
Anytime Motion Planning using the RRT∗

Sertac Karaman Matthew R. Walter Alejandro Perez Emilio Frazzoli Seth Teller

Abstract— The Rapidly-exploring Random Tree (RRT) al-
gorithm, based on incremental sampling, efficiently computes
motion plans. Although the RRT algorithm quickly produces
candidate feasible solutions, it tends to converge to a solution
that is far from optimal. Practical applications favor “anytime”
algorithms that quickly identify an initial feasible plan, then,
given more computation time available during plan execution,
improve the plan toward an optimal solution. This paper
describes an anytime algorithm based on the RRT∗ which (like
the RRT) finds an initial feasible solution quickly, but (unlike
the RRT) almost surely converges to an optimal solution. We
present two key extensions to the RRT∗, committed trajectories
and branch-and-bound tree adaptation, that together enable
the algorithm to make more efficient use of computation
time online, resulting in an anytime algorithm for real-time
implementation. We evaluate the method using a series of
Monte Carlo runs in a high-fidelity simulation environment,
and compare the operation of the RRT and RRT∗ methods. We
also demonstrate experimental results for an outdoor wheeled
robotic vehicle.

I. INTRODUCTION

The motion planning problem is to find a dynamically
feasible trajectory that takes the robot from an initial state
to a goal state while avoiding collision with obstacles.
Motion planning is of fundamental importance not only
for robotics [1], but also in many applications outside the
robotics domain [1]–[4].

From a computational complexity point of view, even a
simple form of the motion planning problem is PSPACE-
hard [5], which suggests that any complete algorithm, i.e.,
one that returns a solution if one exists and returns failure
otherwise, is doomed to be computationally intractable.

In order to achieve computational efficiency, practical
motion planning methods generally relax the completeness
requirements. Sampling-based approaches, including algo-
rithms such as the Probabilistic RoadMap (PRM) [6] and
the RRT [7], form a relatively recent line of research in this
direction. Most sampling-based algorithms are probabilisti-
cally complete, i.e., the probability that the algorithm finds
a solution, if one exists, converges to one as the number of
samples approaches infinity.

Sampling-based algorithms have the advantage that they
are able to find a feasible motion plan relatively quickly
(when a feasible plan exists), even in high-dimensional

Sertac Karaman and Emilio Frazzoli are with the Laboratory for In-
formation and Decision Systems, Massachusetts Institute of Technology,
Cambridge, MA, USA {sertac, frazzoli}@mit.edu

Matthew R. Walter and Seth Teller are with the Computer Science and
Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
Cambridge, MA, USA {mwalter, teller}@csail.mit.edu

Alejandro Perez is with the Polytechnic University of Puerto Rico, San
Juan, PR, USA aperez@ieee.org

state spaces. Furthermore, the RRT, in particular, effectively
handles systems with differential constraints. These char-
acteristics make the RRT a practical algorithm for motion
planning on state-of-the-art robotic platforms [8].

Any robotic motion planning algorithm intended for prac-
tical use must operate within limited real-time computational
resources and incomplete and imperfect knowledge of the
environment. Such settings favor “anytime” algorithms that
quickly find some feasible but not necessarily optimal mo-
tion plan, then incrementally improve it over time toward
optimality. An anytime motion planning algorithm should
exhibit two properties: a form completeness guarantees and
asymptotic optimality. A system based on anytime planning
overlaps two functions in time: execution of (some initial
portion of) its current plan, and computation to replace (any
pending portion of) the current plan with an improved plan.

The RRT algorithm exhibits the first property, efficiently
finding an initial feasible solution. Until recently, the RRT’s
ability to improve this solution as the number of samples
increases was an open research question. Karaman and
Frazzoli [9] proved that the probability of the RRT algorithm
converging to an optimal solution is actually zero. In the
same paper, they proposed an alternative method, RRT∗,
a sampling-based algorithm with the asymptotic optimality
property, i.e., almost-sure convergence to an optimal solution,
along with probabilistic completeness guarantees. The RRT∗

algorithm achieves the asymptotic optimality absent from the
RRT without incurring substantial computational overhead.

Hence, RRT∗ provides substantial benefits, especially for
real-time applications. Like the RRT, it quickly finds a fea-
sible motion plan. Moreover, it improves the plan toward the
optimal solution in the time remaining before plan execution
is complete. This refinement property is advantageous, as
most robotic systems take significantly more time to execute
trajectories than to plan them. For example, robotic cars [10]
spend no more than a few seconds to plan a path before
driving toward the goal, which may take several minutes.
In such settings, asymptotic optimality is particularly useful,
since the available computation time as the robot is moving
along its trajectory can be used to improve the quality of the
remaining portion of the planned path.

In this paper, we leverage the anytime asymptotic op-
timality property of the RRT∗ algorithm to improve the
online convergence of the plan during execution. Our ex-
perimental results show that these proposed extensions to
RRT∗ substantially improve trajectory quality. We analyze
the algorithm, compare its performance to that of RRT
in a realistic simulation environment, and demonstrate its
effectiveness on a wheeled robotic vehicle [11]–[13].

II. THE RRT* ALGORITHM

This section formally states the motion planning problem
and describes the RRT∗ algorithm. Consider a system with
dynamics of the following form: ẋ(t) = f(x(t), u(t)), where
x(t) ∈ X and u(t) ∈ U , where X ⊂ Rd and U ⊂ Rm denote
the state space and the input space, respectively. Let Xobs

denote the obstacle region, and Xfree = X \Xobs define the
obstacle-free space. Finally, let Xgoal ⊂ X denote the goal
region. The motion planning problem is to find a control
input u : [0, T]→ U that yields a feasible path x(t) ∈ Xfree

for t ∈ [0, T] from an initial state x(0) = xinit to the goal
region x(T) ∈ Xgoal that obeys the system dynamics.

The optimal motion planning problem imposes the addi-
tional requirement that the resulting feasible path minimize
a given cost function, c(x), mapping each non-trivial admis-
sible trajectory x : [0, T]→ X to a positive real number.

In solving the optimal motion planning problem, the RRT∗

algorithm builds and maintains a tree T = (V,E) comprised
of a vertex set V of states from Xfree connected by directed
edges E ⊆ V ×V . The manner in which the RRT∗ generates
this tree closely resembles that of the standard RRT, with the
addition of a few key steps that achieve optimality. The RRT∗

algorithm uses a set of basic procedures, which we describe
in the context of kinodynamic motion planning [14].

Sampling: The Sample function randomly samples a state
zrand ∈ Xfree from the obstacle-free region of the state space.

Distance: Dist : X × X → R≥0 returns the cost of the
optimal trajectory between two states, assuming no obstacles.
Without differential constraints, it is the Euclidean distance.

Nearest Neighbor: Given a state z ∈ X and the tree
T = (V,E), the v = Nearest(T, z) function returns the
nearest node in the tree in terms of the distance function.

Near-by Vertices: Given a state z ∈ X , tree T = (V,E),
and a number n, the Znearby = Near(T , z, n) function returns
the vertices in V that are near z. More precisely, define
Reach(z, l) = {z′ ∈ X | Dist(z, z′) ≤ l or Dist(z, z′) ≤
l}, and choose l(n) such that Reach(z, l(n)) contains a ball
of volume γ ((log n)/n)d, where γ is a fixed number [14].

Collision Check: The ObstacleFree(x) function checks
whether a path x : [0, T] → X lies within the obstacle-free
region of state space, i.e., x(t) ∈ Xfree for all t ∈ [0, T].

Steering: The (x, u, T) = Steer(z1, z2) function solves
for the control input u : [0, T] that drives the system from
x(0) = z1 to x(T) = z2 along the path x : [0, T]→ X .

Node Insertion: Given the current tree T = (V,E),
an existing state zcurrent ∈ V , and a new state znew, the
InsertNode(zcurrent, znew, T) procedure adds znew to V and
creates an edge to zcurrent as its parent, which it adds to E. It
assigns a Cost(znew) to znew equal to that of its parent, plus
the cost c(x) of the trajectory associated with the new edge.

Using these functions, the RRT∗ exhibits the general
structure outlined in Alg. 1. With the exception of the process
of extending an existing node in the tree toward a new node
(lines 8–11), the RRT∗ essentially behaves identically to the
RRT. The RRT∗ starts with an empty tree and adds a single
node corresponding to the initial state. It then builds and

refines the tree through a set of N iterations (lines 3–11).
Like the RRT, the RRT∗ incrementally builds the tree by
sampling a random state zrand from the obstacle-free space
(line 4) and solving for a trajectory xnew that extends the
closest node in the tree znearest toward the sample (lines 5–
6). If this trajectory does not collide with obstacles (line 7),
the standard RRT inserts the new node znew into the tree with
znearest as its parent and continues with the next iteration.

It is here that the operation of the RRT∗ differs. Rather
than choosing the nearest node as the parent, the RRT∗

considers all nodes in a neighborhood of znew (line 8) and
evaluates the cost of choosing each as the parent. This
process (Alg. 2) evaluates the total cost as the additive
combination of the cost associated with reaching the potential
parent node and the cost of the trajectory to znew. The node
that yields the lowest cost becomes the parent as the new
node is added to the tree (Alg. 1, line 10). The ReWire

procedure described in Alg. 3 then checks each node znear in
the vicinity of znew to see whether reaching znear via znew
would achieve lower cost than doing so view its current
parent (Alg. 3, line 3). When this connection reduces the total
cost associated with znear, the algorithm modifies (“rewires”)
the tree to make znew the parent of znear (line 4). The RRT∗

then continues with the next iteration.

Algorithm 1: T = (V,E)← RRT?(zinit)

1 T ← InitializeTree();
2 T ← InsertNode(∅, zinit, T);
3 for i = 1 to i = N do
4 zrand ← Sample(i);
5 znearest ← Nearest(T , zrand);
6 (xnew, unew, Tnew)← Steer(znearest, zrand);
7 if ObstacleFree(xnew) then
8 Znear ← Near(T , znew, |V |);
9 zmin ← ChooseParent(Znear, znearest, znew, xnew);

10 T ← InsertNode(zmin, znew, T);
11 T ← ReWire(T , Znear, zmin, znew);

12 return T

Algorithm 2: zmin ← ChooseParent(Znear, znearest, xnew)

1 zmin ← znearest;
2 cmin ← Cost(znearest) + c(xnew);
3 for znear ∈ Znear do
4 (x′, u′, T ′)← Steer(znear, znew);
5 if ObstacleFree(x′) and x′(T ′) = znew then
6 c′ = Cost(znear) + c(x′);
7 if c′ < Cost(znew) and c′ < cmin then
8 zmin ← znear;
9 cmin ← c′;

10 return zmin

Algorithm 3: T ← ReWire(T , Znear, zmin, znew)

1 for znear ∈ Znear \ {zmin} do
2 (x′, u′, T ′)← Steer(znew, znear);
3 if ObstacleFree(x′) and x′(T ′) = znear and

Cost(znew) + c(x′) < Cost(znear) then
4 T ← ReConnect(znew, znear, T);

5 return T

III. EXTENSIONS FOR ANYTIME MOTION PLANNING

This section describes how to exploit the anytime nature
of the RRT∗ algorithm to achieve an online motion planning
algorithm that significantly improves path quality during
path execution, i.e. as the robot is moving toward its goal.
These extensions are inspired by techniques for real-time
kinodynamic planning [8].

A. Committed Trajectory

Upon receiving the goal region, the online planning algo-
rithm starts an initial planning phase, in which the RRT∗ runs
until the robot must start moving toward its goal. The amount
of time devoted to this initial phase is domain-dependent.
In the example presented in this paper involving a full-size
robotic forklift, this time is on the order of a few seconds,
which is the time required to put the vehicle in gear.

Once the initial planning phase is completed, the online
algorithm goes into an iterative planning phase, in which
the robot starts to execute the initial portion of the best
trajectory in the tree maintained by the RRT∗ algorithm.
Meanwhile, the RRT∗ algorithm focuses on improving the
remaining part of the trajectory. Once the robot reaches the
end of the portion that it is executing, the iterative phase
is restarted by picking the current best path in the tree and
executing its initial portion.

More precisely, the iterative planning phase occurs as
follows. Given a motion plan x : [0, T] → Xfree generated
by the RRT∗ algorithm, the robot starts to execute an initial
portion of x : [0, tcom] until a given commit time tcom.
We refer to this initial path as the committed trajectory.
Once the robot starts executing the committed trajectory, the
RRT∗ algorithm deletes each of its branches and declares
the end of the committed trajectory x(tcom) to be the new
tree root. This effectively shields the committed trajectory
from any further modification. As the robot proceeds along
the committed trajectory, the RRT∗ algorithm continues to
improve the motion plan within the new (i.e., uncommitted)
tree of trajectories. Once the robot reaches the end of the
committed trajectory, the procedure restarts, using the initial
portion of what is currently the best path in the RRT∗ tree
to define a new committed trajectory. The iterative phase
repeats until the robot reaches the goal region.

B. Branch-and-Bound

In addition to considering a committed trajectory, we
also employ a branch-and-bound technique to more effi-
ciently build the tree. Branch-and-bound is used within many
domains in optimization and artificial intelligence. Most
notably, the approach we present in this section shares certain
aspects with the A∗ graph search algorithm and its variants,
which are widely used in robotics applications [15].

1) Cost-to-go functions: Before providing the details of
the branch-and-bound algorithm, let us first define a cost-to-
go function as follows. For an arbitrary state z ∈ Xfree, let
c∗z be the cost of the optimal path that starts at z and reaches
the goal region, Xgoal. A cost-to-go function CostToGo(z)
associates each z ∈ Xfree with a real number between 0

and c∗z . Essentially, CostToGo(z) provides a lower-bound
on the optimal cost to reach the goal from z. The cost-to-
go function described here is equivalent to the admissible
heuristic employed by A∗ planning algorithms.

There are many ways to define a cost-to-go function, the
most trivial being CostToGo(z) = 0 for all z ∈ Xfree.
Note that as the cost function more closely approximates
the optimal cost-to-go c∗z , the branch-and-bound algorithm
becomes more effective.

In this paper, we use the Euclidean distance between z
and Xgoal (neglecting obstacles) divided by the maximum
speed of the vehicle as a cost-to-go function.

2) Branch-and-bound algorithm: In the context of the
RRT and RRT∗, the branch-and-bound algorithm works as
follows. Let T = (V,E) be a tree and z ∈ V be a
vertex in T . Recall that Cost(z) denotes the cost of the
unique path that starts from the root node and reaches z
through the edges of T . Let zmin be the node that lies
in the goal region and has the lowest-cost trajectory that
reaches Xgoal along the edges of T . The cost of the unique
trajectory that starts from the root and reaches zmin gives
an upper bound on cost. Let V ′ denote the set of nodes z
for which the cost to get to z, plus the lower-bound on the
optimal cost-to-go, is more than the upper-bound cu, i.e.,
V ′ = {z ∈ V | Cost(z)+CostToGo(z) ≥ Cost(zmin)}. The
branch-and-bound algorithm keeps track of all such nodes
and periodically deletes them from the tree.

IV. SYSTEM DYNAMICS AND THE CONTROL PROCEDURE

This section, outlines the aforementioned steering function
and trajectory controller employed by the RRT∗.

A. Dubins Curve Steering Function
The RRT∗ algorithm uses a steering function that assumes

a Dubins vehicle model [16] to generate dynamically-feasible
trajectories for curvature-constrained vehicles. Dubins vehi-
cle dynamics have the general form:

ẋD = vD cos(θD)

ẏD = vD sin(θD)

θ̇D = uD, |uD| ≤
vD
ρ
,

where (xD, yD) and θD specify the position and orientation,
uD is the steering input, vD is the velocity, and ρ is the
minimum turning radius.

There are six types of paths that characterize the optimal
trajectory between two states for a Dubins vehicle, each
specified by a sequence of left, straight, or right steering
inputs [16]. In this paper, we consider four path classes and
choose the steering between two states that minimizes cost.
Karaman and Frazzoli [14] describe the steering function in
more detail.

B. Trajectory Tracking
The steering function returns a trajectory parametrized

by a sequence of reference states (xR, yR, θR) and a ref-
erence velocity vR. We employ a straightforward steering
controller [13] to track this reference trajectory.

Let zn be the robot’s current state and zn+1 be the next
reference point. Define the cross-track error ect be the dis-
tance between zn and zn+1 along a line perpendicular to
the desired orientation θn+1. We steer the vehicle along the
trajectory by controlling the steering angle δ via

δ = Kstr arctan(Kct ect) +Kstr eθ,

where Kstr and Kct are gains. Meanwhile, we employ a PI
controller to track the reference speed vR,

u = Kp(vR − v) +Ki

∫ t

0

(vR − v(τ)) dτ.

Using these controllers, the robot tracks the trajectory defined
by the sequence of reference points.

V. RESULTS

We implemented our algorithm in simulation as well as
on an outdoor ground vehicle. In this section we discuss
the performance of the RRT∗ in both domains and compare
the results against those of a standard RRT. The simulations
demonstrate the algorithm’s ability to exploit computation
available during the execution of the committed trajectory to
improve the solution. In contrast, while RRT may improve
the trajectory by chance through constant re-planning, such
improvements are unlikely (probability zero convergence).

A. Performance Analysis

We first evaluate the implications of execution-time re-
planning for the RRT∗ using a high-fidelity vehicle simulator.
The vehicle dynamics correspond to those of a rear wheel-
steered nonholonomic ground vehicle. Shown in Fig. 1, the
environment consists of a bounded region with two polygonal
obstacles. The planner must find a feasible trajectory from
an initial pose in the lower left of the environment to the
goal region indicated by the green box. We performed a
total of 166 Monte Carlo simulation runs with the RRT∗

motion planner and 191 independent runs with the standard
RRT. Both planners use branch-and-bound for tree expansion
and maintain a committed trajectory. Both the RRT and
RRT∗ were allowed to explore the state space throughout
the execution period.

Figure 1 depicts the result of two independent runs of
the RRT∗ in the simulation environment. In the first, the
RRT∗ initially finds a trajectory that takes the vehicle along
a relatively high cost path to the right of the obstacle
(Fig. 1(a), in blue). As the vehicle begins to execute the
plan, however, tree rewiring reveals a shorter, lower-cost
route between the obstacles (Fig. 1(b)). Meanwhile, the
second run demonstrates the benefit of branch-and-bound and
online refinement as the algorithm improves the current path
(Fig. 1(c)) into a more direct path to the goal (Fig. 1(d)).

We compare the paths executed by the RRT∗ with those
that result from a standard RRT-based planner. Figure 2
shows two different runs of the RRT at different points of
execution. The re-planning together with branch-and-bound
enable the RRT to refine an existing solution as demonstrated
by the removal of unnecessary loops in the path. In contrast

(a) RRT∗ run 1 (b) RRT∗ run 1

(c) RRT∗ run 2 (d) RRT∗ run 2

Fig. 1. The RRT∗ tree at two points during the execution of two different
simulation runs. In the first run, (a) the planner initially finds the longer
path to the right of the obstacle but, as a result of the online refinement, (b)
the RRT∗ correctly chooses the lower cost path between the obstacles. The
results of the second run demonstrate typical behavior of the RRT∗, which
refines (c) an initial path into (d) a more direct path to the goal.

(a) RRT run 1 (b) RRT run 1

(c) RRT run 2 (d) RRT run 2

Fig. 2. Two simulation runs with the RRT motion planner. (a,b) The first
run demonstrates a common failure of the RRT, which effectively gets stuck
after constructing a tree biased toward the longer route to the goal. While
the RRT does refine the path (b), it converges to a high-cost solution. (c)
During the initial period of the second run, the RRT identifies a feasible path
to the goal that includes a loop maneuver. The planner continues to search
for an improved trajectory and, with the assistance of branch-and-bound,
(d) discovers a shorter loop-free path that the vehicle then executes.

to the RRT∗ algorithm, however, these improvements tend
to be local in nature and do not provide the significant
modifications to the structure of the tree necessary to achieve
lower cost solutions. Consequently, the free space bias of the
RRT limits the extent to which the planner is able to refine

(a) RRT (b) RRT∗

Fig. 3. Vehicle paths traversed for (a) 65 simulations of the RRT and (a)
140 simulations with our RRT∗ planner.

paths. This effect is evident in the result of the first run as
the RRT gets “stuck” with a tree that favors longer paths
to the right of the obstacle (Fig. 2(a)) and converges to a
sub-optimal path (Fig. 2(b)). As is evident in Fig. 3(a), the
RRT frequently produces trajectories that are unnecessarily
long due either to the selection of over-long routes, or to
oscillations in otherwise direct paths.

Figure 3(b) depicts the final paths for the RRT∗ simu-
lations. In each case, the algorithm correctly identifies the
route between the two obstacles as providing shorter paths
to the goal. Occasionally, the RRT∗ yields an initial solution
that steers the vehicle away from the goal. As the vehicle
executes the path, the RRT∗ rewires the structure of the tree
to discover a more direct path. This refinement continues
while the vehicle executes the committed portion of the
trajectory. The result is loop-free paths that tend to be more
direct than those of the RRT.

25 30 35 40 45 50 55 60 650

20

40

60

80

Path Length (m)

C
ou

nt
s

Mean = 23.82 m
Standard deviation = 0.91 m

(a) RRT∗

25 30 35 40 45 50 55 60 650

10

20

30

40

50

Path Length (m)

C
ou

nt
s

Mean = 29.72 m
Standard deviation = 7.48 m

(b) RRT

Fig. 4. Histogram plots of the executed path length for simulations of (a)
the RRT∗ and (b) the RRT. The vertical dashed lines in (b) depict the range
of path lengths that result from the RRT∗ planner.

The online formulation of the RRT∗ algorithm exploits
the execution period to modify the tree structure as it
converges to the optimal path. This convergence is evident
in the distribution over the length of the executed simulation
trajectories (Fig. 4(a)) that exhibits a mean length (cost)
of 23.82 m and a standard deviation of 0.91 m for the set
of 166 simulations. For comparison, Fig. 4(b) presents the
corresponding distribution for the RRT planner. The mean
path length for the 191 RRT simulations is 29.72 m while the
standard deviation is 7.48 m. The significantly larger variance
results from the RRT getting “stuck” refining a tree with sub-
optimal structure. The anytime RRT∗, on the other hand,
opportunistically takes advantage of the available execution
time to converge to a near-optimal path.

B. Motion Planning for a Robotic Forklift

In addition to the simulation experiments, we demonstrate
the performance of the RRT∗ on a robotic ground vehicle.
The platform (Fig. 5) is a rear wheel-steered robotic forklift
designed to operate on uneven terrain alongside and in
collaboration with humans [11].

We conducted a series of tests with both the RRT∗ anytime
algorithm as well as the RRT-based planner. The vehicle
operated in a 20 m by 20 m packed gravel environment
consisting of five obstacles (Fig. 6). The task was to navigate
from a starting position in one corner to a 1.6 m goal
region in the opposite corner while avoiding the obstacles.
We manually specified the location of the obstacles. In
each experiment, planning started immediately prior to the
controller tracking the committed trajectory.

Figure 6 presents the result of four different tests with
the RRT∗ anytime motion planner. The plots depict the best
trajectory as maintained by the RRT∗ at different points
during the plan execution (false-colored by time). In the
scenario represented in the upper left, the RRT∗ initially
identifies a sub-optimal path that goes around an obstacle
but, as the vehicle begins to execute the path, the planner
correctly refines the solution to a shorter trajectory. As the
vehicle proceeds along the committed trajectory, the planner
continues to rewire the tree as evident in the improvements
near the end of the execution when the paths more directly
approach the goal.

Fig. 5. The robotic forklift used for experimental validation.

Start time

End time

Start time

End time

Start time

End time

Start time

End time

Fig. 6. Four runs of the anytime RRT∗ on the robotic forklift. Starting in
the upper left, the forklift was tasked with driving to the goal region while
avoiding obstacles. The trajectories indicate the optimal path as estimated
by the RRT∗ at different points in time during the execution and are false-
colored by time. Circles denote the initial position for each path.

Start time

End time

Start time

End time

Fig. 7. Plans generated by the anytime planner using the standard RRT.

For comparison, Fig. 7 presents the resulting paths for the
anytime planner utilizing the standard RRT. In the scenario
depicted on the left, the RRT initially finds a looping trajec-
tory that goes wide to the left but, after moving a few meters,
discovers a shorter path that takes the vehicle wide to the
right. At this point, the structure of the tree biases the RRT
toward refinements that improve the trajectory only locally.
In the second test, the RRT revises the initial trajectory that
unnecessarily goes to the right of the obstacle and discovers
a shorter, yet sub-optimal path to the goal.

VI. CONCLUSION

Incremental sampling-based motion planners have been
used successfully to plan trajectories for vehicles with re-
stricted dynamics operating in the presence of obstacles. The
appeal of incremental planners such as the RRT stems, in
part, from their efficiency at identifying feasible motion plans
and their intuitive implementation. However, the feasible
solutions produced by the RRT tend to be far from optimal.

This paper described an anytime motion planning algo-
rithm that uses the RRT∗ to solve for and improve solutions
to the motion planning problem in an online fashion. We
described methods that enable the planner to asymptotically
converge to the optimal solution online, during trajectory
execution. We used Monte Carlo simulation to evaluate
convergence of the anytime RRT∗ algorithm, and compared
it to a standard RRT-based motion planner. We further
demonstrated the algorithm’s performance while planning
trajectories for a large ground vehicle.

ACKNOWLEDGMENTS

We gratefully acknowledge the support of the U.S. Army
Logistics Innovation Agency, the U.S. Army Combined
Arms Support Command, and the Department of the Air
Force (Air Force Contract FA8721-05-C-0002).

REFERENCES

[1] J. Latombe, “Motion planning: A journey of robots, molecules, digital
actors, and other artifacts,” Int’l J. of Robotics Research, vol. 18,
no. 11, pp. 1119–1128, 1999.

[2] A. Bhatia and E. Frazzoli, “Incremental search methods for reacha-
bility analysis of continuous and hybrid systems,” in Hybrid Systems:
Computation and Control, ser. Lecture Notes in Computer Science,
R. Alur and G. Pappas, Eds., Mar. 2004, no. 2993, pp. 451–471.

[3] M. S. Branicky, M. M. Curtis, J. Levine, and S. Morgan, “Sampling-
based planning, control, and verification of hybrid systems,” IEEE
Proc. Control Theory and Applications, vol. 153, no. 5, pp. 575–590,
Sept. 2006.

[4] Y. Liu and N. Badler, “Real-time reach planning for animated char-
acters using hardware acceleration,” in IEEE Int’l Conf. on Computer
Animation and Social Characters, 2003, pp. 86–93.

[5] J. Reif, “Complexity of the mover’s problem and generalizations,” in
Proc. IEEE Symp. on Foundations of Computer Science, 1979.

[6] L. Kavraki, P. Svestka, J. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Trans. on Robotics and Automation, vol. 12, no. 4, pp. 566–580,
1996.

[7] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
Int.’l J. of Robotics Research, vol. 20, no. 5, pp. 378–400, May 2001.

[8] Y. Kuwata, J. Teo, G. Fiore, S. Karaman, E. Frazzoli, and J. How,
“Real-time motion planning with applications to autonomous urban
driving,” IEEE Trans. on Control Systems, vol. 17, no. 5, pp. 1105–
1118, 2009.

[9] S. Karaman and E. Frazzoli, “Incremental sampling-based algorithms
for optimal motion planning,” in Proc. Robotics: Science and Systems
(RSS), 2010.

[10] S. Thrun et al., “Stanley: The robot that won the DARPA Grand
Challenge,” J. of Field Robotics, vol. 23, no. 9, pp. 661–692, Sept.
2006.

[11] S. Teller et al., “A voice-commandable robotic forklift working along-
side humans in minimally-prepared outdoor environments,” in Proc.
IEEE Int’l Conf. on Robotics and Automation (ICRA), May 2010.

[12] A. Correa, M. R. Walter, L. Fletcher, J. Glass, S. Teller, and
R. Davis, “Multimodal interaction with an autonomous forklift,” in
Proc. ACM/IEEE Int’l Conf. on Human-Robot Interaction (HRI), Mar.
2010.

[13] M. R. Walter, S. Karaman, E. Frazzoli, and S. Teller, “Closed-loop
pallet engagement in an unstructured environment,” in Proc. IEEE/RSJ
Int’l Conf. on Intelligent Robots and Systems (IROS), Oct. 2010.

[14] S. Karaman and E. Frazzoli, “Optimal kinodynamic motion planning
using incremental sampling-based methods,” in Proc. IEEE Conf. on
Decision and Control (CDC), Dec. 2010.

[15] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun,
“Anytime search in dynamic graphs,” J. Artificial Intelligence, vol.
172, pp. 1613–1643, Sept. 2008.

[16] L. Dubins, “On the curves of minimal length on average curvature, and
with prescribed initial and terminal positions and tangents,” American
J. of Mathematics, vol. 79, no. 3, pp. 497–516, 1957.

