively incorporated every broadcast they obtained, ignoring
cross-correlations. We also ran the exact same setup several
times with all vehicles using the IU algorithm. Figure 3
and 4 IU show a snap-shot of both runs at t = 2000 s. All
vehicles started at (0, 0). Vehicle 1 and 2 ran in concentric
squares while vehicle 3 ran on a north-south track. For each
vehicle “+” marks the estimated position at this time and
centered around it is the 3 σ-ellipse, while “×” marks the
true position. The enlarged sections for each of the vehicles
show that the distance between the true and the estimated
position in figure 3 is similar to the distance in figure 4
(note the change of scale). However, while the true position
for all vehicles is outside the 3 σxx-bound (99.6% confidence
interval) in figure 3 it is well within it in figure 4. Figure 5
illustrates the evolution of the 1D position error and the
associated covariance over time. The top plot shows the
results for the EKF estimator. For a long time within the
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Fig. 3. Tracks of all vehicles and their position at t = 2000 s. All
vehicles are incorporating external information using a standard EKF. The
enlargements show that for all three vehicles the true position (×) is outside
the 3 σ-ellipse centered around the estimated position (+), indicating an
overconfident estimate.
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Fig. 4. Tracks of all vehicles and their position at t = 2000 s. All
vehicles are incorporating external information using the IU algorithm. The
enlargements show that for all three vehicles the true position (×) is within
the 3 σ-ellipse centered around the estimated position (+).

observed interval the error in the absolute position estimate
for the x-component (|x̃|) is outside the 3 σxx-bound, a clear
indication that the estimator is over confident. The position
error grows slowly as no vehicle has access to an absolute
position update. This is however not reflected in the 3 σxx-
bound which stays constant. The bottom plot shows the
estimation error for the IU algorithm. Here, the 3 σxx-bound
grows and the error estimate is well within it. Note that the

absolute position error is slightly larger in the IU case. This is
due to the fact that the IU algorithm updates very selectively
and therefore incorporates less corrective measurements.
The slightly larger error is however properly accounted for
through a much higher 3 σxx-bound and will stay within the
predicted bound, while the EKF’s overconfidence may cause
it to diverge, leading to a rapidly increasing estimation error.
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Fig. 5. Position error in the x-direction for one of three vehicles exchanging
navigation data as estimated by (top) the standard EKF and (bottom) the
Interleaved Update algorithm.

To asses the performance of the standard EKF vs. that of
the IU algorithm we computed the Normalized Estimation
Error Squared (NEES) as described in [16] for 20 runs (ten
standard EKF and ten IU).

ε(k) = x̃(k|k)T P (k|k)−1 x̃(k|k)

For each time k we compute the N = 10 average NEES
ε(k).

ε(k) =
1

N

N
∑

i=1

εi(k) (13)

Under the hypothesis H0 that the filter is consistent and
under the linear-Gaussian assumption Nε(k) will have a
chi-square density with N nx degrees of freedom, where
nx is the dimension of x. The hypothesis H0, that the
state estimation errors are consistent with the filter-calculated
covariances, also called chi-square test, is accepted if ε(k) ∈
[r1, r2] where the acceptance interval is determined such that

P {ε(k) ∈ [r1, r2] |H0} = 1 − α

The two-sided 95% region for a 20 degree of freedom
(Nnx = 10 · 2 = 2 = 20) chi-square distribution is divided
by N is

[

χ2
20(0.025)

N
,
χ2

20(0.975)

N

]

= [0.96, 3.42] . (14)

Figures 6 and 7 show the 10-run average NEES according to
(13) and the boundaries determined in (14). For the standard
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Fig. 6. Averaged NEES for 10 runs using the standard EKF.
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Fig. 7. Averaged NEES for 10 runs as shown using the standard IU.

EKF update the NEES quickly grows above the upper bound
(figure 6) and indicates that this approach not only leads to
inconsistent results, but that this inconsistency is growing.
For the IU algorithm (figure 7) between 5% and 9% of the
values fall outside the 95% region which is acceptable [16].

VIII. CONCLUSION AND FUTURE WORK

In this paper we presented an algorithm which addresses
the problem of overconfidence in the position estimate of
robots exchanging navigation information for cooperative
navigation. The assumptions made for our approach are

those of real-world robot setups and it allows for vehicles to
dynamically join and leave the group of cooperating robots.
The algorithm can be adjusted to use a fixed amount of com-
munication overhead and processing cycles such that it can
be adapted to the available CPU cycles and communication
bandwidth.
Future work will investigate how different set sizes will

affect the navigation accuracy, especially in heterogeneous
groups where some robots have very accurate dead-reckoning
sensors or can often gain access to absolute position informa-
tion through GPS. We also plan on deploying the algorithm
on a fleet of cooperating AUVs.
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