ANYTIME MOTION PLANNING USING THE RRT*

Anytime RRT

(
	Start		
5m grid			

Anytime RRT*

Sertac Karaman¹, <u>Matthew Walter</u>², Alejandro Perez², Emilio Frazzoli¹, & Seth Teller² ¹MIT / LIDS ²MIT / CSAIL

10 May 2011

JOINT WORK WITH

Sertac Karaman (MIT/LIDS)

Alejandro Perez (MIT/CSAIL)

Emilio Frazzoli (MIT/LIDS)

Seth Teller (MIT/CSAIL)

PRACTICAL MOTION PLANNING

- (Probabilistic) completeness
- Quickly find a kinodynamically feasible solution
- Computationally efficiency (limited resources)
- Plan despite incomplete, imperfect knowledge
- Accommodate dynamic environments

[Kuwata et al., GNC 2008]

[Teller et al., ICRA 2010]

1111

SAMPLE-BASED MOTION PLANNING

Sample-based motion planning provides an effective solution

- Probabilistic RoadMap (PRM) [Kavraki et al., T-RA 1996]
 - Multiple query
- Rapidly-exploring Random Tree (RRT) [LaValle & Kufner, IJRR 2001]
 - Single query
 - Incremental
 - Online

14ii

[[]Credit: LaValle, Planning Algorithms 2006]

- 4.
- Note been poin poin to tr

Que

to an confi α for in Fi a sea path quer whet then the p

Som samp

sent

INCREMENTAL SAMPLE-BASED MOTION PLANNING

- Rapidly-exploring Random Tree (RRT) [LaValle & Kufner, IJRR 2001]
 - Probabilistically complete
 - Respects kinodynamic (non-holonomic) constraints
 - Computationally efficient, scales to high dimensions
 - Relatively simple to implement

Effectively demonstrated on state-of-the-art robotic platforms

PliT

Ø

MPEG4

ANYTIME MOTION PLANNING

During execution, improve solution toward optimal

- Overall approach:
 - I. Quickly find a solution that is feasible, but not necessarily optimal
 - 2. Exploit execution time to incrementally improve towards optimal solution
- Desired properties:
 - I. Form of completeness guarantees
 - 2. Asymptotic optimality given more computation time

ANYTIME MOTION PLANNING

- Anytime RRTs [Ferguson & Stentz, IROS 2006]
 - Quickly finds an initial solution with a vanilla RRT
 - Successively generates new trees that improve solution costs via biased sampling
 - The cost of successive solutions is guaranteed to decrease, though they **do not converge to the optimum**
- CL-RRT [Kuwata et al., T-CST 2009]
 - Quickly finds an initial solution with a closed-loop RRT
 - Continues to search for other solutions (during execution)
 - Estimates an upper-bound on the cost of each solution via a cost-to-go heuristic
 - Chooses the solution with the lowest upper-bound cost
 - No convergence guarantees

1111

[Credit: Ferguson & Stentz, IROS 2006]

ANYTIME MOTION PLANNING

The RRT is <u>not</u> asymptotically optimal

- Y_n^{RRT} denotes the cost of the best path in the RRT after *n* iterations
- c^* denotes the cost of an optimal path

Theorem [Karaman, Frazzoli, IJRR 2011]

The probability that the RRT converges to an optimum solution is zero

$$\mathbb{P}\Big(\big\{\lim_{n\to\infty}Y_n^{\mathrm{RRT}}=c^*\big\}\Big)=0$$

ANYTIME RRT*

Our approach: Leverage the RRT* to converge to optimal

- RRT* [Karaman & Frazzoli, RSS 2010] is both **asymptotically optimal** and **computationally efficient**
 - $Y_n^{\mathrm{RRT}^*}$: cost of the best path in the RRT*
 - c^* : cost of an optimal solution
 - M_n^{RRT} : number of steps executed by the RRT at iteration n
 - $M_n^{\text{RRT}^*}$: number of steps executed by the RRT* in iteration n

Theorem [Karaman & Frazzoli, IJRR 2011]

(i) The RRT* algorithm is asymptotically optimal

$$\mathbb{P}\Big(\big\{\lim_{n\to\infty}Y_n^{\mathrm{RRT}^*} = c^*\big\}\Big) = 1$$

(ii) RRT* algorithm has no substantial computational overhead when compared to the RRT:

$$\lim_{n \to \infty} \mathbb{E}\left[\frac{M_n^{\text{RRT}^*}}{M_n^{\text{RRT}}}\right] = \text{constant}$$

ANYTIME RRT*

Our approach: Leverage the RRT* to converge to optimal

- Closed-loop formulation of the RRT*
 - Samples from the space of control inputs utilizing a prediction model to grow the tree
- Quickly find a feasible, possibly sub-optimal solution
- Exploit available computation time during execution to rewire the tree
- Introduce heuristics for online implementation and efficiency ٠
 - Committed trajectory
 - Branch-and-bound

THE RRT*

17	1 $\mathcal{T} \leftarrow \texttt{InitializeTree}();$			
2 T	2 $\mathcal{T} \leftarrow \texttt{InsertNode}(\emptyset, z_{\texttt{init}}, \mathcal{T});$			
3 fc	3 for $i = 1$ to $i = N$ do			
4	$ z_{\text{rand}} \leftarrow \text{Sample}(i);$			
5	$z_{\text{nearest}} \leftarrow \texttt{Nearest}(\mathcal{T}, z_{\text{rand}});$			
6	$(x_{\text{new}}, u_{\text{new}}, T_{\text{new}}) \leftarrow \texttt{Steer}(z_{\text{nearest}}, z_{\text{rand}});$			
7	if $ObstacleFree(x_{new})$ then			
8	$Z_{\text{near}} \leftarrow \text{Near}(\mathcal{T}, z_{\text{new}}, V);$			
9	$z_{\min} \leftarrow \texttt{ChooseParent}(Z_{\text{near}}, z_{\text{nearest}}, z_{\text{new}}, x_{\text{new}});$			
10	$\mathcal{T} \leftarrow \texttt{InsertNode}(z_{\min}, z_{\text{new}}, \mathcal{T});$			
11	$\mathcal{T} \leftarrow \texttt{ReWire}(\mathcal{T}, Z_{\texttt{near}}, z_{\min}, z_{\texttt{new}});$			
12 r	12 return /			

THE RRT*

17	1 $\mathcal{T} \leftarrow \texttt{InitializeTree}();$			
2 7	2 $\mathcal{T} \leftarrow \texttt{InsertNode}(\emptyset, z_{\texttt{init}}, \mathcal{T});$			
3 f	or $i = 1$ to $i = N$ do			
4	$z_{\text{rand}} \leftarrow \texttt{Sample}(i);$			
5	$z_{\text{nearest}} \leftarrow \texttt{Nearest}(\mathcal{T}, z_{\text{rand}});$			
6	$(x_{\text{new}}, u_{\text{new}}, T_{\text{new}}) \leftarrow \texttt{Steer}(z_{\text{nearest}}, z_{\text{rand}});$			
7	if ObstacleFree (x_{new}) then			
8	$ Z_{\text{near}} \leftarrow \text{Near}(\mathcal{T}, z_{\text{new}}, V);$			
9	$z_{\min} \leftarrow \text{ChooseParent}(Z_{\text{near}}, z_{\text{nearest}}, z_{\text{new}}, x_{\text{new}});$			
10	$\mathcal{T} \leftarrow \texttt{InsertNode}(z_{\min}, z_{\text{new}}, \mathcal{T});$			
11	$\mathcal{T} \leftarrow \texttt{ReWire}(\mathcal{T}, Z_{\text{near}}, z_{\min}, z_{\text{new}});$			
12 return \mathcal{T}				

THE RRT*

17	$\neg \leftarrow \text{InitializeTree}();$			
2 7	2 $\mathcal{T} \leftarrow \texttt{InsertNode}(\emptyset, z_{\texttt{init}}, \mathcal{T});$			
3 for $i = 1$ to $i = N$ do				
4	$z_{\text{rand}} \leftarrow \texttt{Sample}(i);$			
5	$z_{\text{nearest}} \leftarrow \texttt{Nearest}(\mathcal{T}, z_{\text{rand}});$			
6	$(x_{\text{new}}, u_{\text{new}}, T_{\text{new}}) \leftarrow \texttt{Steer}(z_{\text{nearest}}, z_{\text{rand}});$			
7	if ObstacleFree (x_{new}) then			
8	$ Z_{\text{near}} \leftarrow \text{Near}(\mathcal{T}, z_{\text{new}}, V);$			
9	$z_{\min} \leftarrow \text{ChooseParent}(Z_{\text{near}}, z_{\text{nearest}}, z_{\text{new}}, x_{\text{new}});$			
10	$\mathcal{T} \leftarrow \texttt{InsertNode}(z_{\min}, z_{\text{new}}, \mathcal{T});$			
11	$\mathcal{T} \leftarrow \texttt{ReWire}(\mathcal{T}, Z_{\text{near}}, z_{\min}, z_{\text{new}});$			
12 r	12 return '/			

THE RRT*

17	$ \leftarrow \text{InitializeTree}():$		
27	$2 \mathcal{T} \leftarrow \text{InsertNode}(\emptyset, z_{\text{init}}, \mathcal{T}):$		
3 fe	3 for $i = 1$ to $i = N$ do		
4	$ z_{\text{rand}} \leftarrow \texttt{Sample}(i);$		
5	$z_{\text{nearest}} \leftarrow \texttt{Nearest}(\mathcal{T}, z_{\text{rand}});$		
6	$(x_{\text{new}}, u_{\text{new}}, T_{\text{new}}) \leftarrow \texttt{Steer}(z_{\text{nearest}}, z_{\text{rand}});$		
7	if ObstacleFree (x_{new}) then		
8	$ Z_{\text{near}} \leftarrow \text{Near}(\mathcal{T}, z_{\text{new}}, V);$		
9	$z_{\min} \leftarrow \text{ChooseParent}(Z_{\text{near}}, z_{\text{nearest}}, z_{\text{new}}, x_{\text{new}});$		
10	$\mathcal{T} \leftarrow \texttt{InsertNode}(z_{\min}, z_{\text{new}}, \mathcal{T});$		
11	$\mathcal{T} \leftarrow \texttt{ReWire}(\mathcal{T}, Z_{\text{near}}, z_{\min}, z_{\text{new}});$		
12 return \mathcal{T}			

17	$1 \ \mathcal{T} \leftarrow \texttt{InitializeTree}();$		
2 T	2 $\mathcal{T} \leftarrow \texttt{InsertNode}(\emptyset, z_{\texttt{init}}, \mathcal{T});$		
3 fc	3 for $i = 1$ to $i = N$ do		
4	$ z_{\text{rand}} \leftarrow \texttt{Sample}(i);$		
5	$z_{\text{nearest}} \leftarrow \text{Nearest}(\mathcal{T}, z_{\text{rand}});$		
6	$(x_{\text{new}}, u_{\text{new}}, T_{\text{new}}) \leftarrow \texttt{Steer}(z_{\text{nearest}}, z_{\text{rand}});$		
7	if $ObstacleFree(x_{new})$ then		
8	$Z_{\text{near}} \leftarrow \text{Near}(\mathcal{T}, z_{\text{new}}, V);$		
9	$z_{\min} \leftarrow \texttt{ChooseParent}(Z_{\text{near}}, z_{\text{nearest}}, z_{\text{new}}, x_{\text{new}});$		
10	$\mathcal{T} \leftarrow \texttt{InsertNode}(z_{\min}, z_{\text{new}}, \mathcal{T});$		
11	$\mathcal{T} \leftarrow \texttt{ReWire}(\mathcal{T}, Z_{\text{near}}, z_{\min}, z_{\text{new}});$		
12 return \mathcal{T}			

17	1 $\mathcal{T} \leftarrow \texttt{InitializeTree}();$		
2 J	$\mathbf{\tilde{u}} \leftarrow \mathtt{InsertNode}(\emptyset, z_{\mathrm{init}}, \mathcal{T});$		
3 fo	3 for $i = 1$ to $i = N$ do		
4	$z_{\text{rand}} \leftarrow \texttt{Sample}(i);$		
5	$z_{\text{nearest}} \leftarrow \texttt{Nearest}(\mathcal{T}, z_{\text{rand}});$		
6	$(x_{\text{new}}, u_{\text{new}}, T_{\text{new}}) \leftarrow \texttt{Steer}(z_{\text{nearest}}, z_{\text{rand}});$		
7	if ObstacleFree (x_{new}) then		
8	$Z_{\text{near}} \leftarrow \text{Near}(\mathcal{T}, z_{\text{new}}, V);$		
9	$z_{\min} \leftarrow \texttt{ChooseParent}(Z_{\text{near}}, z_{\text{nearest}}, z_{\text{new}}, x_{\text{new}});$		
10	$\mathcal{T} \leftarrow \texttt{InsertNode}(z_{\min}, z_{\text{new}}, \mathcal{T});$		
11	$\mathcal{T} \leftarrow \texttt{ReWire}(\mathcal{T}, Z_{\text{near}}, z_{\min}, z_{\text{new}});$		
12 return \mathcal{T}			

17	$ \leftarrow \texttt{InitializeTree}();$		
27	2 $\mathcal{T} \leftarrow \texttt{InsertNode}(\emptyset, z_{\texttt{init}}, \mathcal{T});$		
3 fo	or $i = 1$ to $i = N$ do		
4	$ z_{\text{rand}} \leftarrow \text{Sample}(i);$		
5	$z_{\text{nearest}} \leftarrow \text{Nearest}(\mathcal{T}, z_{\text{rand}});$		
6	$(x_{\text{new}}, u_{\text{new}}, T_{\text{new}}) \leftarrow \texttt{Steer}(z_{\text{nearest}}, z_{\text{rand}});$		
7	if ObstacleFree (x_{new}) then		
8	$Z_{\text{near}} \leftarrow \text{Near}(\mathcal{T}, z_{\text{new}}, V);$		
9	$z_{\min} \leftarrow \texttt{ChooseParent}(Z_{\text{near}}, z_{\text{nearest}}, z_{\text{new}}, x_{\text{new}});$		
10	$\mathcal{T} \leftarrow \texttt{InsertNode}(z_{\min}, z_{\text{new}}, \mathcal{T});$		
11	$\mathcal{T} \leftarrow \texttt{ReWire}(\mathcal{T}, Z_{\text{near}}, z_{\min}, z_{\text{new}});$		
12 return \mathcal{T}			

1 T	1 $\mathcal{T} \leftarrow \texttt{InitializeTree}();$		
2 T	2 $\mathcal{T} \leftarrow \texttt{InsertNode}(\emptyset, z_{\texttt{init}}, \mathcal{T});$		
3 fo	3 for $i = 1$ to $i = N$ do		
4	$z_{\text{rand}} \leftarrow \text{Sample}(i);$		
5	$z_{\text{nearest}} \leftarrow \texttt{Nearest}(\mathcal{T}, z_{\text{rand}});$		
6	$(x_{\text{new}}, u_{\text{new}}, T_{\text{new}}) \leftarrow \texttt{Steer}(z_{\text{nearest}}, z_{\text{rand}});$		
7	if $ObstacleFree(x_{new})$ then		
8	$Z_{\text{near}} \leftarrow \text{Near}(\mathcal{T}, z_{\text{new}}, V);$		
9	$z_{\min} \leftarrow \texttt{ChooseParent}(Z_{\text{near}}, z_{\text{nearest}}, z_{\text{new}}, x_{\text{new}});$		
10	$\mathcal{T} \leftarrow \texttt{InsertNode}(z_{\min}, z_{\text{new}}, \mathcal{T});$		
11	$\mathcal{T} \leftarrow \texttt{ReWire}(\mathcal{T}, Z_{\text{near}}, z_{\min}, z_{\text{new}});$		
l			
12 return \mathcal{T}			

17	\leftarrow InitializeTree();		
2 7	2 $\mathcal{T} \leftarrow \text{InsertNode}(\emptyset, z_{\text{init}}, \mathcal{T});$		
3 fe	3 for $i = 1$ to $i = N$ do		
4	$ z_{\text{rand}} \leftarrow \text{Sample}(i);$		
5	$z_{\text{nearest}} \leftarrow \texttt{Nearest}(\mathcal{T}, z_{\text{rand}});$		
6	$(x_{\text{new}}, u_{\text{new}}, T_{\text{new}}) \leftarrow \texttt{Steer}(z_{\text{nearest}}, z_{\text{rand}});$		
7	if ObstacleFree (x_{new}) then		
8	$ Z_{\text{near}} \leftarrow \text{Near}(\mathcal{T}, z_{\text{new}}, V);$		
9	$z_{\min} \leftarrow \texttt{ChooseParent}(Z_{\text{near}}, z_{\text{nearest}}, z_{\text{new}}, x_{\text{new}});$		
10	$\mathcal{T} \leftarrow \texttt{InsertNode}(z_{\min}, z_{\text{new}}, \mathcal{T});$		
11	$\mathcal{T} \leftarrow \texttt{ReWire}(\mathcal{T}, Z_{\texttt{near}}, z_{\min}, z_{\texttt{new}});$		
12 r	12 return /		

THE RRT*

_			
17	1 $\mathcal{T} \leftarrow \texttt{InitializeTree}();$		
27	2 $\mathcal{T} \leftarrow \texttt{InsertNode}(\emptyset, z_{\texttt{init}}, \mathcal{T});$		
3 fe	3 for $i = 1$ to $i = N$ do		
4	$z_{\text{rand}} \leftarrow \texttt{Sample}(i);$		
5	$z_{\text{nearest}} \leftarrow \texttt{Nearest}(\mathcal{T}, z_{\text{rand}});$		
6	$(x_{\text{new}}, u_{\text{new}}, T_{\text{new}}) \leftarrow \texttt{Steer}(z_{\text{nearest}}, z_{\text{rand}});$		
7	if ObstacleFree (x_{new}) then		
8	$ Z_{\text{near}} \leftarrow \text{Near}(\mathcal{T}, z_{\text{new}}, V);$		
9	$z_{\min} \leftarrow \text{ChooseParent}(Z_{\text{near}}, z_{\text{nearest}}, z_{\text{new}}, x_{\text{new}});$		
10	$\mathcal{T} \leftarrow \texttt{InsertNode}(z_{\min}, z_{\text{new}}, \mathcal{T});$		
11	$\mathcal{T} \leftarrow \texttt{ReWire}(\mathcal{T}, Z_{\texttt{near}}, z_{\min}, z_{\texttt{new}});$		

THE RRT*

17	1 $\mathcal{T} \leftarrow \texttt{InitializeTree}();$		
2 7	2 $\mathcal{T} \leftarrow \texttt{InsertNode}(\emptyset, z_{\texttt{init}}, \mathcal{T});$		
3 f	3 for $i = 1$ to $i = N$ do		
4	$z_{\text{rand}} \leftarrow \texttt{Sample}(i);$		
5	$z_{\text{nearest}} \leftarrow \texttt{Nearest}(\mathcal{T}, z_{\text{rand}});$		
6	$(x_{\text{new}}, u_{\text{new}}, T_{\text{new}}) \leftarrow \texttt{Steer}(z_{\text{nearest}}, z_{\text{rand}});$		
7	if ObstacleFree (x_{new}) then		
8	$ Z_{\text{near}} \leftarrow \text{Near}(\mathcal{T}, z_{\text{new}}, V);$		
9	$z_{\min} \leftarrow \text{ChooseParent}(Z_{\text{near}}, z_{\text{nearest}}, z_{\text{new}}, x_{\text{new}});$		
10	$\mathcal{T} \leftarrow \texttt{InsertNode}(z_{\min}, z_{\text{new}}, \mathcal{T});$		
11	$\mathcal{T} \leftarrow \texttt{ReWire}(\mathcal{T}, Z_{\texttt{near}}, z_{\min}, z_{\texttt{new}});$		

THE RRT*

_			
1 $\mathcal{T} \leftarrow \texttt{InitializeTree}();$			
2 $\mathcal{T} \leftarrow \texttt{InsertNode}(\emptyset, z_{\texttt{init}}, \mathcal{T});$			
3 for $i = 1$ to $i = N$ do			
4	$z_{\text{rand}} \leftarrow \text{Sample}(i);$		
5	$z_{\text{nearest}} \leftarrow \text{Nearest}(\mathcal{T}, z_{\text{rand}});$		
6	$(x_{\text{new}}, u_{\text{new}}, T_{\text{new}}) \leftarrow \texttt{Steer}(z_{\text{nearest}}, z_{\text{rand}});$		
7	if ObstacleFree (x_{new}) then		
8	$ Z_{\text{near}} \leftarrow \text{Near}(\mathcal{T}, z_{\text{new}}, V);$		
9	$z_{\min} \leftarrow \text{ChooseParent}(Z_{\text{near}}, z_{\text{nearest}}, z_{\text{new}}, x_{\text{new}});$		
10	$\mathcal{T} \leftarrow \texttt{InsertNode}(z_{\min}, z_{\text{new}}, \mathcal{T});$		
11	$ \qquad \qquad$		

THE RRT*

1	$\mathcal{T} \leftarrow \texttt{InitializeTree}();$
2	$\mathcal{T} \leftarrow \texttt{InsertNode}(\emptyset, z_{\texttt{init}}, \mathcal{T});$
3	for $i = 1$ to $i = N$ do
4	$z_{\text{rand}} \leftarrow \texttt{Sample}(i);$
5	$z_{\text{nearest}} \leftarrow \texttt{Nearest}(\mathcal{T}, z_{\text{rand}});$
6	$(x_{\text{new}}, u_{\text{new}}, T_{\text{new}}) \leftarrow \texttt{Steer}(z_{\text{nearest}}, z_{\text{rand}});$
7	if ObstacleFree (x_{new}) then
8	$ Z_{\text{near}} \leftarrow \text{Near}(\mathcal{T}, z_{\text{new}}, V);$
9	$z_{\min} \leftarrow \text{ChooseParent}(Z_{\text{near}}, z_{\text{nearest}}, z_{\text{new}}, x_{\text{new}});$
10	$\mathcal{T} \leftarrow \texttt{InsertNode}(z_{\min}, z_{\text{new}}, \mathcal{T});$
11	$\mathcal{T} \leftarrow \texttt{ReWire}(\mathcal{T}, Z_{\text{near}}, z_{\min}, z_{\text{new}});$

THE RRT*

1	1 $\mathcal{T} \leftarrow \texttt{InitializeTree}();$			
2	2 $\mathcal{T} \leftarrow \texttt{InsertNode}(\emptyset, z_{\texttt{init}}, \mathcal{T});$			
3 for $i = 1$ to $i = N$ do				
4	$z_{\text{rand}} \leftarrow \texttt{Sample}(i);$			
5	$z_{\text{nearest}} \leftarrow \texttt{Nearest}(\mathcal{T}, z_{\text{rand}});$			
6	$(x_{\text{new}}, u_{\text{new}}, T_{\text{new}}) \leftarrow \texttt{Steer}(z_{\text{nearest}}, z_{\text{rand}});$			
7	if ObstacleFree (x_{new}) then			
8	$ Z_{\text{near}} \leftarrow \text{Near}(\mathcal{T}, z_{\text{new}}, V);$			
9	$z_{\min} \leftarrow \text{ChooseParent}(Z_{\text{near}}, z_{\text{nearest}}, z_{\text{new}}, x_{\text{new}});$			
10	$\mathcal{T} \leftarrow \texttt{InsertNode}(z_{\min}, z_{\text{new}}, \mathcal{T});$			
11	$ \qquad \qquad$			

THE RRT*

1 $\mathcal{T} \leftarrow \texttt{InitializeTree}();$
2 $\mathcal{T} \leftarrow \texttt{InsertNode}(\emptyset, z_{\texttt{init}}, \mathcal{T});$
3 for $i = 1$ to $i = N$ do
4 $z_{\text{rand}} \leftarrow \text{Sample}(i);$
5 $z_{\text{nearest}} \leftarrow \text{Nearest}(\mathcal{T}, z_{\text{rand}});$
6 $(x_{\text{new}}, u_{\text{new}}, T_{\text{new}}) \leftarrow \texttt{Steer}(z_{\text{nearest}}, z_{\text{rand}});$
7 if ObstacleFree (x_{new}) then
8 $Z_{\text{near}} \leftarrow \text{Near}(\mathcal{T}, z_{\text{new}}, V);$
9 $z_{\min} \leftarrow \text{ChooseParent}(Z_{\text{near}}, z_{\text{nearest}}, z_{\text{new}}, x_{\text{new}});$
10 $\mathcal{T} \leftarrow \texttt{InsertNode}(z_{\min}, z_{\text{new}}, \mathcal{T});$
11 $\mathcal{T} \leftarrow \text{ReWire}(\mathcal{T}, Z_{\text{near}}, z_{\min}, z_{\text{new}});$
12 return \mathcal{T}

Matthew Walter | 10 May 2011

17	\leftarrow InitializeTree();		
2 7	$\mathbf{\tilde{u}} \leftarrow \mathtt{InsertNode}(\emptyset, z_{\mathrm{init}}, \mathcal{T});$		
3 for $i = 1$ to $i = N$ do			
4	$z_{\text{rand}} \leftarrow \texttt{Sample}(i);$		
5	$z_{\text{nearest}} \leftarrow \texttt{Nearest}(\mathcal{T}, z_{\text{rand}});$		
6	$(x_{\text{new}}, u_{\text{new}}, T_{\text{new}}) \leftarrow \texttt{Steer}(z_{\text{nearest}}, z_{\text{rand}});$		
7	if ObstacleFree (x_{new}) then		
8	$ Z_{\text{near}} \leftarrow \text{Near}(\mathcal{T}, z_{\text{new}}, V);$		
9	$z_{\min} \leftarrow \texttt{ChooseParent}(Z_{\text{near}}, z_{\text{nearest}}, z_{\text{new}}, x_{\text{new}});$		
10	$\mathcal{T} \leftarrow \texttt{InsertNode}(z_{\min}, z_{\text{new}}, \mathcal{T});$		
11	$\mathcal{T} \leftarrow \texttt{ReWire}(\mathcal{T}, Z_{\texttt{near}}, z_{\min}, z_{\texttt{new}});$		
12 r	eturn \mathcal{T}		

ШiГ

THE RRT*

8

10

ANYTIME EXTENSIONS

- Committed trajectory
 - Robot commits to execute immediate portion of current solution
 - Delete branches off committed trajectory, making the endpoint the new tree root

Anytime RRT*

- The planner improves paths (rewires) beyond committed trajectory
- Branch-and-bound

1111

- Maintain a lower-bound on the cost to get to the goal from each node in the tree (e.g., Euclidean distance)
- Delete nodes for which

 $Cost(z) + CostToGo(z) \ge Cost(z_{\min})$

PERFORMANCE ANALYSIS

- Series of Monte Carlo simulations of a non-holonomic vehicle
 - Compare our anytime RRT* with anytime RRT
 - Both planners utilized committed trajectory and branch-and-bound heuristics
 - Both planners were allowed to maintain the tree until robot reached the goal
 - High-fidelity forklift dynamics model

PERFORMANCE ANALYSIS

Histogram of final path lengths

FORKLIFT EXPERIMENTS: ANYTIME RRT

Run I

Matthew Walter | 10 May 2011

FORKLIFT EXPERIMENTS: ANYTIME RRT*

Run I

CONCLUSION

The algorithm demonstrates the desired anytime properties:

- Quickly find a feasible solution that the agent can begin to execute
- Take advantage of valuable execution time to asymptotically improve to optimal

CURRENT WORK

- Quickly find a solution that is feasible, but not necessarily optimal
- Asymptotic optimality: Exploit execution time to incrementally converge towards optimal solution
- (Probabilistic) completeness
- Computationally efficiency (limited resources)
- Plan despite incomplete, imperfect knowledge
- Accommodate dynamic environments

OPTIMAL MANIPULATION PLANNING

12-DOF pre-grasp planning on the PR2

<u>o</u> : 2011_	_02_	_pr2_	_12dof_	_rrt.mp	4

RRBT* video: 2011_02_pr2_12dof_rrbtstar.mp4

[Perez, Karaman, Walter, Shkolnik, Frazzoli, & Teller, IROS 2011 (submitted, under review)]

OPTIMAL MANIPULATION PLANNING

12-DOF pre-grasp planning on the PR2

R	R	В	*

	RRT	RRBT'
First solution time (sec)	29.9	9.7
Cost of first solution (rad)	19.8	8.6
Cost of final solution (rad)	19.8	7.5

Averaged over several runs

[Perez, Karaman, Walter, Shkolnik, Frazzoli, & Teller, IROS 2011 (submitted, under review)]

PLANNING IN UNCERTAIN ENVIRONMENTS

Closed-loop RRT with false obstacle detections

[Joint work with Adam Bry and Nicholas Roy]

PLANNING IN UNCERTAIN ENVIRONMENTS

Chance-constrained optimization using incremental, sampling-based techniques

 $\min[c(\sigma)]$

subject to:

$$P_{ ext{col}} < \delta$$

 $\sigma(0) = x_{ ext{init}}$
 $\sigma(s) \in \mathscr{X}_{ ext{goal}}$

video: 2011_04_constraint_optimization.mp4

[Joint work with Adam Bry and Nicholas Roy]

QUESTIONS?

mwalter@csail.mit.edu

http://people.csail.mit.edu/mwalter