

Appearance-based Object Reacquisition for Mobile Manipulation

Matthew R. Walter¹
Yuli Friedman²
Matthew Antone²
Seth Teller¹

Presenter: Mark Keck²

Presentation Outline

- Motivation: task autonomy
- System-level concept
- Reacquisition method
- Experiments and results
- Discussion

Problem Domain

- Developing robotic forklift
 - Capable of autonomous single-pallet outdoor transport
 - Previously required user intervention throughout
- Goal of work is to enable task-level autonomy
 - Higher-level command strings
 - Implies need to reacquire previously seen objects upon revisit

Overview and Goals

- Use sensing to increase autonomy
 - Move from atomic tasks to task sequences
 - Reduce interruptions to user workflow
- Employ visual descriptions of manipulands
 - Learn appearance of each user-selected object
 - Object "model" consists of multiple "views"
 - Each view captures appearance at unique pose
 - Reacquire object locations automatically upon revisit
- Challenges: varying lighting, viewpoint over time

Related Work

- Visual object recognition (category classification)
 - Invariant descriptors and constituent parts
 - Recognize object categories rather than instances
 - Offline training w/ many samples
 - e.g., Nister06, Hoiem07, Savarese07
- Multiple-view model matching
 - Learn model offline from controlled viewpoints
 - e.g., Lowe01, Gordon06, Collet09
- Vision for gesture-based HRI
 - Person detection and face recognition
 - Body and hand gesture tracking
 - e.g., Nickel07, Haasch05

Task-Level Command Interface

- Human supervisor provides commands
 - Pick up, transport, place palletized cargo
 - Speech and stylus gestures from handheld tablet
 - Previously, supervisor specified one task at a time

Reacquisition System Overview

User Initiates Visual Appearance Model

Bot's-eye view of scene

Initial View Consists of Feature Constellation

All SIFT features **F** extracted from initial view image

Single-View Matching: Feature Extraction

SIFT features extracted from new image

Single-View Matching: Homography+RANSAC

Robustly match to single view after application of geometric constraints

Single-View Matching: Final Object Detection

Detection of object location in new image

Single-View Matching: Example Video

Multiple-View Reasoning

- Each object appearance model has many views
 - Multiple views capture different aspects, distances
 - Increase robustness to pose and lighting variation
- Matching produces multiple hypotheses
 - Several matches per image and per model
 - Want to produce at most one coherent hypothesis
- Reasoning component resolves ambiguity
 - Examines hypotheses and likelihoods
 - Voting produces at most one detection per model

Model Augmentation

- New views opportunistically added to model
 - Addition requires high-confidence single-view match
 - Views added only when object aspect/distance is distinct
- More robust to viewpoint, illumination variation

Experimental Setup

- Preliminary experiments devised to test concept
 - Variety of loaded pallets placed within camera view
 - Loads have both similar and differing appearances
 - User selected four pallets for pickup and transport
- Counted false detections and missed detections
 - Ground truth generated via manual annotation

Single vs. Multiple View Detection

(False detection rate was *very low*, in XX trials -- **verify**)

Model Augmentation Over Time

Conclusions and Discussion

- Vision-based matching method
 - Motivated by real-world robotics task
 - Matches objects and their visual context
 - Multiple views used to increase persistence

• Limitations:

- Scalability: exhaustive matching; models persist
- Homography assumes dominant planar surface
- Matching fails for very distant novel viewpoints

Future Work

- Possible extensions to improve robustness
 - Incorporate LIDAR
 - Object/context segmentation
 - Metrical distance of SIFT keypoints
 - Relax planar object assumption
 - Constellation graph matching
 - Bag-of-words recognition
 - Explicitly incorporate visual context
- Currently extending this approach
 - More accurate matching using quasi-3D descriptors
 - Multiple frames more closely coupled
 - Create local scene maps in vicinity of manipuland

Thank You. Questions?

