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FLEXIBLE IN-SITU WAREHOUSE AUTOMATION

Goal: Autonomous palletized material handling in
short-term outdoor warehouses

* Environment: Dynamic, forward-operating storage facilities
- Disaster relief (Red Cross, FEMA), Military
- Little reliable structure
- Rapid, temporary deployment
- URevsn usiielly
- Dynamic (people, vehicles)
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HUMAN-DIRECTED MANIPULATION

Hand-held tablet command interface

» Supervisor circles pallets to be picked up T .
* Supervisor circles desired destinations

Manipulation i1s autonomous
- Detect pallet and truck bed
- Safely engage and place pallets
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HUMAN-DIRECTED PALLET MANIPULATION

Autonomously pickup pallets from ground and from
unknown truck beds
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System Overview
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HUMAN-DIRECTED PALLET MANIPULATION

Autonomously place pallets onto ground and onto
unknown truck beds
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HUMAN-DIRECTED PALLET MANIPULATION

Autonomously place pallets onto ground and onto
unknown truck beds
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THE ROBOT: SENSING

» LIDARs directed along tines for pallet detection
and servoing during fork insertion

* LIDARs with vertical FOV mounted to carriage
for truck detection
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System Overview
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WHY IS THIS HARD?

* LIDAR range returns are noisy
* Variable pallet geometry and structure
» Pallet and truck poses unknown a priori

* Sparse pallet and truck structure yields limited
LIDAR returns

« Pallet load iIs variable and unknown

Assumptions

- Pallet inttially in LIDAR FOV (i.e., in front of robot)

« Pallet is not occluded

* No obstacles between robot and pallet or truck
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PALLET ESTIMATION & MANIPULATION

Our approach: Closed-loop manipulation individual LIDAR oo i
based on individual LIDAR scans l

Pallet Classifier

* Input: Individual scans from tine-mounted LIDAR

 Hierarchical classification of individual scans l

- Filter over positive detections to estimate pallet pose Kalman Filter

* Servo vehicle and tine poses to filter estimates via simple l Pallet pose
closed-loop controller

Motion Controller

Key component: Fast, robust linear shape
estimation
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CHALLENGES OF SERVOING APPROACH

Two primary challenges of perception for closed-loop servoing:

* Noisy data:

Outliers in range data, particularly near pallet corners

« Computational requirements:

Each LIDAR produces 1000 range and bearing returns at 40Hz

Our approach:

* Formulate a linear program (LP) that accounts for noise and outliers

* Exploit the structure of the LP to solve it in real-time
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| P FORMULA

 Simple problem:

Given an orientation, find the line farthest from the
origin that separates all range returns

* A simple algorithm (but not robust):
- Find distance of closest point along known orientation

- Efficient (linear time) but not robust to outliers
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| P FORMULATION

 Simple problem:

Given an orientation, find the line farthest from the
origin that separates all range returns

* A simple algorithm (but not robust): /
- Find distance of closest point along known orientation y “ °
- Efficient (linear time) but not robust to outliers X

Sensor origin

= projected distance
from outlier to line

A more robust formulation:

Express as LP that allows for, but penalizes, outliers

Exploit the structure of the dual to solve in O(n min{v,logn})

Allows for linear shape estimation and pallet detection in real-time
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PALLET DETECTION

Approach: Supervised classification of identified structure Individual LIDAR scan <—

« Use LP closest edge algorithm to detect candidate face

. Pallet Classifier
* For each face, search for pallet structure via repeated calls to LP

closest edge algorithm to identify features: width, slot geometry; ...

- Pallet classification based upon rough prior ,
Kalman Filter

. l Pallet pose

\ \ Motion Controller

\ S  Viewing direction
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PALLET DETECTION

Approach: Supervised classification of identified structure Individual LIDAR scan <—

« Use LP closest edge algorithm to detect candidate face

. Pallet Classifier
* For each face, search for pallet structure via repeated calls to LP

closest edge algorithm to identify features: width, slot geometry; ...

- Pallet classification based upon rough prior ,
Kalman Filter

l Pallet pose
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LSlot Wldth‘ Motion Controller
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Pallet Manipulation
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Truck undercarriage: No detection
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(Visualization of experimental data)
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Pallet Manipulation
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Pallet Manipulation
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Pallet: Detection
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PALLET POSE FILTERING

Individual LIDAR scan <—

l

Pallet Classifier

« Positive detections serve as observations for vanilla Kalman Filter

» Estimate pallet pose:

Position l

Heading Kalman Filter

Slot locations Pallet pose

Width and depth for each slot

Motion Controller
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MOTION CONTROLLER

| Individual LIDAR scan <—
* Special case of controller by Hoffman et al. [Hoffman, ACC 2007/] l

» Steer to desired position and orientation, (Zfinal, @final )
Pallet Classifier

§ = K, tan™ (e,) + Kgeg

« Dubins vehicle model l
e (COS H’ sin 6’)7 Kalman Filter
: i Sl
g — tan (0), l Pallet pose

* Smooth steering policy Motion Controller
Ainitial
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RUCK DETECTION & ESTIMATION

* Input: Pair of individual scans from vertical LIDARs
* Employ same LP closest edge algorithm as input to classifiers

* Filter over distance to truck, truck orientation, & truck height
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System Overview LP Closest Edge Detection Pallet Manipulation Results Conclusion

PALLET ESTIMATION & MANIPULATION
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EXPERIMENTAL VALIDATION: SETUP

« Attempted 68 pallet pick-up attempts with pallet
inside initial tine LIDAR FOV

e el sround

30 from a truck loaded with two pallets

* Three different pallet types

» Counted as a successful engagement If no detectable
contact with pallet or truck occurred
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EXPERIMENTAL VALIDATION: RESULTS

Ground Pickup Trajectories
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LIMITATIONS AND CURRENT WORK

* Closed-loop perception and planning;

Macro-action forward-search using RRT
» (Gesture-less detection of multiple pallets
- Pallet stacking and unstacking

* Extend outlier-robust LP to general shape
estimation using kernel methods

[Video: 2010_05 04 multiplefpelicHiEs
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QUESTIONS?

mwalten@csail.mrt.edu

http://people.csall. mit.edu/mwalter
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