CLOSED-LOOP PALLET ENGAGEMENT IN AN UNSTRUCTURED ENVIRONMENT

Sertac Karaman, Matthew Walter, Emilio Frazzoli, \& Seth Teller CSAIL, LIDS
Massachusetts Institute of Technology

JOINT WORK WITH

Sertac Karaman (MIT/LIDS)

Emilio Frazzoli (MIT/LIDS)

Seth Teller (MIT/CSAIL)

AUTONOMOUS PALLET MANIPULATION

I. Palletized Cargo Manipulation:An Overview
II. LP Formulation for Fast, Closest Edge Detection
III. Pallet Manipulation: Detection, Estimation, and Control
IV. Results
V. Limitations \& Current Work

FLEXIBLE IN-SITUWAREHOUSE AUTOMATION

Goal:Autonomous palletized material handling in short-term outdoor warehouses

- Environment: Dynamic, forward-operating storage facilities
- Disaster relief (Red Cross, FEMA), Military
- Little reliable structure
- Rapid, temporary deployment
- Uneven terrain
- Dynamic (people, vehicles)

HUMAN-DIRECTED MANIPULATION

- Hand-held tablet command interface
- Supervisor circles pallets to be picked up
- Supervisor circles desired destinations
- Manipulation is autonomous
- Detect pallet and truck bed

- Safely engage and place pallets

HUMAN-DIRECTED PALLET MANIPULATION

Autonomously pickup pallets from ground and from unknown truck beds

HUMAN-DIRECTED PALLET MANIPULATION

Autonomously pickup pallets from ground and from unknown truck beds

[Video: 2009_| I_30_agile_short.mp4]

HUMAN-DIRECTED PALLET MANIPULATION

Autonomously place pallets onto ground and onto unknown truck beds

HUMAN-DIRECTED PALLET MANIPULATION

Autonomously place pallets onto ground and onto unknown truck beds

Illit

THE ROBOT: SENSING

- LIDARs directed along tines for pallet detection and servoing during fork insertion
- LIDARs with vertical FOV mounted to carriage for truck detection

SYSTEM ARCHITECTURE

WHY IS THIS HARD?

- LIDAR range returns are noisy
- Variable pallet geometry and structure
- Pallet and truck poses unknown a priori
- Sparse pallet and truck structure yields limited
 LIDAR returns
- Pallet load is variable and unknown

Assumptions

- Pallet initially in LIDAR FOV (i.e., in front of robot)
- Pallet is not occluded
- No obstacles between robot and pallet or truck

PALLET ESTIMATION \& MANIPULATION

Our approach: Closed-loop manipulation based on individual LIDAR scans

- Input: Individual scans from tine-mounted LIDAR
- Hierarchical classification of individual scans
- Filter over positive detections to estimate pallet pose
- Servo vehicle and tine poses to filter estimates via simple closed-loop controller

AUTONOMOUS PALLET MANIPULATION

I. Palletized Cargo Manipulation: An Overview
II. LP Formulation for Fast, Closest Edge Detection
III. Pallet Manipulation: Detection, Estimation, and Control
IV. Results
V. Limitations \& Current Work

CHALLENGES OF SERVOING APPROACH

Two primary challenges of perception for closed-loop servoing:

- Noisy data:

Outliers in range data, particularly near pallet corners

- Computational requirements:

Each LIDAR produces 1000 range and bearing returns at 40 Hz

Our approach:

- Formulate a linear program (LP) that accounts for noise and outliers
- Exploit the structure of the LP to solve it in real-time

LP FORMULATION

- Simple problem:

Given an orientation, find the line farthest from the origin that separates all range returns

- A simple algorithm (but not robust):
- Find distance of closest point along known orientation
- Efficient (linear time) but not robust to outliers

LP FORMULATION

- Simple problem:

Given an orientation, find the line farthest from the origin that separates all range returns

- A simple algorithm (but not robust):
- Find distance of closest point along known orientation
- Efficient (linear time) but not robust to outliers

LP FORMULATION

- Simple problem:

Given an orientation, find the line farthest from the origin that separates all range returns

- A simple algorithm (but not robust):
- Find distance of closest point along known orientation
- Efficient (linear time) but not robust to outliers

LP FORMULATION

- Simple problem:

Given an orientation, find the line farthest from the origin that separates all range returns

- A simple algorithm (but not robust):
- Find distance of closest point along known orientation
- Efficient (linear time) but not robust to outliers

sensor origin
ξ_{i} projected distance
ξ_{i} from outlier to line

- A more robust formulation:

- Express as LP that allows for, but penalizes, outliers
- Exploit the structure of the dual to solve in $O(n \min \{\nu, \log n\})$
- Allows for linear shape estimation and pallet detection in real-time

AUTONOMOUS PALLET MANIPULATION

I. Palletized Cargo Manipulation: An Overview
II. LP Formulation for Fast, Closest Edge Detection
III. Pallet Manipulation: Detection, Estimation, and Control
IV. Results
V. Limitations \& Current Work

PALLET DETECTION

Approach: Supervised classification of identified structure

- Use LP closest edge algorithm to detect candidate face
- For each face, search for pallet structure via repeated calls to LP closest edge algorithm to identify features: width, slot geometry, ...
- Pallet classification based upon rough prior

PALLET DETECTION

Approach: Supervised classification of identified structure

- Use LP closest edge algorithm to detect candidate face
- For each face, search for pallet structure via repeated calls to LP closest edge algorithm to identify features: width, slot geometry, ...
- Pallet classification based upon rough prior

PALLET DETECTION

Approach: Supervised classification of identified structure

- Use LP closest edge algorithm to detect candidate face
- For each face, search for pallet structure via repeated calls to LP closest edge algorithm to identify features: width, slot geometry, ...
- Pallet classification based upon rough prior

PALLET DETECTION

PALLET DETECTION

PALLET DETECTION

PALLET POSE FILTERING

- Positive detections serve as observations for vanilla Kalman Filter
- Estimate pallet pose:
- Position
- Heading
- Slot locations
- Width and depth for each slot

MOTION CONTROLLER

- Special case of controller by Hoffman et al. [Hoffman, ACC 2007]
- Steer to desired position and orientation, $\left(z_{\text {final }}, a_{\text {final }}\right)$

$$
\delta=K_{y} \tan ^{-1}\left(e_{y}\right)+K_{\theta} e_{\theta}
$$

- Dubins vehicle model

$$
\begin{aligned}
\dot{z} & =(\cos \theta, \sin \theta) \\
\dot{\theta} & =\tan ^{-1}(\delta)
\end{aligned}
$$

- Smooth steering policy

TRUCK DETECTION \& ESTIMATION

- Input: Pair of individual scans from vertical LIDARs
- Employ same LP closest edge algorithm as input to classifiers
- Filter over distance to truck, truck orientation, \& truck height

PALLET ESTIMATION \& MANIPULATION

IIIIT

AUTONOMOUS PALLET MANIPULATION

I. Palletized Cargo Manipulation: An Overview
II. LP Formulation for Fast, Closest Edge Detection
III. Pallet Manipulation: Detection, Estimation, and Control
IV. Results
V. Limitations \& Current Work

EXPERIMENTALVALIDATION: SETUP

- Attempted 68 pallet pick-up attempts with pallet inside initial tine LIDAR FOV
- 38 from the ground
- 30 from a truck loaded with two pallets
- Three different pallet types
- Counted as a successful engagement if no detectable
 contact with pallet or truck occurred

EXPERIMENTALVALIDATION: RESULTS

- 35 of 38 ground pick-ups successful
- Failure I:Vehicle moved pallet during insertion
- Failures 2 \& 3: Unable to reacquire pallet
- 30 of 30 truck pick-ups successful

AUTONOMOUS PALLET MANIPULATION

I. Palletized Cargo Manipulation: An Overview
II. LP Formulation for Fast, Closest Edge Detection
III. Pallet Manipulation: Detection, Estimation, and Control
IV. Results
V. Limitations \& Current Work

LIMITATIONS AND CURRENT WORK

- Closed-loop perception and planning: Macro-action forward-search using RRT
- Gesture-less detection of multiple pallets
- Pallet stacking and unstacking
- Extend outlier-robust LP to general shape estimation using kernel methods
[Video: 20I0_05_04_multiple_pallet.mp4]

LIMITATIONS AND CURRENT WORK

- Closed-loop perception and planning: Macro-action forward-search using RRT
- Gesture-less detection of multiple pallets
- Pallet stacking and unstacking
- Extend outlier-robust LP to general shape estimation using kernel methods

[Video: $\left.2010 _05 _04 _m u l t i p l e _p a l l e t . m p 4\right]$

QUESTIONS?

mwalter@csail.mit.edu

http://people.csail.mit.edu/mwalter

[Video: 2010_02_2I_unmanned.mp4]

