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Abstract— This paper addresses the problem of autonomous
manipulation of a priori unknown palletized cargo with a
robotic lift truck. More specifically, we describe coupled per-
ception and control algorithms that enable the vehicle to engage
and drop off loaded pallets relative to locations on the ground or
arbitrary truck beds. With little prior knowledge of the objects
with which the vehicle is to interact, we present an estimation
framework that utilizes a series of classifiers to infer the objects’
structure and pose from individual LIDAR scans. The different
classifiers share a low-level shape estimation algorithm that uses
a linear program to robustly segment input data to generate
a set of weak candidate features. We present and analyze the
performance of the segmentation and subsequently describe
its role in our estimation algorithm. We then evaluate the
performance of the motion controller that, given an estimate
for a pallet’s pose, we employ to safely engage a pallet. We
conclude with a validation of our algorithms for a set of real
world pallet and truck interactions.

I. I NTRODUCTION

We have developed a robotic forklift for autonomous ma-
terials handling in the outdoor, semi-structured environments
typical of disaster relief and military storage warehouses[1].
The system performs typical warehouse tasks under the high-
level direction of a human supervisor, notably picking up,
transporting, and placing palletized cargo between truck beds
and ground locations in the environment. Integral to the
system is the robot’s ability to accurately localize and safely
manipulate unknown pallets despite their variable geometry,
the uneven terrain, and the unknown truck geometry.

Successfully picking up a pallet from a truck with a
2700 kg forklift, given perfect information regarding the
poses of the robot, pallet, and truck, is relatively easy. In
real settings, the challenges lie in accurately controlling the
nonholonomic lift truck so as to safely insert the tines within
the pallet’s slots. With littlea priori information, however,
the system must also detect the pallet and the truck bed, and
subsequently maintain an accurate estimate for their structure
and pose while approaching and engaging the pallet. These
tasks are made difficult by variability in pallet and truck
geometry together with the limited sensing available. For
example, while certain features of cargo pallets are present
across most pallets (i.e., roughly rectilinear, generallyflat,
usually two insertion points designed for forklift tines),the
dense geometry of pallets is highly variable. The forklift
must use onboard sensing to recover the pallet geometry
in order to correctly insert the lifting tines; unlike many

Fig. 1. The prototype forklift that is the host platform for the mobile
manipulation algorithm presented in the paper. The vehicle autonomously
detects and engages unknown pallets, picking them up from, and placing
them onto the ground or the bed of a truck. The rendering on theright depicts
the corresponding output of the pallet and truck estimation algorithms.

small-object manipulation strategies, it is not possible to
use manipulator compliance or feedback control strategies
to ease insertion. Even small forklifts designed for indoor
warehouses can exert tons of force; the tines are extremely
rigid and cannot be instrumented with the tactile sensing
necessary for feedback control strategies for manipulation.
As a result, attempting to insert tines incorrectly can damage
or destroy the pallet (or its load) before the failure can be
detected and corrected.

In addition, a pallet’s appearance is also variable. The
physical pallet structure is quite sparse, roughly 1 m square
with a height of 15 cm and inserts that are each 30 cm wide.
A view of a candidate pallet location is dominated largely by
LIDAR returns from the pallet’s load as well as the surface
on which the pallet lies. Similarly, a truck’s undercarriage
comprises most of the view of a vertically-scanning LIDAR,
with limited returns arising from the vertical and horizontal
faces of the truck bed. Further complicating the problem of
accurately detecting and estimating the pallet and truck poses
is the fact that, while they are themselves rigid, the forklift’s
tines and carriage, to which the LIDARs are mounted, are
not rigidly attached to the vehicle, which limits the accuracy
of extrinsic calibration.

This paper presents a coupled perception and control
strategy that addresses these challenges, enabling the fork-
lift to manipulate unknown pallets within semi-structured,
outdoor environments. We first introduce the overall robotic
platform, briefly describing the aspects that are pertinentto
our mobile manipulation work. We then describe a general
strategy for pattern detection that identifies candidate linear
structure within noisy 2D LIDAR scans. We next describe



algorithms for pallet and truck estimation that utilize this
pattern recognition tool to detect returns from the pallet
structure and truck bed using weak to strong classifiers.
The algorithms utilize positive detections as inputs to a set
of filters that maintain estimates for the pallet and truck
poses throughout engagement. We then describe the control
strategy that we use to servo the poses of the vehicle and
tines. Finally, we present the results of a series of validation
tests that demonstrate the accuracy and limitations of our
mobile manipulation strategy.

II. RELATED WORK

There has been considerable work in developing mobile
manipulators to accomplish useful tasks in populated envi-
ronments. This work has largely focused on the problems of
planning and control [2], [3], which are not inconsiderable
for a robot with many degrees of freedom and many actuators
capable of exerting considerable force and torque. These
approaches have generally taken one of two approaches:
either assume a high-fidelity kinodynamic model and apply
sophisticated search to solve for a feasible control plan [4]–
[6], or use reactive policies with substantial sensing and
feedback control (either visual [7] or tactile [8], [9]) to avoid
the requirements of a model.

Meanwhile, there has been extensive work addressing the
problem of object segmentation, classification, and estima-
tion based upon range data. In particular, early work by
Hebertet al. [10] describes algorithms for object detection
and recognition with an outdoor robot using laser scan
data. Hoffman and Jain [11] present a method, based on
range data, to detect and classify the faces comprising 3D
objects. Similarly, Newmanet al. [12] propose a model-
driven technique that leverages prior knowledge of object
surface geometry to jointly classify and estimate surface
structure. These techniques require range images of the
scene, which, in the case of our platform, are subject to
systematic error due to the pliancy of the forklift structure to
which the LIDARs are mounted. Researchers have extended
the robustness of range image segmentation [13] and object
model parameter estimation [14], [15] using randomized
sampling to accommodate range images with many outliers.

The specific problem of developing an autonomous lift
truck that is able to pick up and transport loaded pallets
is not new. The same is true of pallet detection and local-
ization methods, which have been studied in the perception
community due to pallets’ sparse structure. Most of this
work, however, differs significantly from our own, in that
it assumes a clean, highly-structured environment, does not
generalize across varying pallet geometry [16]–[18], and
does not consider the challenging problem of placing pallets
onto and picking pallets off of unknown truck beds.

III. SYSTEM OVERVIEW

Our platform is a 2700 kg Toyota forklift with drive-by-
wire modifications enabling computer-based control of the
vehicle and mast (i.e., tine height and forward/backward tilt)
actuation. The platform is equipped with laser range finders

Fig. 2. Forklift being commanded via the tablet PC to pick up a pallet
that is stationed on a truck bed.

for object detection as well as a forward-facing camera
that provides images to a remote user’s command interface.
We estimate the vehicle’s pose via dead-reckoning based
upon wheel encoder velocity measurements together with
orientation measurements from an integrated GPS/IMU.

Pallet detection relies upon a single Hokuyo UTM laser
range finder with a 30 m range and a 140 degree field-of-
view. The unit is mounted at the elbow of one of the forklift’s
tines and scans in a horizontal plane situated slightly above
the tine’s top surface. Meanwhile, the truck bed estimation
algorithms that follow utilize a pair of UTM laser range
finders (30 m range, 270 degree FOV) mounted to the left
and right sides of the carriage assembly with a vertical scan
plane. All three LIDARs move in tilt and height with the
carriage.

The forklift operates autonomously based upon high-level
directives from a user who commands the system via a
hand-held tablet computer [1], [19]. In the case of pallet
engagement tasks, the user can direct the platform to pick
up a pallet from the ground or a truck bed, or to place a pallet
at a specified, unoccupied location on the ground or truck.
The user indicates the desired pallet to engage by circling it
within the image from the vehicle’s forward-facing camera,
which is displayed on the tablet (Figure 2). Similarly, the user
identifies a desired pallet placement location by circling the
region in the camera image.

In the subsequent sections, we explain how the robot
autonomously manipulate pallets given directives of this
form.

IV. FAST CLOSESTEDGE DETECTION

FROM LASER RANGE FINDER DATA

In this section, a novel efficient algorithm that identifies
the closest edge in LIDAR data is proposed. Two closest
edge detection problems are studied. In the relatively simple
first case, the orientation of the edge is assumed to be known
and the distance of the edge to the sensor is estimated. In the
second variant, both the orientation and the distance of the
edge are identified. Inspried by similar problems in learning
with kernel methods [20], the first variant of the problem is
formulated as a linear program, the dual of which is shown
to be solvable inO(nmin{ν, log n}) time, wheren is the
number of points andν is a problem-specific parameter. Note
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Fig. 3. A graphical representation of the closest edge detection problem
for 2D laser returns from a pallet face. The three grey pointsare outliers
with respect to the line(a, ρ).

that solving the original linear program with, for instance, the
interior point algorithm requiresO(n3.5) time in the worst
case [21]; hence, exploiting the structure of the dual program
results in significant computational savings, facilitating real-
time implementation for robotics applications. For the second
variant of the problem, a heuristic algorithm, which uses the
algorithm for the first variant a constant number of times,
is provided. Both algorithms are used as a basis to detect
pallets and trucks in Sections V and VI, respectively.

A. Closest Edge Detection with Known Orientation

Consider the first variant of the closest edge detection
problem. To define the problem more formally, letX =
{x1, x2, . . . , xn} = {xi}i∈I , whereI = {1, 2, . . . , n}, be
the set of points in the two dimensional Euclidean space
R

2, representing the data sampled from a planar laser range
finder. Figure 3 presents a simple example with laser returns
that are representative of those from a pallet face. Without
loss of generality, let the sensor lie in the origin of this
Euclidean space and be oriented such that its normal vector
is [1, 0]⊤. Let a ∈ R

2 denote a normalized vector, i.e.,
‖ a ‖ = 1. Informally, the problem is to find the distanceρ
of the line to the origin such that all data points inX , except
a few outliers, are separated from the origin by this line.
More precisely, for all pointsxi ∈ X , except a few outliers,
〈a, xi〉 ≥ ρ holds, where〈·, ·〉 denotes the dot product, i.e.,
〈a, x〉 denotes the distance ofxi to the origin when projected
along the vectora. Let ξi denote the distance of pointxi

to the separating line if the distance from the origin toxi

(projected alonga) is less thanρ; otherwise letξi be zero.
That isξi = max (ρ− 〈a, xi〉, 0) (see Figure 3).

Given a line described by a normala and distanceρ, a
point xi with ξi > 0 is called anoutlier with respect to the
line (a, ρ). We formulate theclosest edge detection problem
as maximization of the following function:ρ − C

∑
i∈I ξi,

whereC is a problem dependent constant parameter, that
represents the trade-off between two objectives: maximizing
the distanceρ of the separating line to the origin and
minimizing the total distance

∑
i∈I ξi of the outliers to line

(a, ρ). Notice thatC = 0 will render ρ = ∞, in which case
all data points will be outliers.C → ∞, on the other hand,
will allow no outliers in a feasible solution.

To further motivate, first let us consider the case with no
outliers (C → ∞) and the relatively easy problem of finding

the distanceρ of the line with normala to the origin such
that ρ is maximum and the line separates all points inX
from the origin. Notice that a naı̈ve algorithm that computes
the distance ofxi from the origin for alli ∈ I and returns
the minimum distance solves this problem. Notice also that
this algorithm runs in timeO(n). Indeed, it can be shown
that any deterministic algorithm that solves this problem has
to run in timeΩ(n). However, due to the noise embedded
in the laser range finder data, especially for LIDAR returns
arising from the corners, this solution may provide noisy
information. Precisely for this reason, the aforementioned
formulation of the closest edge detection problem includes
an extra term in the objective function so as to filter out
such noise. The rest of this section details an algorithm that
solves the closest edge detection problem while incurring
small extra computational cost.

The closest edge detection problem can be formulated as
a mathematical program as follows:

maximize ρ− 1
ν

∑
i∈I ξi, (1)

subject to di ≥ ρ− ξi, ∀i ∈ I, (2)

ξi ≥ 0, ∀i ∈ I, (3)

where ρ ∈ R and ξi ∈ R are the decision variables, and
ν ∈ R is a parameter such thatν = 1/C. The parameterdi
is the distance of pointxi to the origin when projected along
a, i.e., di = 〈a, xi〉.

For computational purposes, it is useful to consider the
dual of the linear program (1-3):

minimize
∑

i∈I diλi, (4)

subject to
∑

i∈I λi = 1, ∀i ∈ I, (5)

0 ≤ λi ≤
1
ν
, ∀i ∈ I, (6)

whereλi are called the dual variables. Let(ρ∗, ξ∗1 , . . . , ξ
∗
n)

be an optimal solution to the linear program (1-3) and
(λ∗

1, . . . , λ
∗
n) be the optimal solution of the dual linear

program (4-6). The optimal primal solution can be recovered
from the dual solution asρ∗ =

∑
i∈I λ∗

i di.
The dual linear program is particularly interesting for

computational purposes. Strictly speaking,

Proposition IV.1 Algorithm 1 runs inO(nmin{log n, ν})
time and solves the dual linear program (4-6).

Algorithm 1, DUALSOLVE, takes the parameterν, the
normal vectora, and the setX as an input and returns
an indexed set{λi}i∈I of values for the dual variables.
DUALSOLVE employs two primitive functions.SORT takes
an indexed set{yi}i∈I as an input, whereyi ∈ R, and returns
a sorted sequence of indicesJ such thatyJ (j) ≤ yJ (j+1)

for all j ∈ {1, 2 . . . , |I|}. MIN, meanwhile, returns the index
j of the minimum element in a given index set, i.e.,yj ≤ yj′
for all j′ ∈ J .

Firstly, notice that the elementary operations in
DUALSOLVE require only additions, multiplications,
and evaluations of cross products, none of which require
the computation of any trigonometric function. Apart



from its theoretical computational guarantees ensured by
Proposition IV.1, this particular property of Algorithm 1
makes it fast in practice as well. Secondly, notice also that
with Algorithm 1 one can solve the mathematical program
(1-3). Let us denote this procedure withDISTFIND(ν, a,X )
(see Algorithm 2). Clearly,DISTFIND also runs in time
O(nmin{log n, ν}).

Algorithm 1 : DUALSOLVE (ν, a,X )

for all i ∈ I do
λi := 0;

for all i ∈ I do
di :=< a, xi >;

D := {di}i∈I ;
if log |D| < ν then

J := SORT(D);
for j := 1 to ⌊ν⌋ do

λJ (j) := 1/ν;

λJ (⌊ν⌋+1) := 1− ⌊ν⌋/ν;
else

for i := 1 to ⌊ν⌋ do
j := MIN(D);
λj := 1/ν;
D := D \ {dj};

j := MIN(D);
λj := 1− ⌊ν⌋/ν;

return {λi}i∈I

Algorithm 2 : DISTFIND(ν, a,X )

for all i ∈ I do
di :=< a, xi >;

{λi}i∈I := DUALSOLVE(ν, a,X );
ρ :=

∑
i∈I λidi

The next sections present pallet and truck detection al-
gorithms, which employ theDISTFIND algorithm heavily.
The valueν influences the effectiveness of the detection
algorithms. Although the choice ofν is generally problem-
dependent, we present a couple of its interesting properties
before moving on with detection algorithms.

Proposition IV.2 mini∈I di ≤ ρ∗.

This proposition merely states that the distance returned by
DISTFIND is never less than the distance of any of the
points inX to the origin. That is, the line that separates the
origin from the data points either passes through at least one
of the data points, or there exists at least one data point that
is an outlier with respect to the line. The following proposi-
tion indicates an important relation between the number of
outliers and the parameterν.

Proposition IV.3 The parameterν is an upper bound on the
number of outliers with respect to the the line(a, ρ∗).

The proofs of these propositions are technical and are omitted
for lack of space.

B. Closest Edge Detection with Unknown Orientation

If the orientation is not known, then we invoke
DUALSOLVE a constant number of times for a set
{ai}i∈{1,2,...,N} of normal vectors, each oriented with angle
θi relative to the X-axis, whereθi are uniformly placed
on the interval betweenθ1 = θmin and θ2 = θmax (see
Algorithm 3). After each invocation toDUALSOLVE, a
weighted averagezi of the data points is computed where
the dual variables returned fromDUALSOLVE are used as
weights. Using a least squares method, a line segment is
fitted to the resulting points{zi}i∈{1,2,...,N} and returned
as the closest edge as the tuple(z′, a′, w′), wherez′ is the
position of the mid-point,a′ is the orientation, andw′ is the
width of the line segment.

Algorithm 3 : EDGEFIND(ν,X , θmin, θmax, N)

for j := 1 to N do
θ := θmin + (θmax − θmin)j/N ;
a := (cos(θ), sin(θ));
{λi}i∈I := DUALSOLVE(ν, a,X );
zj :=

∑
i∈I λixi;

(z′, a′, w′) := LINEFIT({zj}j∈{1,2,...,N});
return (z′, a′, w′)

C. The Hierarchical Classification Framework

Pallet and truck perception algorithms that we introduce
in the next two sections runDISTFIND or EDGEFIND
over sets{Xk}k∈K of data points to extract a set{fk}k∈K

of features from the data. In most cases, these features
correspond to real-world structure, such as the existence of
slots in an edge returned byEDGEFIND, or the height of the
truck bed detected usingDISTFIND.

The data setsXk can be LIDAR returns from different
sensors, or returns from the same sensor but acquired at
different time intervals. In some cases,Xk are acquired
from a single scan of the same sensor, butXk+1 is de-
termined from the featuresf1, f2, . . . , fk of the data sets
X1,X2, . . . ,Xk. Yet, no matter how the data sets{Xk}k∈K

are selected, the set{fk}k∈K of features are generated
using intuitive algorithms that employ eitherDISTFIND
or EDGEFIND. These features are then compared with a
nominal set{f̄k}k∈K of features, for instance by computing
the distance‖{fk}k∈K−{f̄k}k∈K‖ according to some norm;
if the distance is within acceptable limits, the set{Xk}k∈K

of data sets is marked as including the object that is to be
perceived from the LIDAR data.

V. PALLET ESTIMATION

The algorithms described in Section IV are next used to
design effective heuristic methods to detect pallets from a
single LIDAR scan. The detection method is then used as
the basis for batch detection and subsequent filtering.



The algorithms described in this section can be used for
estimating both the pose and shape of pallets of various
types and sizes. Most pallets used in industrial applications
have distinctive features that are visible in LIDAR scans,
namely two slots (each 20 cm to 40 cm wide) and an overall
widths varying from 0.9 m to 1.5 m. Moreover, the two slots
generally have the same width and are offset symmetrically
with respect to the mid-point of the pallet face. Our pallet
estimation algorithms first identify the closest edge in a
single laser range finder scan, then look for these distinct
features in the edge. The features are identified by invoking
calls toDISTFIND andEDGEFIND.

As a step prior to online filtering, we would like to extract
the aforementioned features and detect pallets that lie within
the volume of interest. Since our main interest is online
filtering, the detection is carried out using only a single scan
(see Figure 4) instead of accumulated laser scans. However,
assuming that the pallet roll angle is close to the that of the
lift truck during active scanning, several detections obtained
at different heights can be used for batch detection purposes
as well, with essentially no modifications of the detection
algorithm. Indeed, this strategy is employed in this work.

Given a single LIDAR scan, the pallet detection algorithm
works as follows. LetX be the set of LIDAR points obtained
from the laser range finder sensor mounted on the tine elbow.
First, the algorithm culls the points withinX that lie within
the region of interest, forming a subsetX1 (see Figure 4).
Subsequently,(zpallet, apallet, wpallet) := EDGEFIND is applied
toX1 to detect the closest edge, which constitutes a candidate
pallet face. The resulting width estimate constitutes the first
classification feature,f1 = (wpallet). Second, the algorithm
forms a subsetX ′

1 of X1 that contains all those points inX1

that lie in a box centered atz′1 of length ǫ, width w′
1, and

orientationa′1 (see the blue box in 4). We useǫ = 20cm.
Third, from X ′

1 four sets of pointsX2, X3, X4, andX5 are
extracted. Intuitively,X2 is the set of all those points inX ′

1

that are to the left of the box and are at least 25 cm away
from the center of the box. Similarly,X4 is the set of all those
points inX ′

1 that are at least 25 cm right of center. The sets
X3 andX5 are the complements ofX2 andX4, respectively
(Figure 4). The points inX2 andX3 are translated such that
the origin is the point that is to the left of the box and is 25 cm
away from the center. Similarly, the points inX4 andX5 are
translated such that their origins are to the right of the box
and 25 cm away from the center. Subsequently, the algorithm
runs theDISTFIND function onXi for all i = 2, 3, 4, 5 and
notes the distance returned by theDISTFIND algorithm as
the featurefi associated with data setXi. These features are
denoted asf2 = (δfar

left), f3 = (δnear
left ), f4 = (δfar

right), andf5 =

(δnear
right). Note that, intuitively,δfar

left is the distance from thefar
side of theleft slot to the center of the pallet face and similar
intuition applies to other features. Finally, the algorithm
computes the widthwleft and wright of the left and right
slots. Note that this threshold strategy can be implemented
within the framework of Section IV-C. If the features are in
acceptable bounds with respect to the prespecified nominal
set of values, then the algorithm outputs the pallet detection

(zpallet, apallet, wpallet, wleft, wright, xleft, xright), where xleft and
xright are the distance of the center of left and right slot
locations computed directly from the featuresf2, . . . , f5;
otherwise it reports no pallet detection. The nominal values
of the features as well as their acceptable bounds were hand-
tuned in this work; however, they can, in principle, be learned
from training data. We leave this for future work.

For batch detection, we actively scan the volume of
interest by actuating the lift truck’s mast and collecting pallet
detections at various heights. A classification algorithm then
first checks whether there is a set of detections that span
a height consistent with that of typical pallets and that are
mutually consistent in terms of Mahalanobis distance. If so
the batch detection algorithm outputs the pallet detection
averaged over this set of detections as well as the detection
heights. Subsequently, we initialize a Kalman filter over
the pallet detection states with this average detections and
update the filter with any new detections. An active scanning
operation is shown in Figure 5.

(a)

(b) (c)

Fig. 4. (a) A single pallet scan and the user gesture projected on the
world indicating boundaries of the region of interest (pink). (b) Points in
the region of interest as well as the line detection and the associated box.
(c) The data setsXi with i = 2, 3, 4, 5 and their origins shown as red dots.

VI. T RUCK BED ESTIMATION

This section describes our truck detection algorithms. Our
approach to truck estimation employs a Kalman filter to
estimate the location of the truck bed online. The user pen
gesture projected into the world provides an initial condition
for the Kalman filter. Data acquired from the two LIDARs
mounted vertically on both sides of the mast are used for
detection of the truck bed’s height, distance, and orientation,
which in turn are used to update the Kalman filter. The truck
bed estimate is used in conjunction with the user pen gesture
to estimate the drop off location, when placing a pallet on
the truck bed.

The truck detection algorithm also operates within the
framework described in Section IV-C. From the laser range



(a)

(b) (c) (d)

(e) (f) (g)

Fig. 5. Pallet detection algorithm as a pallet on a truck bed is being actively
scanned. (b-c)LIDAR returns from the undercarriage and thetruck bed are
rejected as pallet candidates. (d-f) LIDAR returns from thepallet face are
identified as the pallet. (g)The load on the pallet is correctly ruled out as a
candidate pallet face.

finder mounted to the left of the mast, two features, the
distance of the sensor to the truck bed and the height of the
truck bed are extracted. The same features are also extracted
for the sensor that is mounted to the right of the mast.
Subsequently, these features are compared with lower and
upper bounds as well as each other to ensure consistency.
If found to be within the limits, the detection algorithm
outputs the truck bed detection as the height, position, and
the orientation of the truck bed.

Strictly speaking, letXleft and Xright be the point sets
acquired via the laser range finder sensor mounted to the
left and right of the mast. LetX1 be the set of all those
points inXleft that are at least 25 cm above the ground. The
truck bed detection algorithm usesDISTFIND to detect the
distancedleft of these points to the sensor, which forms the
element of the first featuref1 = (dleft) for classification. Let
X2 be the set of all those points in setX1 that are at leastdleft

and at mostdleft + ǫ away from the sensor. Moreover, let the
points inX2 be translated such that their center isdleft away
from sensor and 5 m above the ground (see Figure 6). Next,
the algorithm employsDISTFIND to determine the distance
hleft of these points from the ground, which is noted as the
second featuref2 = (hleft). Similarly, we employ the same
procedure withXright to obtain the setsX3 andX4 and two
additional features,f3 = (dright) and f4 = (hright). Finally,
the algorithm checks whether all the extracted features are
within acceptable bounds, and for differences between the
features observed via the left sensor and those observed
with the right sensor, in which case it outputs the truck bed
detection(ztruck, atruck, htruck); otherwise, the detector outputs

δright

hright

Fig. 6. Truck bed detection algorithm depicted with raw data(false-colored
by height) acquired from the sensor mounted on the right of themast.

no detection. The heighthtruck of the truck bed is computed
as the average ofhleft and hright. The locationztruck on the
other hand, is the intersection of the line that passes through
zleft andzright with the user pen-gesture ray projected on the
plane of truck bed height and parallel to the ground (see
Figure 6).

A Kalman filter is initialized with (zprior
truck, a

prior
truck, h

prior
truck),

wherehprior
truck is a prior on the truck bed height set to 1 m in our

experiments, andzprior
truck and aprior

truck are the prior position and
orientation obtained from the user gesture as follows. First,
a circle center is fitted to the user pen-gesture and projected
as a ray in to the world.zprior

truck is the intersection of this ray
with the plane of heighthprior

truck parallel to the ground.aprior
truck,

on the other hand, is the unit vector oriented from the bot
to zprior

truck. The filter is updated with each positive detection.
Figure 7 shows a pallet drop off operation, in which truck
bed estimation is used to determine the drop-off location.

(a) (b)

(c) (d)

Fig. 7. Truck bed estimation. (a) The initial estimate of the truck bed
is determined from the user pen gesture; however, the truck bed detection
algorithm initially outputs no detection. (b-d) As the robot drives towards
the truck, the sensors get LIDAR returns from the truck bed, and the Kalman
filter is updated accordingly. (d) The bot drops off the pallet to the part of
the truck bed indicated by the user pen gesture.

VII. C ONTROL ALGORITHMS

This section presents a feedback control algorithm that can
be used to steer the robot from an initial position and heading
to a final position and heading. The algorithm is tailored and
tuned for precise pallet engagement operations. In the next
section, we provide experimental results using this controller
in closed-loop operation with the pallet and truck perception
algorithms presented in the previous sections.



Let zinitial and ainitial be the robot’s initial position and
orientation, wherezinitial is a coordinate Euclidean plane and
ainitial is a normalized two-dimensional vector. Similarly, let
zfinal and afinal be the desired final position and orientation
of the robot. (In our application,zfinal andafinal represent the
pallet position and orientation.) Without loss of generality,
let zfinal = (0, 0) be the origin of the coordinate system and
afinal = (1, 0) be oriented toward theX-axis (see Figure 8).
Similarly, let ey be the distance ofzinitial to zfinal along the
direction orthogonal toafinal and leteθ be the angle between
the vectorsainitial and afinal, i.e., eθ = cos-1(ainitial · afinal).
Finally, let δ be the steering control input to the robot. In
this work, we use the following steering control strategy for
pallet engagement operations:

δ = Ky tan
-1(ey) +Kθeθ, (7)

where Ky and Kθ are controller parameters. Assuming a
Dubins vehicle model [22] of the robot as in

ż = (cos θ, sin θ), (8)

θ̇ = tan-1(δ), (9)

the nonlinear control law (7) can be shown to converge such
that ey → 0 and eθ → 0 holds, if −π/2 ≤ eθ ≤ π/2 is
initially satisfied [23].

ey

eθ

ainitial

afinal

X

Y

Fig. 8. Illustration of the controller algorithm

VIII. E XPERIMENTAL RESULTS

This section analyzes the pallet engagement system de-
scribed above. The closed-loop pallet engagement software
was tested extensively on the hardware described in Sec-
tion III, at two testing sites, one on the MIT campus, in
Cambridge, MA, and the second at Fort Belvoir, a U.S. Army
base in Virginia. Both testing sites have packed gravel
terrain with small rocks and mud. In these experiments, we
commanded the bot to pick up pallets from different locations
on the ground as well as from truck beds, and recorded
the lateral position and orientation of the robot with respect
to the pallet in each test as reported by the robot’s dead
reckoning module. Note that the experiments were conducted
with different types of pallets and, within each type, the
pallets varied in their geometry (i.e., width, slot location,
and slot width). The pose of the pallet relative to the truck
and the truck’s pose relative to the forklift also varied.

Figure 9 shows a plot of the success and failures of the
pallet pickup tests, together with final relative angle and cross
track error in each experiment (see Figure 10 for histograms).
Note that most of the failures are due to pallet detection,
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Fig. 9. Results of the validation tests for pallet engagements from (a), (b) a
truck bed and (c), (d) the ground. Each path represents the robot’s trajectory
during a successful pickup. A red ‘x’ denotes the initial position of the robot
for a failed engagement. Arrows indicate the robot’s forwarddirection. All
poses are shown relative to that of the pallet, centered at the origin with the
front face along thex-axis. The trajectories are colored according to (a),
(c) the relative angle between the pallet and the robot and (b), (d) the cross
track error immediately prior to insertion.
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Fig. 10. Histograms that depict the resulting error immediately prior to the
forklift inserting the tines in the pallet slots, for a series of tests. Figures
(a) and (c) correspond to the relative angle between the vehicle’s forward
direction and the pallet normal for engagements off of a truck and off of the
ground, respectively. The histograms in (b) and (d) present the final lateral
cross track error for the successful engagements.

and they occur when the bot starts longitudinally 7.5 meters
and/or laterally 3 meters or more away from the pallet. In
most of these cases, the resolution of the laser range finder
seems insufficient for the data to include returns from the
pallet surface. In some other cases, we have seen pallet



engagements where the bot ended up pushing the pallet
and turning up to 10 degrees; we classified these cases as
failures. In the cases in which the pallet was visible during
the initial scanning of the volume of interest, 35 of the
38 ground engagements were successful where we define a
successful engagement as one in which the forklift inserted
the tines without moving the pallet. In one of the three
failures, the vehicle inserted the tines but moved the pallet
slightly in the process. In tests of truck-based engagements,
the manipulation was successful in all 30 tests in which the
pallet was visible during the initial scanning process.

IX. CONCLUSIONS

We presented a novel coupled perception and control algo-
rithm for an outdoor robotic forklift tasked with manipulation
of unknown pallets. We have also shown an experimental
demonstration of the algorithms on a full-sized forklift.

Our current research includes extending our perception
algorithms to detect multiple pallets and to detect pallets
without the help of a user gesture. We also plan to develop
a path planning capability that identifies trajectories that
minimize the resulting uncertainty in the pallet pose, thereby
increasing the likelihood of successful engagement.
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