
CLOSED-LOOP PALLET ENGAGEMENT IN AN
UNSTRUCTURED ENVIRONMENT

Sertac Karaman, Matthew Walter, Emilio Frazzoli, & Seth Teller
CSAIL, LIDS

Massachusetts Institute of Technology

7 May 2010

JOINT WORK WITH

Seth Teller
(MIT/CSAIL)

Sertac Karaman
(MIT/LIDS)

Emilio Frazzoli
(MIT/LIDS)

Matthew Walter | 7 May 2010

AUTONOMOUS PALLET MANIPULATION

I. Palletized Cargo Manipulation: An Overview

II. LP Formulation for Fast, Closest Edge Detection

III. Pallet Manipulation: Detection, Estimation, and Control

IV. Results

V. Limitations & Current Work

Matthew Walter | 7 May 2010

FLEXIBLE IN-SITU WAREHOUSE AUTOMATION

• Environment: Dynamic, forward-operating storage facilities
- Disaster relief (Red Cross, FEMA), Military
- Little reliable structure
- Rapid, temporary deployment
- Uneven terrain
- Dynamic (people, vehicles)

Goal: Autonomous palletized material handling in
short-term outdoor warehouses

System Overview LP Closest Edge Detection Pallet Manipulation Results Conclusion

Matthew Walter | 7 May 2010

• Hand-held tablet command interface

• Supervisor circles pallets to be picked up

• Supervisor circles desired destinations

• Manipulation is autonomous
- Detect pallet and truck bed
- Safely engage and place pallets

System Overview LP Closest Edge Detection Pallet Manipulation Results Conclusion

HUMAN-DIRECTED MANIPULATION

Matthew Walter | 7 May 2010

HUMAN-DIRECTED PALLET MANIPULATION

System Overview LP Closest Edge Detection Pallet Manipulation Results Conclusion

Autonomously pickup pallets from ground and from
unknown truck beds

[Video: 2009_11_30_agile_short.mp4]

Matthew Walter | 7 May 2010

HUMAN-DIRECTED PALLET MANIPULATION

System Overview LP Closest Edge Detection Pallet Manipulation Results Conclusion

Autonomously pickup pallets from ground and from
unknown truck beds

[Video: 2009_11_30_agile_short.mp4]

Matthew Walter | 7 May 2010

HUMAN-DIRECTED PALLET MANIPULATION

System Overview LP Closest Edge Detection Pallet Manipulation Results Conclusion

Autonomously place pallets onto ground and onto
unknown truck beds

[Video: 2009_11_30_agile_short.mp4; 1:20 in]

Matthew Walter | 7 May 2010

HUMAN-DIRECTED PALLET MANIPULATION

System Overview LP Closest Edge Detection Pallet Manipulation Results Conclusion

Autonomously place pallets onto ground and onto
unknown truck beds

[Video: 2009_11_30_agile_short.mp4; 1:20 in]

Matthew Walter | 7 May 2010

THE ROBOT: SENSING

• LIDARs directed along tines for pallet detection
and servoing during fork insertion

• LIDARs with vertical FOV mounted to carriage
for truck detection

System Overview LP Closest Edge Detection Pallet Manipulation Results Conclusion

Matthew Walter | 7 May 2010

SYSTEM ARCHITECTURE

System Overview LP Closest Edge Detection Pallet Manipulation Results Conclusion

Matthew Walter | 7 May 2010

WHY IS THIS HARD?

System Overview LP Closest Edge Detection Pallet Manipulation Results Conclusion

• LIDAR range returns are noisy

• Variable pallet geometry and structure

• Pallet and truck poses unknown a priori

• Sparse pallet and truck structure yields limited
LIDAR returns

• Pallet load is variable and unknown

• Pallet initially in LIDAR FOV (i.e., in front of robot)

• Pallet is not occluded

• No obstacles between robot and pallet or truck

Assumptions

Matthew Walter | 7 May 2010

PALLET ESTIMATION & MANIPULATION

System Overview LP Closest Edge Detection Pallet Manipulation Results Conclusion

• Input: Individual scans from tine-mounted LIDAR

• Hierarchical classification of individual scans

• Filter over positive detections to estimate pallet pose

• Servo vehicle and tine poses to filter estimates via simple
closed-loop controller

Our approach: Closed-loop manipulation
based on individual LIDAR scans

Individual LIDAR scan

Motion Controller

Kalman Filter

Pallet Classifier

Pallet pose

Key component: Fast, robust linear shape
estimation

Matthew Walter | 7 May 2010

AUTONOMOUS PALLET MANIPULATION

I. Palletized Cargo Manipulation: An Overview

II. LP Formulation for Fast, Closest Edge Detection

III. Pallet Manipulation: Detection, Estimation, and Control

IV. Results

V. Limitations & Current Work

Matthew Walter | 7 May 2010

CHALLENGES OF SERVOING APPROACH

System Overview LP Closest Edge Detection Pallet Manipulation Results Conclusion

• Noisy data:

Outliers in range data, particularly near pallet corners

• Computational requirements:

Each LIDAR produces 1000 range and bearing returns at 40Hz

Two primary challenges of perception for closed-loop servoing:

• Formulate a linear program (LP) that accounts for noise and outliers

• Exploit the structure of the LP to solve it in real-time

Our approach:

Matthew Walter | 7 May 2010

LP FORMULATION

System Overview LP Closest Edge Detection Pallet Manipulation Results Conclusion

• Simple problem:

Given an orientation, find the line farthest from the
origin that separates all range returns

• A simple algorithm (but not robust):

- Find distance of closest point along known orientation

- Efficient (linear time) but not robust to outliers

Matthew Walter | 7 May 2010

LP FORMULATION

System Overview LP Closest Edge Detection Pallet Manipulation Results Conclusion

• Simple problem:

Given an orientation, find the line farthest from the
origin that separates all range returns

• A simple algorithm (but not robust):

- Find distance of closest point along known orientation

- Efficient (linear time) but not robust to outliers

replacements

ρ
xi

a

ξi

X

Y

Fig. 3. A graphical representation of the closest edge detection problem
for 2D laser returns from a pallet face. The three grey points are outliers
with respect to the line (a, ρ).

that solving the original linear program with, for instance, the
interior point algorithm requires O(n3.5) time in the worst
case [21]; hence, exploiting the structure of the dual program
results in significant computational savings, facilitating real-
time implementation for robotics applications. For the second
variant of the problem, a heuristic algorithm, which uses the
algorithm for the first variant a constant number of times,
is provided. Both algorithms are used as a basis to detect
pallets and trucks in Sections V and VI, respectively.

A. Closest Edge Detection with Known Orientation
Consider the first variant of the closest edge detection

problem. To define the problem more formally, let X =
{x1, x2, . . . , xn} = {xi}i∈I , where I = {1, 2, . . . , n}, be
the set of points in the two dimensional Euclidean space
R2, representing the data sampled from a planar laser range
finder. Figure 3 presents a simple example with laser returns
that are representative of those from a pallet face. Without
loss of generality, let the sensor lie in the origin of this
Euclidean space and be oriented such that its normal vector
is [1, 0]". Let a ∈ R2 denote a normalized vector, i.e.,
‖ a ‖ = 1. Informally, the problem is to find the distance ρ
of the line to the origin such that all data points in X , except
a few outliers, are separated from the origin by this line.
More precisely, for all points xi ∈ X , except a few outliers,
〈a, xi〉 ≥ ρ holds, where 〈·, ·〉 denotes the dot product, i.e.,
〈a, x〉 denotes the distance of xi to the origin when projected
along the vector a. Let ξi denote the distance of point xi

to the separating line if the distance from the origin to xi

(projected along a) is less than ρ; otherwise let ξi be zero.
That is ξi = max (ρ− 〈a, xi〉, 0) (see Figure 3).
Given a line described by a normal a and distance ρ, a

point xi with ξi > 0 is called an outlier with respect to the
line (a, ρ). We formulate the closest edge detection problem
as maximization of the following function: ρ − C

∑
i∈I ξi,

where C is a problem dependent constant parameter, that
represents the trade-off between two objectives: maximizing
the distance ρ of the separating line to the origin and
minimizing the total distance

∑
i∈I ξi of the outliers to line

(a, ρ). Notice that C = 0 will render ρ = ∞, in which case
all data points will be outliers. C → ∞, on the other hand,
will allow no outliers in a feasible solution.
To further motivate, first let us consider the case with no

outliers (C → ∞) and the relatively easy problem of finding

the distance ρ of the line with normal a to the origin such
that ρ is maximum and the line separates all points in X
from the origin. Notice that a naı̈ve algorithm that computes
the distance of xi from the origin for all i ∈ I and returns
the minimum distance solves this problem. Notice also that
this algorithm runs in time O(n). Indeed, it can be shown
that any deterministic algorithm that solves this problem has
to run in time Ω(n). However, due to the noise embedded
in the laser range finder data, especially for LIDAR returns
arising from the corners, this solution may provide noisy
information. Precisely for this reason, the aforementioned
formulation of the closest edge detection problem includes
an extra term in the objective function so as to filter out
such noise. The rest of this section details an algorithm that
solves the closest edge detection problem while incurring
small extra computational cost.
The closest edge detection problem can be formulated as

a mathematical program as follows:

maximize ρ− 1
ν

∑
i∈I ξi, (1)

subject to di ≥ ρ− ξi, ∀i ∈ I, (2)
ξi ≥ 0, ∀i ∈ I, (3)

where ρ ∈ R and ξi ∈ R are the decision variables, and
ν ∈ R is a parameter such that ν = 1/C. The parameter di
is the distance of point xi to the origin when projected along
a, i.e., di = 〈a, xi〉.
For computational purposes, it is useful to consider the

dual of the linear program (1-3):

minimize
∑

i∈I diλi, (4)
subject to

∑
i∈I λi = 1, ∀i ∈ I, (5)

0 ≤ λi ≤
1
ν
, ∀i ∈ I, (6)

where λi are called the dual variables. Let (ρ∗, ξ∗1 , . . . , ξ∗n)
be an optimal solution to the linear program (1-3) and
(λ∗

1, . . . ,λ
∗
n) be the optimal solution of the dual linear

program (4-6). The optimal primal solution can be recovered
from the dual solution as ρ∗ =

∑
i∈I λ∗

i di.
The dual linear program is particularly interesting for

computational purposes. Strictly speaking,

Proposition IV.1 Algorithm 1 runs in O(nmin{log n, ν})
time and solves the dual linear program (4-6).

Algorithm 1, DUALSOLVE, takes the parameter ν, the
normal vector a, and the set X as an input and returns
an indexed set {λi}i∈I of values for the dual variables.
DUALSOLVE employs two primitive functions. SORT takes
an indexed set {yi}i∈I as an input, where yi ∈ R, and returns
a sorted sequence of indices J such that yJ (j) ≤ yJ (j+1)

for all j ∈ {1, 2 . . . , |I|}. MIN, meanwhile, returns the index
j of the minimum element in a given index set, i.e., yj ≤ yj′
for all j′ ∈ J .
Firstly, notice that the elementary operations in

DUALSOLVE require only additions, multiplications,
and evaluations of cross products, none of which require
the computation of any trigonometric function. Apart

replacements

ρ
xi

a

ξi

X

Y

Fig. 3. A graphical representation of the closest edge detection problem
for 2D laser returns from a pallet face. The three grey points are outliers
with respect to the line (a, ρ).

a linear program, the dual of which is shown to be solvable
in O(nmin{ν, log n}) time, where ν is a problem-specific
parameter. Note that solving the original linear program with,
for instance, the interior point algorithm requires O(n3.5)
time in the worst case [22]. Hence, exploiting the structure of
the dual program results in significant computational savings,
facilitating real-time implementation. In the second variant of
the problem, we propose a heuristic algorithm that employs
the algorithm for the first variant a constant number of times.
Sections V and VI describe the use of both algorithms as a
basis to detect pallets and trucks, respectively.

A. Closest Edge Detection with Known Orientation
We consider the first variant of the closest edge detec-

tion problem. To define the problem more formally, let
X = {xi}i∈I , where I = {1, 2, . . . , n}, be the set of points
in the two dimensional Euclidean space R2, representing
the data sampled from a planar laser range finder. Fig-
ure 3 presents a simple example with laser returns that are
representative of those from a pallet face. Without loss of
generality, let the sensor lie in the origin of this Euclidean
space and be oriented such that its normal vector is [1, 0]".
Let a ∈ R2 denote a normalized vector, i.e., ‖ a ‖ = 1.
Informally, the problem is to find the distance ρ from the
origin to the line such that it separates all data points in
X , except a few outliers, from the origin. More precisely,
for all points xi ∈ X , except a few outliers, 〈a, xi〉 ≥ ρ
holds, where 〈·, ·〉 denotes the dot product, i.e., the distance
of xi to the origin when projected along the vector a. Let ξi
represent the distance of point xi to the separating line if the
distance from the origin to xi (projected along a) is less than
ρ; otherwise, let ξi be zero. That is ξi = max (ρ− 〈a, xi〉, 0)
(see Figure 3).
Given a line described by a normal a and distance ρ, a

point xi with ξi > 0 is called an outlier with respect to the
line (a, ρ). We formulate the closest edge detection problem
as maximization of the following function: ρ − C

∑
i∈I ξi,

where C is a constant problem-dependent parameter. The
maximization represents the trade-off between two objec-
tives: maximizing the distance ρ of the separating line to
the origin and minimizing the total distance

∑
i∈I ξi of the

outliers to line (a, ρ). Notice that C = 0 will render ρ = ∞,
in which case all data points will be outliers. C → ∞, on
the other hand, will allow no outliers in a feasible solution.

We first consider the case in which no outliers are per-
mitted (C → ∞) and the relatively easy problem of finding
the distance ρ of the line with normal a to the origin such
that ρ is maximum and the line separates all points in X
from the origin. Notice that a naı̈ve algorithm that computes
the distance of xi from the origin for all i ∈ I and returns
the minimum distance solves this problem. Notice also that
this algorithm runs in time O(n). Indeed, it can be shown
that any deterministic algorithm that solves this problem has
to run in time Ω(n). However, due to the noise embedded
in the laser range finder data, especially for LIDAR returns
arising from the corners of the scanned object, this solution
may provide noisy information. Precisely for this reason,
the aforementioned formulation of the closest edge detection
problem includes an extra term in the objective function so
as to filter out such noise. The rest of this section details
an algorithm that solves the closest edge detection problem
while incurring small extra computational cost.
The closest edge detection problem can be formulated as

a mathematical program as follows:

maximize ρ−
1

ν

∑

i∈I

ξi, (1a)

subject to di ≥ ρ− ξi, ∀i ∈ I, (1b)
ξi ≥ 0, ∀i ∈ I, (1c)

where ρ ∈ R and ξi ∈ R are the decision variables, and ν ∈
R is a parameter such that ν = 1/C. The term di = 〈a, xi〉
is the distance of point xi to the origin when projected along
a.
For computational purposes, it is useful to consider the

dual of the linear program (1):

minimize
∑

i∈I

diλi, (2a)

subject to
∑

i∈I

λi = 1, ∀i ∈ I, (2b)

0 ≤ λi ≤
1

ν
, ∀i ∈ I, (2c)

where λi are called the dual variables. Let (ρ∗, ξ∗1 , . . . , ξ∗n)
be the optimal solution to the linear program (1) and
(λ∗

1, . . . ,λ
∗
n) be the optimal solution of the dual linear

program (2). The optimal primal solution can be recovered
from the dual solution by ρ∗ =

∑
i∈I λ∗

i di.
The dual linear program is particularly interesting for

computational purposes. Strictly speaking,

Proposition IV.1 Algorithm 1 runs in O(nmin{log n, ν})
time and solves the dual linear program (2).

Algorithm 1, DUALSOLVE, takes the parameter ν, the
normal vector a, and the set X as an input and returns an
indexed set {λi}i∈I of values for the dual variables. The
DUALSOLVE algorithm employs two primitive functions.
SORT takes an indexed set {yi}i∈I as an input, where
yi ∈ R, and returns a sorted sequence of indices J such that
yJ (j) ≤ yJ (j+1) for all j ∈ {1, 2 . . . , |I|}. MIN, meanwhile,

projected distance
from outlier to line

sensor origin

Matthew Walter | 7 May 2010

LP FORMULATION

System Overview LP Closest Edge Detection Pallet Manipulation Results Conclusion

• Simple problem:

Given an orientation, find the line farthest from the
origin that separates all range returns

• A simple algorithm (but not robust):

- Find distance of closest point along known orientation

- Efficient (linear time) but not robust to outliers

replacements

ρ
xi

a

ξi

X

Y

Fig. 3. A graphical representation of the closest edge detection problem
for 2D laser returns from a pallet face. The three grey points are outliers
with respect to the line (a, ρ).

that solving the original linear program with, for instance, the
interior point algorithm requires O(n3.5) time in the worst
case [21]; hence, exploiting the structure of the dual program
results in significant computational savings, facilitating real-
time implementation for robotics applications. For the second
variant of the problem, a heuristic algorithm, which uses the
algorithm for the first variant a constant number of times,
is provided. Both algorithms are used as a basis to detect
pallets and trucks in Sections V and VI, respectively.

A. Closest Edge Detection with Known Orientation
Consider the first variant of the closest edge detection

problem. To define the problem more formally, let X =
{x1, x2, . . . , xn} = {xi}i∈I , where I = {1, 2, . . . , n}, be
the set of points in the two dimensional Euclidean space
R2, representing the data sampled from a planar laser range
finder. Figure 3 presents a simple example with laser returns
that are representative of those from a pallet face. Without
loss of generality, let the sensor lie in the origin of this
Euclidean space and be oriented such that its normal vector
is [1, 0]". Let a ∈ R2 denote a normalized vector, i.e.,
‖ a ‖ = 1. Informally, the problem is to find the distance ρ
of the line to the origin such that all data points in X , except
a few outliers, are separated from the origin by this line.
More precisely, for all points xi ∈ X , except a few outliers,
〈a, xi〉 ≥ ρ holds, where 〈·, ·〉 denotes the dot product, i.e.,
〈a, x〉 denotes the distance of xi to the origin when projected
along the vector a. Let ξi denote the distance of point xi

to the separating line if the distance from the origin to xi

(projected along a) is less than ρ; otherwise let ξi be zero.
That is ξi = max (ρ− 〈a, xi〉, 0) (see Figure 3).
Given a line described by a normal a and distance ρ, a

point xi with ξi > 0 is called an outlier with respect to the
line (a, ρ). We formulate the closest edge detection problem
as maximization of the following function: ρ − C

∑
i∈I ξi,

where C is a problem dependent constant parameter, that
represents the trade-off between two objectives: maximizing
the distance ρ of the separating line to the origin and
minimizing the total distance

∑
i∈I ξi of the outliers to line

(a, ρ). Notice that C = 0 will render ρ = ∞, in which case
all data points will be outliers. C → ∞, on the other hand,
will allow no outliers in a feasible solution.
To further motivate, first let us consider the case with no

outliers (C → ∞) and the relatively easy problem of finding

the distance ρ of the line with normal a to the origin such
that ρ is maximum and the line separates all points in X
from the origin. Notice that a naı̈ve algorithm that computes
the distance of xi from the origin for all i ∈ I and returns
the minimum distance solves this problem. Notice also that
this algorithm runs in time O(n). Indeed, it can be shown
that any deterministic algorithm that solves this problem has
to run in time Ω(n). However, due to the noise embedded
in the laser range finder data, especially for LIDAR returns
arising from the corners, this solution may provide noisy
information. Precisely for this reason, the aforementioned
formulation of the closest edge detection problem includes
an extra term in the objective function so as to filter out
such noise. The rest of this section details an algorithm that
solves the closest edge detection problem while incurring
small extra computational cost.
The closest edge detection problem can be formulated as

a mathematical program as follows:

maximize ρ− 1
ν

∑
i∈I ξi, (1)

subject to di ≥ ρ− ξi, ∀i ∈ I, (2)
ξi ≥ 0, ∀i ∈ I, (3)

where ρ ∈ R and ξi ∈ R are the decision variables, and
ν ∈ R is a parameter such that ν = 1/C. The parameter di
is the distance of point xi to the origin when projected along
a, i.e., di = 〈a, xi〉.
For computational purposes, it is useful to consider the

dual of the linear program (1-3):

minimize
∑

i∈I diλi, (4)
subject to

∑
i∈I λi = 1, ∀i ∈ I, (5)

0 ≤ λi ≤
1
ν
, ∀i ∈ I, (6)

where λi are called the dual variables. Let (ρ∗, ξ∗1 , . . . , ξ∗n)
be an optimal solution to the linear program (1-3) and
(λ∗

1, . . . ,λ
∗
n) be the optimal solution of the dual linear

program (4-6). The optimal primal solution can be recovered
from the dual solution as ρ∗ =

∑
i∈I λ∗

i di.
The dual linear program is particularly interesting for

computational purposes. Strictly speaking,

Proposition IV.1 Algorithm 1 runs in O(nmin{log n, ν})
time and solves the dual linear program (4-6).

Algorithm 1, DUALSOLVE, takes the parameter ν, the
normal vector a, and the set X as an input and returns
an indexed set {λi}i∈I of values for the dual variables.
DUALSOLVE employs two primitive functions. SORT takes
an indexed set {yi}i∈I as an input, where yi ∈ R, and returns
a sorted sequence of indices J such that yJ (j) ≤ yJ (j+1)

for all j ∈ {1, 2 . . . , |I|}. MIN, meanwhile, returns the index
j of the minimum element in a given index set, i.e., yj ≤ yj′
for all j′ ∈ J .
Firstly, notice that the elementary operations in

DUALSOLVE require only additions, multiplications,
and evaluations of cross products, none of which require
the computation of any trigonometric function. Apart

replacements

ρ
xi

a

ξi

X

Y

Fig. 3. A graphical representation of the closest edge detection problem
for 2D laser returns from a pallet face. The three grey points are outliers
with respect to the line (a, ρ).

a linear program, the dual of which is shown to be solvable
in O(nmin{ν, log n}) time, where ν is a problem-specific
parameter. Note that solving the original linear program with,
for instance, the interior point algorithm requires O(n3.5)
time in the worst case [22]. Hence, exploiting the structure of
the dual program results in significant computational savings,
facilitating real-time implementation. In the second variant of
the problem, we propose a heuristic algorithm that employs
the algorithm for the first variant a constant number of times.
Sections V and VI describe the use of both algorithms as a
basis to detect pallets and trucks, respectively.

A. Closest Edge Detection with Known Orientation
We consider the first variant of the closest edge detec-

tion problem. To define the problem more formally, let
X = {xi}i∈I , where I = {1, 2, . . . , n}, be the set of points
in the two dimensional Euclidean space R2, representing
the data sampled from a planar laser range finder. Fig-
ure 3 presents a simple example with laser returns that are
representative of those from a pallet face. Without loss of
generality, let the sensor lie in the origin of this Euclidean
space and be oriented such that its normal vector is [1, 0]".
Let a ∈ R2 denote a normalized vector, i.e., ‖ a ‖ = 1.
Informally, the problem is to find the distance ρ from the
origin to the line such that it separates all data points in
X , except a few outliers, from the origin. More precisely,
for all points xi ∈ X , except a few outliers, 〈a, xi〉 ≥ ρ
holds, where 〈·, ·〉 denotes the dot product, i.e., the distance
of xi to the origin when projected along the vector a. Let ξi
represent the distance of point xi to the separating line if the
distance from the origin to xi (projected along a) is less than
ρ; otherwise, let ξi be zero. That is ξi = max (ρ− 〈a, xi〉, 0)
(see Figure 3).
Given a line described by a normal a and distance ρ, a

point xi with ξi > 0 is called an outlier with respect to the
line (a, ρ). We formulate the closest edge detection problem
as maximization of the following function: ρ − C

∑
i∈I ξi,

where C is a constant problem-dependent parameter. The
maximization represents the trade-off between two objec-
tives: maximizing the distance ρ of the separating line to
the origin and minimizing the total distance

∑
i∈I ξi of the

outliers to line (a, ρ). Notice that C = 0 will render ρ = ∞,
in which case all data points will be outliers. C → ∞, on
the other hand, will allow no outliers in a feasible solution.

We first consider the case in which no outliers are per-
mitted (C → ∞) and the relatively easy problem of finding
the distance ρ of the line with normal a to the origin such
that ρ is maximum and the line separates all points in X
from the origin. Notice that a naı̈ve algorithm that computes
the distance of xi from the origin for all i ∈ I and returns
the minimum distance solves this problem. Notice also that
this algorithm runs in time O(n). Indeed, it can be shown
that any deterministic algorithm that solves this problem has
to run in time Ω(n). However, due to the noise embedded
in the laser range finder data, especially for LIDAR returns
arising from the corners of the scanned object, this solution
may provide noisy information. Precisely for this reason,
the aforementioned formulation of the closest edge detection
problem includes an extra term in the objective function so
as to filter out such noise. The rest of this section details
an algorithm that solves the closest edge detection problem
while incurring small extra computational cost.
The closest edge detection problem can be formulated as

a mathematical program as follows:

maximize ρ−
1

ν

∑

i∈I

ξi, (1a)

subject to di ≥ ρ− ξi, ∀i ∈ I, (1b)
ξi ≥ 0, ∀i ∈ I, (1c)

where ρ ∈ R and ξi ∈ R are the decision variables, and ν ∈
R is a parameter such that ν = 1/C. The term di = 〈a, xi〉
is the distance of point xi to the origin when projected along
a.
For computational purposes, it is useful to consider the

dual of the linear program (1):

minimize
∑

i∈I

diλi, (2a)

subject to
∑

i∈I

λi = 1, ∀i ∈ I, (2b)

0 ≤ λi ≤
1

ν
, ∀i ∈ I, (2c)

where λi are called the dual variables. Let (ρ∗, ξ∗1 , . . . , ξ∗n)
be the optimal solution to the linear program (1) and
(λ∗

1, . . . ,λ
∗
n) be the optimal solution of the dual linear

program (2). The optimal primal solution can be recovered
from the dual solution by ρ∗ =

∑
i∈I λ∗

i di.
The dual linear program is particularly interesting for

computational purposes. Strictly speaking,

Proposition IV.1 Algorithm 1 runs in O(nmin{log n, ν})
time and solves the dual linear program (2).

Algorithm 1, DUALSOLVE, takes the parameter ν, the
normal vector a, and the set X as an input and returns an
indexed set {λi}i∈I of values for the dual variables. The
DUALSOLVE algorithm employs two primitive functions.
SORT takes an indexed set {yi}i∈I as an input, where
yi ∈ R, and returns a sorted sequence of indices J such that
yJ (j) ≤ yJ (j+1) for all j ∈ {1, 2 . . . , |I|}. MIN, meanwhile,

projected distance
from outlier to line

sensor origin

Matthew Walter | 7 May 2010

LP FORMULATION

System Overview LP Closest Edge Detection Pallet Manipulation Results Conclusion

• Simple problem:

Given an orientation, find the line farthest from the
origin that separates all range returns

• A simple algorithm (but not robust):

- Find distance of closest point along known orientation

- Efficient (linear time) but not robust to outliers

• A more robust formulation:

- Express as LP that allows for, but penalizes, outliers

- Exploit the structure of the dual to solve in

- Allows for linear shape estimation and pallet detection in real-time

O(n min{ν, log n})

replacements

ρ
xi

a

ξi

X

Y

Fig. 3. A graphical representation of the closest edge detection problem
for 2D laser returns from a pallet face. The three grey points are outliers
with respect to the line (a, ρ).

that solving the original linear program with, for instance, the
interior point algorithm requires O(n3.5) time in the worst
case [21]; hence, exploiting the structure of the dual program
results in significant computational savings, facilitating real-
time implementation for robotics applications. For the second
variant of the problem, a heuristic algorithm, which uses the
algorithm for the first variant a constant number of times,
is provided. Both algorithms are used as a basis to detect
pallets and trucks in Sections V and VI, respectively.

A. Closest Edge Detection with Known Orientation
Consider the first variant of the closest edge detection

problem. To define the problem more formally, let X =
{x1, x2, . . . , xn} = {xi}i∈I , where I = {1, 2, . . . , n}, be
the set of points in the two dimensional Euclidean space
R2, representing the data sampled from a planar laser range
finder. Figure 3 presents a simple example with laser returns
that are representative of those from a pallet face. Without
loss of generality, let the sensor lie in the origin of this
Euclidean space and be oriented such that its normal vector
is [1, 0]". Let a ∈ R2 denote a normalized vector, i.e.,
‖ a ‖ = 1. Informally, the problem is to find the distance ρ
of the line to the origin such that all data points in X , except
a few outliers, are separated from the origin by this line.
More precisely, for all points xi ∈ X , except a few outliers,
〈a, xi〉 ≥ ρ holds, where 〈·, ·〉 denotes the dot product, i.e.,
〈a, x〉 denotes the distance of xi to the origin when projected
along the vector a. Let ξi denote the distance of point xi

to the separating line if the distance from the origin to xi

(projected along a) is less than ρ; otherwise let ξi be zero.
That is ξi = max (ρ− 〈a, xi〉, 0) (see Figure 3).
Given a line described by a normal a and distance ρ, a

point xi with ξi > 0 is called an outlier with respect to the
line (a, ρ). We formulate the closest edge detection problem
as maximization of the following function: ρ − C

∑
i∈I ξi,

where C is a problem dependent constant parameter, that
represents the trade-off between two objectives: maximizing
the distance ρ of the separating line to the origin and
minimizing the total distance

∑
i∈I ξi of the outliers to line

(a, ρ). Notice that C = 0 will render ρ = ∞, in which case
all data points will be outliers. C → ∞, on the other hand,
will allow no outliers in a feasible solution.
To further motivate, first let us consider the case with no

outliers (C → ∞) and the relatively easy problem of finding

the distance ρ of the line with normal a to the origin such
that ρ is maximum and the line separates all points in X
from the origin. Notice that a naı̈ve algorithm that computes
the distance of xi from the origin for all i ∈ I and returns
the minimum distance solves this problem. Notice also that
this algorithm runs in time O(n). Indeed, it can be shown
that any deterministic algorithm that solves this problem has
to run in time Ω(n). However, due to the noise embedded
in the laser range finder data, especially for LIDAR returns
arising from the corners, this solution may provide noisy
information. Precisely for this reason, the aforementioned
formulation of the closest edge detection problem includes
an extra term in the objective function so as to filter out
such noise. The rest of this section details an algorithm that
solves the closest edge detection problem while incurring
small extra computational cost.
The closest edge detection problem can be formulated as

a mathematical program as follows:

maximize ρ− 1
ν

∑
i∈I ξi, (1)

subject to di ≥ ρ− ξi, ∀i ∈ I, (2)
ξi ≥ 0, ∀i ∈ I, (3)

where ρ ∈ R and ξi ∈ R are the decision variables, and
ν ∈ R is a parameter such that ν = 1/C. The parameter di
is the distance of point xi to the origin when projected along
a, i.e., di = 〈a, xi〉.
For computational purposes, it is useful to consider the

dual of the linear program (1-3):

minimize
∑

i∈I diλi, (4)
subject to

∑
i∈I λi = 1, ∀i ∈ I, (5)

0 ≤ λi ≤
1
ν
, ∀i ∈ I, (6)

where λi are called the dual variables. Let (ρ∗, ξ∗1 , . . . , ξ∗n)
be an optimal solution to the linear program (1-3) and
(λ∗

1, . . . ,λ
∗
n) be the optimal solution of the dual linear

program (4-6). The optimal primal solution can be recovered
from the dual solution as ρ∗ =

∑
i∈I λ∗

i di.
The dual linear program is particularly interesting for

computational purposes. Strictly speaking,

Proposition IV.1 Algorithm 1 runs in O(nmin{log n, ν})
time and solves the dual linear program (4-6).

Algorithm 1, DUALSOLVE, takes the parameter ν, the
normal vector a, and the set X as an input and returns
an indexed set {λi}i∈I of values for the dual variables.
DUALSOLVE employs two primitive functions. SORT takes
an indexed set {yi}i∈I as an input, where yi ∈ R, and returns
a sorted sequence of indices J such that yJ (j) ≤ yJ (j+1)

for all j ∈ {1, 2 . . . , |I|}. MIN, meanwhile, returns the index
j of the minimum element in a given index set, i.e., yj ≤ yj′
for all j′ ∈ J .
Firstly, notice that the elementary operations in

DUALSOLVE require only additions, multiplications,
and evaluations of cross products, none of which require
the computation of any trigonometric function. Apart

replacements

ρ
xi

a

ξi

X

Y

Fig. 3. A graphical representation of the closest edge detection problem
for 2D laser returns from a pallet face. The three grey points are outliers
with respect to the line (a, ρ).

a linear program, the dual of which is shown to be solvable
in O(nmin{ν, log n}) time, where ν is a problem-specific
parameter. Note that solving the original linear program with,
for instance, the interior point algorithm requires O(n3.5)
time in the worst case [22]. Hence, exploiting the structure of
the dual program results in significant computational savings,
facilitating real-time implementation. In the second variant of
the problem, we propose a heuristic algorithm that employs
the algorithm for the first variant a constant number of times.
Sections V and VI describe the use of both algorithms as a
basis to detect pallets and trucks, respectively.

A. Closest Edge Detection with Known Orientation
We consider the first variant of the closest edge detec-

tion problem. To define the problem more formally, let
X = {xi}i∈I , where I = {1, 2, . . . , n}, be the set of points
in the two dimensional Euclidean space R2, representing
the data sampled from a planar laser range finder. Fig-
ure 3 presents a simple example with laser returns that are
representative of those from a pallet face. Without loss of
generality, let the sensor lie in the origin of this Euclidean
space and be oriented such that its normal vector is [1, 0]".
Let a ∈ R2 denote a normalized vector, i.e., ‖ a ‖ = 1.
Informally, the problem is to find the distance ρ from the
origin to the line such that it separates all data points in
X , except a few outliers, from the origin. More precisely,
for all points xi ∈ X , except a few outliers, 〈a, xi〉 ≥ ρ
holds, where 〈·, ·〉 denotes the dot product, i.e., the distance
of xi to the origin when projected along the vector a. Let ξi
represent the distance of point xi to the separating line if the
distance from the origin to xi (projected along a) is less than
ρ; otherwise, let ξi be zero. That is ξi = max (ρ− 〈a, xi〉, 0)
(see Figure 3).
Given a line described by a normal a and distance ρ, a

point xi with ξi > 0 is called an outlier with respect to the
line (a, ρ). We formulate the closest edge detection problem
as maximization of the following function: ρ − C

∑
i∈I ξi,

where C is a constant problem-dependent parameter. The
maximization represents the trade-off between two objec-
tives: maximizing the distance ρ of the separating line to
the origin and minimizing the total distance

∑
i∈I ξi of the

outliers to line (a, ρ). Notice that C = 0 will render ρ = ∞,
in which case all data points will be outliers. C → ∞, on
the other hand, will allow no outliers in a feasible solution.

We first consider the case in which no outliers are per-
mitted (C → ∞) and the relatively easy problem of finding
the distance ρ of the line with normal a to the origin such
that ρ is maximum and the line separates all points in X
from the origin. Notice that a naı̈ve algorithm that computes
the distance of xi from the origin for all i ∈ I and returns
the minimum distance solves this problem. Notice also that
this algorithm runs in time O(n). Indeed, it can be shown
that any deterministic algorithm that solves this problem has
to run in time Ω(n). However, due to the noise embedded
in the laser range finder data, especially for LIDAR returns
arising from the corners of the scanned object, this solution
may provide noisy information. Precisely for this reason,
the aforementioned formulation of the closest edge detection
problem includes an extra term in the objective function so
as to filter out such noise. The rest of this section details
an algorithm that solves the closest edge detection problem
while incurring small extra computational cost.
The closest edge detection problem can be formulated as

a mathematical program as follows:

maximize ρ−
1

ν

∑

i∈I

ξi, (1a)

subject to di ≥ ρ− ξi, ∀i ∈ I, (1b)
ξi ≥ 0, ∀i ∈ I, (1c)

where ρ ∈ R and ξi ∈ R are the decision variables, and ν ∈
R is a parameter such that ν = 1/C. The term di = 〈a, xi〉
is the distance of point xi to the origin when projected along
a.
For computational purposes, it is useful to consider the

dual of the linear program (1):

minimize
∑

i∈I

diλi, (2a)

subject to
∑

i∈I

λi = 1, ∀i ∈ I, (2b)

0 ≤ λi ≤
1

ν
, ∀i ∈ I, (2c)

where λi are called the dual variables. Let (ρ∗, ξ∗1 , . . . , ξ∗n)
be the optimal solution to the linear program (1) and
(λ∗

1, . . . ,λ
∗
n) be the optimal solution of the dual linear

program (2). The optimal primal solution can be recovered
from the dual solution by ρ∗ =

∑
i∈I λ∗

i di.
The dual linear program is particularly interesting for

computational purposes. Strictly speaking,

Proposition IV.1 Algorithm 1 runs in O(nmin{log n, ν})
time and solves the dual linear program (2).

Algorithm 1, DUALSOLVE, takes the parameter ν, the
normal vector a, and the set X as an input and returns an
indexed set {λi}i∈I of values for the dual variables. The
DUALSOLVE algorithm employs two primitive functions.
SORT takes an indexed set {yi}i∈I as an input, where
yi ∈ R, and returns a sorted sequence of indices J such that
yJ (j) ≤ yJ (j+1) for all j ∈ {1, 2 . . . , |I|}. MIN, meanwhile,

projected distance
from outlier to line

sensor origin

Matthew Walter | 7 May 2010

AUTONOMOUS PALLET MANIPULATION

I. Palletized Cargo Manipulation: An Overview

II. LP Formulation for Fast, Closest Edge Detection

III. Pallet Manipulation: Detection, Estimation, and Control

IV. Results

V. Limitations & Current Work

Matthew Walter | 7 May 2010

PALLET DETECTION

System Overview LP Closest Edge Detection Pallet Manipulation Results Conclusion

Individual LIDAR scan

Motion Controller

Kalman Filter

Pallet Classifier

Pallet pose

• Use LP closest edge algorithm to detect candidate face

• For each face, search for pallet structure via repeated calls to LP
closest edge algorithm to identify features: width, slot geometry, ...

• Pallet classification based upon rough prior

Approach: Supervised classification of identified structure

No

Yes

No

No

Viewing direction

Matthew Walter | 7 May 2010

PALLET DETECTION

System Overview LP Closest Edge Detection Pallet Manipulation Results Conclusion

Individual LIDAR scan

Motion Controller

Kalman Filter

Pallet Classifier

Pallet pose

• Use LP closest edge algorithm to detect candidate face

• For each face, search for pallet structure via repeated calls to LP
closest edge algorithm to identify features: width, slot geometry, ...

• Pallet classification based upon rough prior

Approach: Supervised classification of identified structure

Matthew Walter | 7 May 2010

PALLET DETECTION

System Overview LP Closest Edge Detection Pallet Manipulation Results Conclusion

Individual LIDAR scan

Motion Controller

Kalman Filter

Pallet Classifier

Pallet pose

• Use LP closest edge algorithm to detect candidate face

• For each face, search for pallet structure via repeated calls to LP
closest edge algorithm to identify features: width, slot geometry, ...

• Pallet classification based upon rough prior

Approach: Supervised classification of identified structure

Slot width

Face width

Matthew Walter | 7 May 2010

PALLET DETECTION

System Overview LP Closest Edge Detection Pallet Manipulation Results Conclusion

(Visualization of experimental data)

Truck undercarriage: No detection

Matthew Walter | 7 May 2010

PALLET DETECTION

System Overview LP Closest Edge Detection Pallet Manipulation Results Conclusion

(Visualization of experimental data)

Truck undercarriage: No detection

Matthew Walter | 7 May 2010

PALLET DETECTION

System Overview LP Closest Edge Detection Pallet Manipulation Results Conclusion

(Visualization of experimental data)

Pallet: Detection

Matthew Walter | 7 May 2010

PALLET POSE FILTERING

System Overview LP Closest Edge Detection Pallet Manipulation Results Conclusion

Individual LIDAR scan

Motion Controller

Kalman Filter

Pallet Classifier

Pallet pose

• Positive detections serve as observations for vanilla Kalman Filter

• Estimate pallet pose:

- Position

- Heading

- Slot locations

- Width and depth for each slot

Matthew Walter | 7 May 2010

MOTION CONTROLLER

System Overview LP Closest Edge Detection Pallet Manipulation Results Conclusion

Individual LIDAR scan

Motion Controller

Kalman Filter

Pallet Classifier

Pallet pose

• Special case of controller by Hoffman et al. [Hoffman, ACC 2007]

• Steer to desired position and orientation,

• Dubins vehicle model

• Smooth steering policy

engagements where the bot ended up pushing the pallet
and turning up to 10 degrees; we classified these cases as
failures. In the cases in which the pallet was visible during
the initial scanning of the volume of interest, 35 of the
38 ground engagements were successful where we define a
successful engagement as one in which the forklift inserted
the tines without moving the pallet. In one of the three
failures, the vehicle inserted the tines but moved the pallet
slightly in the process. In tests of truck-based engagements,
the manipulation was successful in all 30 tests in which the
pallet was visible during the initial scanning process.

IX. CONCLUSIONS
We presented a novel coupled perception and control algo-

rithm for an outdoor robotic forklift tasked with manipulation
of unknown pallets. We have also shown an experimental
demonstration of the algorithms on a full-sized forklift.
Our current research includes extending our perception

algorithms to detect multiple pallets and to detect pallets
without the help of a user gesture. We also plan to develop
a path planning capability that identifies trajectories that
minimize the resulting uncertainty in the pallet pose, thereby
increasing the likelihood of successful engagement.

(zfinal, afinal)

ACKNOWLEDGMENTS
We gratefully acknowledge the support of the U.S. Army

Logistics Innovation Agency (LIA) and the U.S. Army
Combined Arms Support Command (CASCOM).
This work was sponsored by the Department of the Air

Force under Air Force Contract FA8721-05-C-0002. Any
opinions, interpretations, conclusions, and recommendations
are those of the authors and are not necessarily endorsed by
the United States Government.

REFERENCES
[1] S. Teller et al., “A voice-commandable robotic forklift working along-

side humans in minimally-prepared outdoor environments,” in Proc.
IEEE Int’l Conf. on Robotics and Automation (ICRA), May 2010.

[2] O. Khatib, K. Yokoi, K. Chang, D. Ruspini, R. Holmberg, and
A. Casal, “Coordination and decentralized cooperation of multiple
mobile manipulators,” J. of Robotic Systems, vol. 13, no. 11, pp. 755–
764, 1996.

[3] R. A. Grupen and J. A. Coelho, “Acquiring state from control dynam-
ics to learn grasping policies for robot hands.” Advanced Robotics,
vol. 16, no. 5, pp. 427–443, 2002.

[4] O. Brock and O. Khatib, “Elastic strips: A framework for motion
generation in human environments,” Int’l J. of Robotics Research,
vol. 21, no. 12, pp. 1031–1052, 2002.

[5] J. Park and O. Khatib, “Robust haptic teleoperation of a mobile
manipulation platform,” in Experimental Robotics IX, ser. STAR
Springer Tracts in Advanced Robotics, M. Ang and O. Khatib, Eds.,
2006, vol. 21, pp. 543–554.

[6] D. Berenson, J. Kuffner, and H. Choset, “An optimization approach
to planning for mobile manipulation,” in Proc. IEEE Int’l Conf. on
Robotics and Automation (ICRA), 2008.

[7] D. Kragic, L. Petersson, and H. I. Christensen, “Visually guided
manipulation tasks,” Robotics and Autonomous Systems, vol. 40, no.
2–3, pp. 193–203, Aug. 2002.

[8] R. Brooks, L. Aryananda, A. Edsinger, P. Fitzpatrick, C. Kemp,
U. O’Reilly, E. Torres-Jara, P. Varshavskaya, and J. Weber, “Sensing
and manipulating built-for-human environments,” Int’l J. of Humanoid
Robotics, vol. 1, no. 1, pp. 1–28, 2004.

[9] P. Deegan, R. Grupen, A. Hanson, E. Horrell, S. Ou, E. Riseman,
S. Sen, B. Thibodeau, A. Williams, and D. Xie, “Mobile manipulators
for assisted living in residential settings,” Autonomous Robots, 2007.

[10] M. Hebert, “Outdoor scene analysis using range data,” in Proc. IEEE
Int’l Conf. on Robotics and Automation (ICRA), 1986, pp. 1426–1432.

[11] R. Hoffman and A. Jain, “Segmentation and classification of range
images,” IEEE Trans. on Pattern Analysis and Machine Intelligence,
vol. 9, no. 5, pp. 608–620, Sept. 1987.

[12] T. Newman, P. Flynn, and A. Jain, “Model-based classification of
quadric surfaces,” CVGIP: Image Understanding, vol. 58, no. 2, pp.
235–249, 1993.

[13] P. Gotardo, O. Bellon, and L. Silva, “Range image segmentation by
surface extraction using an improved robust estimator,” in Proc. IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), vol. 2,
June 2003, pp. 33–38.

[14] X. Yu, T. Bui, and A. Krzyzak, “Robust estimation for range image
segmentation and reconstruction,” IEEE Trans. on Pattern Analysis
and Machine Intelligence, vol. 16, no. 5, pp. 530–538, May 1994.

[15] H. Wang and D. Suter, “MDPE: A very robust estimator for model
fitting and range image segmentation,” Int’l J. of Computer Vision,
vol. 59, no. 2, pp. 139–166, Sept. 2004.

[16] R. Bostelman, T. Hong, and T. Chang, “Visualization of pallets,” in
Proc. SPIE Optics East Conf., Oct. 2006.

[17] R. Cucchiara, M. Piccardi, and A. Prati, “Focus based feature extrac-
tion for pallets recognition,” in Proc. British Machine Vision Conf.,
2000.

[18] D. Lecking, O. Wulf, and B. Wagner, “Variable pallet pick-up for
automatic guided vehicles in industrial environments,” in Proc. IEEE
Conf. on Emerging Technologies and Factory Automation, May 2006,
pp. 1169–1174.

[19] A. Correa, M. R. Walter, L. Fletcher, J. Glass, S. Teller, and
R. Davis, “Multimodal interaction with an autonomous forklift,” in
Proc. ACM/IEEE Int’l Conf. on Human-Robot Interaction (HRI),
Osaka, Japan, March 2010.

[20] B. Schölkopf and A. Smola, Learning with Kernels. MIT Press, 2002.
[21] N. Karmarkar, “A new polynomial-time algorithm for linear program-

ming,” Combinatorica, vol. 4, no. 4, pp. 373–395, 1984.
[22] L. E. Dubins, “On curves of minimal length with a constraint on

average curvature, and with prescribed initial and terminal positions
and tangents,” American J. of Mathematics, vol. 97, no. 3, pp. 497–
516, 1957.

[23] G. Hoffmann, C. Tomlin, M. Montemerlo, and S. Thrun, “Autonomous
automobile trajectory tracking for off-road driving: Controller design,
experimental validation and testing,” in American Control Conf., 2007.

Let zinitial and ainitial be the robot’s initial position and
orientation, where zinitial is a coordinate Euclidean plane and
ainitial is a normalized two-dimensional vector. Similarly, let
zfinal and afinal be the desired final position and orientation
of the robot. (In our application, zfinal and afinal represent the
pallet position and orientation.) Without loss of generality,
let zfinal = (0, 0) be the origin of the coordinate system and
afinal = (1, 0) be oriented toward the X-axis (see Figure 8).
Similarly, let ey be the distance of zinitial to zfinal along the
direction orthogonal to afinal and let eθ be the angle between
the vectors ainitial and afinal, i.e., eθ = cos-1(ainitial · afinal).
Finally, let δ be the steering control input to the robot. In
this work, we use the following steering control strategy for
pallet engagement operations:

δ = Ky tan
-1(ey) +Kθeθ, (7)

where Ky and Kθ are controller parameters. Assuming a
Dubins vehicle model [22] of the robot as in

ż = (cos θ, sin θ), (8)
θ̇ = tan-1(δ), (9)

the nonlinear control law (7) can be shown to converge such
that ey → 0 and eθ → 0 holds, if −π/2 ≤ eθ ≤ π/2 is
initially satisfied [23].

ey

eθ

ainitial

afinal

X

Y

Fig. 8. Illustration of the controller algorithm

VIII. EXPERIMENTAL RESULTS
This section analyzes the pallet engagement system de-

scribed above. The closed-loop pallet engagement software
was tested extensively on the hardware described in Sec-
tion III, at two testing sites, one on the MIT campus, in
Cambridge, MA, and the second at Fort Belvoir, a U.S. Army
base in Virginia. Both testing sites have packed gravel
terrain with small rocks and mud. In these experiments, we
commanded the bot to pick up pallets from different locations
on the ground as well as from truck beds, and recorded
the lateral position and orientation of the robot with respect
to the pallet in each test as reported by the robot’s dead
reckoning module. Note that the experiments were conducted
with different types of pallets and, within each type, the
pallets varied in their geometry (i.e., width, slot location,
and slot width). The pose of the pallet relative to the truck
and the truck’s pose relative to the forklift also varied.
Figure 9 shows a plot of the success and failures of the

pallet pickup tests, together with final relative angle and cross
track error in each experiment (see Figure 10 for histograms).
Note that most of the failures are due to pallet detection,

−4 −3 −2 −1 0 1 2 3 4
0

1

2

3

4

5

6

7

8

9

10

x (meters)

y
(m

et
er

s)

0

0.92

1.84

2.76

3.68

4.6

5.53

6.45

7.37

8.29

9.21

Failed Detection

(a) Relative Angle (Truck)

−4 −3 −2 −1 0 1 2 3 4
0

1

2

3

4

5

6

7

8

9

10

x (meters)

y
(m

et
er

s)

0

1.4

2.8

4.2

5.6

7

8.4

9.8

11.2

12.6

14

Failed Detection

(b) Cross Track Error (Truck)

−4 −3 −2 −1 0 1 2 3 4
0

1

2

3

4

5

6

7

8

x (meters)

y
(m

et
er

s)

0

0.87

1.74

2.62

3.49

4.36

5.24

6.11

6.99

7.86

8.73

Failed Detection
Failed Engagement

(c) Relative Angle (Ground)

−4 −3 −2 −1 0 1 2 3 4
0

1

2

3

4

5

6

7

8

x (meters)

y
(m

et
er

s)

0

1.2

2.4

3.7

4.9

6.1

7.4

8.6

9.8

11.1

12.3

Failed Detection
Failed Engagement

(d) Cross Track Error (Ground)

Fig. 9. Results of the validation tests for pallet engagements from (a), (b) a
truck bed and (c), (d) the ground. Each path represents the robot’s trajectory
during a successful pickup. A red ‘x’ denotes the initial position of the robot
for a failed engagement. Arrows indicate the robot’s forward direction. All
poses are shown relative to that of the pallet, centered at the origin with the
front face along the x-axis. The trajectories are colored according to (a),
(c) the relative angle between the pallet and the robot and (b), (d) the cross
track error immediately prior to insertion.

0 1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

Final Relative Angle (degrees)

(a) Relative Angle (Truck)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

2

4

6

8

10

Final Cross Track Error (cm)

(b) Cross Track Error (Truck)

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

Final Relative Angle (degrees)

(c) Relative Angle (Ground)

0 2 4 6 8 10 12
0

2

4

6

8

Final Cross Track Error (cm)

(d) Cross Track Error (Ground)

Fig. 10. Histograms that depict the resulting error immediately prior to the
forklift inserting the tines in the pallet slots, for a series of tests. Figures
(a) and (c) correspond to the relative angle between the vehicle’s forward
direction and the pallet normal for engagements off of a truck and off of the
ground, respectively. The histograms in (b) and (d) present the final lateral
cross track error for the successful engagements.

and they occur when the bot starts longitudinally 7.5meters
and/or laterally 3meters or more away from the pallet. In
most of these cases, the resolution of the laser range finder
seems insufficient for the data to include returns from the
pallet surface. In some other cases, we have seen pallet

Let zinitial and ainitial be the robot’s initial position and
orientation, where zinitial is a coordinate Euclidean plane and
ainitial is a normalized two-dimensional vector. Similarly, let
zfinal and afinal be the desired final position and orientation
of the robot. (In our application, zfinal and afinal represent the
pallet position and orientation.) Without loss of generality,
let zfinal = (0, 0) be the origin of the coordinate system and
afinal = (1, 0) be oriented toward the X-axis (see Figure 8).
Similarly, let ey be the distance of zinitial to zfinal along the
direction orthogonal to afinal and let eθ be the angle between
the vectors ainitial and afinal, i.e., eθ = cos-1(ainitial · afinal).
Finally, let δ be the steering control input to the robot. In
this work, we use the following steering control strategy for
pallet engagement operations:

δ = Ky tan
-1(ey) +Kθeθ, (7)

where Ky and Kθ are controller parameters. Assuming a
Dubins vehicle model [22] of the robot as in

ż = (cos θ, sin θ), (8)
θ̇ = tan-1(δ), (9)

the nonlinear control law (7) can be shown to converge such
that ey → 0 and eθ → 0 holds, if −π/2 ≤ eθ ≤ π/2 is
initially satisfied [23].

ey

eθ

ainitial

afinal

X

Y

Fig. 8. Illustration of the controller algorithm

VIII. EXPERIMENTAL RESULTS
This section analyzes the pallet engagement system de-

scribed above. The closed-loop pallet engagement software
was tested extensively on the hardware described in Sec-
tion III, at two testing sites, one on the MIT campus, in
Cambridge, MA, and the second at Fort Belvoir, a U.S. Army
base in Virginia. Both testing sites have packed gravel
terrain with small rocks and mud. In these experiments, we
commanded the bot to pick up pallets from different locations
on the ground as well as from truck beds, and recorded
the lateral position and orientation of the robot with respect
to the pallet in each test as reported by the robot’s dead
reckoning module. Note that the experiments were conducted
with different types of pallets and, within each type, the
pallets varied in their geometry (i.e., width, slot location,
and slot width). The pose of the pallet relative to the truck
and the truck’s pose relative to the forklift also varied.
Figure 9 shows a plot of the success and failures of the

pallet pickup tests, together with final relative angle and cross
track error in each experiment (see Figure 10 for histograms).
Note that most of the failures are due to pallet detection,

−4 −3 −2 −1 0 1 2 3 4
0

1

2

3

4

5

6

7

8

9

10

x (meters)

y
(m

et
er

s)

0

0.92

1.84

2.76

3.68

4.6

5.53

6.45

7.37

8.29

9.21

Failed Detection

(a) Relative Angle (Truck)

−4 −3 −2 −1 0 1 2 3 4
0

1

2

3

4

5

6

7

8

9

10

x (meters)

y
(m

et
er

s)

0

1.4

2.8

4.2

5.6

7

8.4

9.8

11.2

12.6

14

Failed Detection

(b) Cross Track Error (Truck)

−4 −3 −2 −1 0 1 2 3 4
0

1

2

3

4

5

6

7

8

x (meters)

y
(m

et
er

s)

0

0.87

1.74

2.62

3.49

4.36

5.24

6.11

6.99

7.86

8.73

Failed Detection
Failed Engagement

(c) Relative Angle (Ground)

−4 −3 −2 −1 0 1 2 3 4
0

1

2

3

4

5

6

7

8

x (meters)

y
(m

et
er

s)

0

1.2

2.4

3.7

4.9

6.1

7.4

8.6

9.8

11.1

12.3

Failed Detection
Failed Engagement

(d) Cross Track Error (Ground)

Fig. 9. Results of the validation tests for pallet engagements from (a), (b) a
truck bed and (c), (d) the ground. Each path represents the robot’s trajectory
during a successful pickup. A red ‘x’ denotes the initial position of the robot
for a failed engagement. Arrows indicate the robot’s forward direction. All
poses are shown relative to that of the pallet, centered at the origin with the
front face along the x-axis. The trajectories are colored according to (a),
(c) the relative angle between the pallet and the robot and (b), (d) the cross
track error immediately prior to insertion.

0 1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

Final Relative Angle (degrees)

(a) Relative Angle (Truck)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

2

4

6

8

10

Final Cross Track Error (cm)

(b) Cross Track Error (Truck)

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

Final Relative Angle (degrees)

(c) Relative Angle (Ground)

0 2 4 6 8 10 12
0

2

4

6

8

Final Cross Track Error (cm)

(d) Cross Track Error (Ground)

Fig. 10. Histograms that depict the resulting error immediately prior to the
forklift inserting the tines in the pallet slots, for a series of tests. Figures
(a) and (c) correspond to the relative angle between the vehicle’s forward
direction and the pallet normal for engagements off of a truck and off of the
ground, respectively. The histograms in (b) and (d) present the final lateral
cross track error for the successful engagements.

and they occur when the bot starts longitudinally 7.5meters
and/or laterally 3meters or more away from the pallet. In
most of these cases, the resolution of the laser range finder
seems insufficient for the data to include returns from the
pallet surface. In some other cases, we have seen pallet

ey

eθ

ainitial

afinal

X

Y

Matthew Walter | 7 May 2010

TRUCK DETECTION & ESTIMATION

System Overview LP Closest Edge Detection Pallet Manipulation Results Conclusion

• Input: Pair of individual scans from vertical LIDARs

• Employ same LP closest edge algorithm as input to classifiers

• Filter over distance to truck, truck orientation, & truck height

Matthew Walter | 7 May 2010

PALLET ESTIMATION & MANIPULATION

System Overview LP Closest Edge Detection Pallet Manipulation Results Conclusion

2009_06_10_truck_pickup_viewer.mp4

Matthew Walter | 7 May 2010

AUTONOMOUS PALLET MANIPULATION

I. Palletized Cargo Manipulation: An Overview

II. LP Formulation for Fast, Closest Edge Detection

III. Pallet Manipulation: Detection, Estimation, and Control

IV. Results

V. Limitations & Current Work

Matthew Walter | 7 May 2010

EXPERIMENTAL VALIDATION: SETUP

System Overview LP Closest Edge Detection Pallet Manipulation Results Conclusion

• Attempted 68 pallet pick-up attempts with pallet
inside initial tine LIDAR FOV

• 38 from the ground

• 30 from a truck loaded with two pallets

• Three different pallet types

• Counted as a successful engagement if no detectable
contact with pallet or truck occurred

Matthew Walter | 7 May 2010

EXPERIMENTAL VALIDATION: RESULTS

System Overview LP Closest Edge Detection Pallet Manipulation Results Conclusion

• 35 of 38 ground pick-ups successful

• Failure 1: Vehicle moved pallet during insertion

• Failures 2 & 3: Unable to reacquire pallet

• 30 of 30 truck pick-ups successful

4 2 0 2 4
0

1

2

3

4

5

6

7

8

x (meters)

y
(m

et
er

s)

0

0.87

1.74

2.62

3.49

4.36

5.24

6.11

6.99

7.86

8.73

Failed Detection
Failed Engagement

4 2 0 2 4
0

1

2

3

4

5

6

7

8

9

10

x (meters)

y
(m

et
er

s)

0

1.4

2.8

4.2

5.6

7

8.4

9.8

11.2

12.6

14

Failed Detection

Truck Pickup Trajectories

Ground Pickup Trajectories

Pallet location

Starting position
(arrow indicates forklift orientation)

Matthew Walter | 7 May 2010

AUTONOMOUS PALLET MANIPULATION

I. Palletized Cargo Manipulation: An Overview

II. LP Formulation for Fast, Closest Edge Detection

III. Pallet Manipulation: Detection, Estimation, and Control

IV. Results

V. Limitations & Current Work

Matthew Walter | 7 May 2010

LIMITATIONS AND CURRENT WORK

• Closed-loop perception and planning:

Macro-action forward-search using RRT

• Gesture-less detection of multiple pallets

• Pallet stacking and unstacking

• Extend outlier-robust LP to general shape
estimation using kernel methods

System Overview LP Closest Edge Detection Pallet Manipulation Results Conclusion

[Video: 2010_05_04_multiple_pallet.mp4]

Matthew Walter | 7 May 2010

LIMITATIONS AND CURRENT WORK

• Closed-loop perception and planning:

Macro-action forward-search using RRT

• Gesture-less detection of multiple pallets

• Pallet stacking and unstacking

• Extend outlier-robust LP to general shape
estimation using kernel methods

System Overview LP Closest Edge Detection Pallet Manipulation Results Conclusion

[Video: 2010_05_04_multiple_pallet.mp4]

Matthew Walter | 7 May 2010

QUESTIONS?

mwalter@csail.mit.edu

http://people.csail.mit.edu/mwalter

System Overview LP Closest Edge Detection Pallet Manipulation Results Conclusion

[Video: 2010_02_21_unmanned.mp4]

mailto:mwalter@mit.edu
mailto:mwalter@mit.edu
http://people.csail.mit.edu/mwalter
http://people.csail.mit.edu/mwalter

