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• (Probabilistic) completeness

• Quickly find a kinodynamically feasible solution

• Computationally efficiency (limited resources)

• Plan despite incomplete, imperfect knowledge

• Accommodate dynamic environments

PRACTICAL MOTION PLANNING

Anytime Motion Planning Anytime RRT* Experiments and Results Conclusion

[Teller et al., ICRA 2010]

[Kuwata et al., GNC 2008]



Matthew Walter  |  10 May 2011

• Probabilistic RoadMap (PRM)    
[Kavraki et al., T-RA 1996]

- Multiple query

SAMPLE-BASED MOTION PLANNING

Sample-based motion planning provides an effective solution

Anytime Motion Planning Anytime RRT* Experiments and Results Conclusion

5.6. ROADMAP METHODS FOR MULTIPLE QUERIES 239

α(i)

Cobs

Cobs

Figure 5.26: The sampling-based roadmap is constructed incrementally by at-
tempting to connect each new sample, α(i), to nearby vertices in the roadmap.

as the bidirectional algorithm in Figure 5.24. If the path is collision-free, then
connect returns true.

The same component condition in line 6 checks to make sure α(i) and q are in
different components of G before wasting time on collision checking. This ensures
that every time a connection is made, the number of connected components of G is
decreased. This can be implemented very efficiently (near constant time) using the
previously mentioned union-find algorithm [41, 144]. In some implementations this
step may be ignored, especially if it is important to generate multiple, alternative
solutions. For example, it may be desirable to generate solution paths from differ-
ent homotopy classes. In this case the condition (not G.same component(α(i), q))
is replaced with G.vertex degree(q) < K, for some fixed K (e.g., K = 15).

Selecting neighboring samples Several possible implementations of line 5 can
be made. In all of these, it seems best to sort the vertices that will be considered
for connection in order of increasing distance from α(i). This makes sense because
shorter paths are usually less costly to check for collision, and they also have a
higher likelihood of being collision-free. If a connection is made, this avoids costly
collision checking of longer paths to configurations that would eventually belong
to the same connected component.

Several useful implementations of neighborhood are

1. Nearest K: The K closest points to α(i) are considered. This requires
setting the parameter K (a typical value is 15). If you are unsure which
implementation to use, try this one.

2. Component K: Try to obtain up to K nearest samples from each con-
nected component of G. A reasonable value is K = 1; otherwise, too many
connections would be tried.

3. Radius: Take all points within a ball of radius r centered at α(i). An
upper limit, K, may be set to prevent too many connections from being

240 S. M. LaValle: Planning Algorithms

attempted. Typically, K = 20. A radius can be determined adaptively by
shrinking the ball as the number of points increases. This reduction can
be based on dispersion or discrepancy, if either of these is available for α.
Note that if the samples are highly regular (e.g., a grid), then choosing the
nearest K and taking points within a ball become essentially equivalent.
If the point set is highly irregular, as in the case of random samples, then
taking the nearest K seems preferable.

4. Visibility: In Section 5.6.2, a variant will be described for which it is
worthwhile to try connecting α to all vertices in G.

Note that all of these require C to be a metric space. One variation that has not yet
been given much attention is to ensure that the directions of the neighborhood

points relative to α(i) are distributed uniformly. For example, if the 20 closest
points are all clumped together in the same direction, then it may be preferable
to try connecting to a further point because it is in the opposite direction.

Query phase In the query phase, it is assumed that G is sufficiently complete
to answer many queries, each of which gives an initial configuration, qI , and a goal
configuration, qG. First, the query phase pretends as if qI and qG were chosen from
α for connection to G. This requires running two more iterations of the algorithm
in Figure 5.25. If qI and qG are successfully connected to other vertices in G, then
a search is performed for a path that connects the vertex qI to the vertex qG. The
path in the graph corresponds directly to a path in Cfree, which is a solution to the
query. Unfortunately, if this method fails, it cannot be determined conclusively
whether a solution exists. If the dispersion is known for a sample sequence, α,
then it is at least possible to conclude that no solution exists for the resolution of
the planner. In other words, if a solution does exist, it would require the path to
travel through a corridor no wider than the radius of the largest empty ball [104].

Some analysis There have been many works that analyze the performance of
sampling-based roadmaps. The basic idea from one of them [13] is briefly pre-
sented here. Consider problems such as the one in Figure 5.27, in which the con-

nect method will mostly likely fail in the thin tube, even though a connection
exists. The higher dimensional versions of these problems are even more difficult.
Many planning problems involve moving a robot through an area with tight clear-
ance. This generally causes narrow channels to form in Cfree, which leads to a
challenging planning problem for the sampling-based roadmap algorithm. Finding
the escape of a bug trap is also challenging, but for the roadmap methods, even
traveling through a single corridor is hard (unless more sophisticated LPMs are
used [83]).

Let V (q) denote the set of all configurations that can be connected to q using
the connect method. Intuitively, this is considered as the set of all configurations
that can be “seen” using line-of-sight visibility, as shown in Figure 5.28a

• Rapidly-exploring Random Tree (RRT) 
[LaValle & Kufner, IJRR 2001]

- Single query

- Incremental

- Online

[Credit: LaValle, Planning Algorithms 2006]
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• Rapidly-exploring Random Tree (RRT) [LaValle & Kufner, IJRR 2001]
- Probabilistically complete
- Respects kinodynamic (non-holonomic) constraints
- Computationally efficient, scales to high dimensions
- Relatively simple to implement

INCREMENTAL SAMPLE-BASED 
MOTION PLANNING

Effectively demonstrated on 
state-of-the-art robotic platforms

Anytime Motion Planning Anytime RRT* Experiments and Results Conclusion

video: 2009_02_agile_rrt.mp4 video: 2007_11_duc_25_mph.mp4

http://people.csail.mit.edu/mwalter/videos/2009_02_agile_rrt.mp4
http://people.csail.mit.edu/mwalter/videos/2009_02_agile_rrt.mp4
http://people.csail.mit.edu/mwalter/videos/2007_11_duc_25_mph.mp4
http://people.csail.mit.edu/mwalter/videos/2007_11_duc_25_mph.mp4
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• Overall approach:

1. Quickly find a solution that is feasible, but not necessarily optimal

2. Exploit execution time to incrementally improve towards optimal solution

ANYTIME MOTION PLANNING

During execution, improve solution toward optimal

Anytime Motion Planning Anytime RRT* Experiments and Results Conclusion

• Desired properties:

1. Form of completeness guarantees

2. Asymptotic optimality given more computation time
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• Anytime RRTs [Ferguson & Stentz, IROS 2006]

- Quickly finds an initial solution with a vanilla RRT

- Successively generates new trees that improve solution 
costs via biased sampling

- The cost of successive solutions is guaranteed to 
decrease, though they do not converge to the optimum

• CL-RRT [Kuwata et al., T-CST 2009]

- Quickly finds an initial solution with a closed-loop RRT

- Continues to search for other solutions (during execution)

- Estimates an upper-bound on the cost of each solution via 
a cost-to-go heuristic

- Chooses the solution with the lowest upper-bound cost

- No convergence guarantees

ANYTIME MOTION PLANNING

Anytime Motion Planning Anytime RRT* Experiments and Results Conclusion

(a) (b) (c) (d) (e)

Fig. 2. Anytime RRT Planning. Given a partial RRT (shown in (a)) being grown from an initial configuration (the bottom filled circle) to a goal configuration
(the top filled circle), this illustration shows how the Anytime RRT approach samples, selects, and extends the tree. To begin with, we assume some previous
solution has already been generated. (b) When using the Anytime RRT approach to sample the configuration space, only areas that could potentially lead to
an improved solution are considered (indicated by the shaded oval). Thus, the black nodes are rejected while the white node is accepted. (c) When selecting
the next node in the tree to extend, the k nodes closest to the sample point are found and ordered according to both their distance from the sample point
and the cost of their path from the start node. Here, k = 3 and the white node and two black nodes are the closest; the white node is selected first since
its path is less expensive than those of the two black nodes. (d) The tree node from (c) is then extended by generating a set of possible extensions and then
probabilistically choosing the one that is least expensive. The cost of the extension to the white node is cheaper than the extensions to the black nodes, so
the white node is chosen as the next element to be added to the tree. (e) After checking that the sum of the cost of the path from the start node through the
tree to the new element and the heuristic cost of a path from the new element to the goal is less than the solution bound, the element is added to the tree.

low-cost solution. We rely upon novel node sampling, node
selection, and node extension operations that incorporate cost
considerations and variable bias factors to efficiently produce
solutions satisfying a specified cost bound. We discuss each
of these operations in turn.

A. Node Sampling
If we are only interested in generating a solution that is

cheaper than some upper bound value Cs, then we can use
this upper bound to influence the sampling process used by
the RRT algorithm. Rather than randomly sampling the entire
configuration space, we restrict our sampling to just those
areas of the configuration space that could possible provide
a solution satisfying the upper bound. Given a node qtarget in
the configuration space, we can check whether qtarget could
be part of such a solution by calculating a heuristic cost
from the initial node qstart to qtarget, h(qstart, qtarget), as
well as a heuristic cost from qtarget to the goal node qgoal,
h(qtarget, qgoal). If these heuristic values do not overestimate
the costs of optimal paths between these nodes then the
combination of these heuristic values gives us a lower bound
on the cost of any path from qstart through qtarget to qgoal. If
this lower bound cost is greater than our upper bound Cs, then
there is no way qtarget could be part of a solution satisfying
our upper bound and so qtarget can be ignored.

However, depending on the complexity of the configuration
space and what heuristics are used, this approach could make
it very difficult for the RRT to find a solution. For example, if
there are narrow passages in the configuration space between
large obstacles, then it may be very difficult to sample nodes
inside the passages. This is a well-known problem with
the original RRT algorithm, but it could be exacerbated by
disregarding any samples that fall inside configuration space
obstacles. Depending on how the heuristic deals with such

samples, the above approach could make it even more difficult
for the tree to grow down any narrow passages. Further, by
reducing our consideration of sample points to only those
whose heuristic values are promising, we are in effect cutting
off large chunks of the configuration space. This is entirely
the point of restricting our sampling, but it can also introduce
new narrow passages. For example, imagine an obstacle that
resides near the edge of the promising configurations, as
determined by our heuristic values. It may be possible to plan
a path around this obstacle, but finding such a path may be
difficult using our restricted sampling approach, as very few
samples exist that will pull the tree towards this edge. Thus,
it is important to use conservative heuristic estimates and not
disregard points that reside in configuration space obstacles.

One way of implementing this restricted sampling idea is to
continue generating random samples qtarget from the configu-
ration space until we find one whose combined heuristic cost is
less than our upper bound. This approach is illustrated in Fig.
2(b). Another method is to use the heuristic functions to do
the sampling itself, so that every node sampled will satisfy the
upper bound. On the whole, this restricted sampling technique
saves us a lot of unnecessary computation spent on irrelevant
areas of the configuration space.

B. Node Selection
Once a sample node qtarget has been generated using the

above technique, we then select a node from the tree qtree

to extend out towards the sample node. In the original RRT
algorithm, the closest node in the tree to qtarget is selected to
be qtree. However, as Urmson and Simmons show [6], much
cheaper solutions can be obtained if we modify this selection
process to incorporate cost considerations.

Our selection approach is based on their ideas but uses
bias factors to vary over time the influence of cost, so that

5371

[Credit: Ferguson & Stentz, IROS 2006]
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•           denotes the cost of the best path in the RRT after n iterations

•    denotes the cost of an optimal path

ANYTIME MOTION PLANNING

Anytime Motion Planning Anytime RRT* Experiments and Results Conclusion

The RRT is not asymptotically optimal

Theorem [Karaman, Frazzoli, IJRR 2011]
The probability that the RRT converges to an optimum solution is zero

P
��

lim
n→∞

Y RRT
n = c∗

��
= 0

Y RRT
n

c∗
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ANYTIME RRT

Anytime Motion Planning Anytime RRT* Experiments and Results Conclusion

Our approach: Leverage the RRT* to converge to optimal

Theorem [Karaman & Frazzoli, IJRR 2011]
(i) The RRT* algorithm is asymptotically optimal

(ii) RRT* algorithm has no substantial computational overhead when compared to the RRT:

P
��

lim
n→∞

Y RRT∗

n = c∗
��

= 1

lim
n→∞

E
�
MRRT∗

n

MRRT
n

�
= constant

• RRT* [Karaman & Frazzoli, RSS 2010] is both asymptotically optimal and computationally efficient

-             : cost of the best path in the RRT*
-             : cost of an optimal solution

-             : number of steps executed by the RRT at iteration n
-             : number of steps executed by the RRT* in iteration n

Y RRT∗

n

c∗

MRRT
n

MRRT∗

n
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ANYTIME RRT*

Anytime Motion Planning Anytime RRT* Experiments and Results Conclusion

Our approach: Leverage the RRT* to converge to optimal

• Closed-loop formulation of the RRT* 
- Samples from the space of control inputs utilizing a prediction model to grow the tree

• Quickly find a feasible, possibly sub-optimal solution

• Exploit available computation time during execution to rewire the tree

• Introduce heuristics for online implementation and efficiency

- Committed trajectory

- Branch-and-bound
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THE RRT*

II. THE RRT* ALGORITHM

This section formally states the motion planning problem
and describes the RRT∗ algorithm. Consider a system with
dynamics of the following form: ẋ(t) = f(x(t), u(t)), where
x(t) ∈ X and u(t) ∈ U , where X ⊂ Rd and U ⊂ Rm denote
the state space and the input space, respectively. Let Xobs

denote the obstacle region, and Xfree = X \Xobs define the
obstacle-free space. Finally, let Xgoal ⊂ X denote the goal
region. The motion planning problem is to find a control
input u : [0, T ] → U that yields a feasible path x(t) ∈ Xfree

for t ∈ [0, T ] from an initial state x(0) = xinit to the goal
region x(T ) ∈ Xgoal that obeys the system dynamics.

The optimal motion planning problem imposes the addi-
tional requirement that the resulting feasible path minimize
a given cost function, c(x), mapping each non-trivial admis-
sible trajectory x : [0, T ] → X to a positive real number.

In solving the optimal motion planning problem, the RRT∗

algorithm builds and maintains a tree T = (V,E) comprised
of a vertex set V of states from Xfree connected by directed
edges E ⊆ V ×V . The manner in which the RRT∗ generates
this tree closely resembles that of the standard RRT, with the
addition of a few key steps that achieve optimality. The RRT∗

algorithm uses a set of basic procedures, which we describe
in the context of kinodynamic motion planning [14].

Sampling: The Sample function randomly samples a state
zrand ∈ Xfree from the obstacle-free region of the state space.

Distance: Dist : X × X → R≥0 returns the cost of the
optimal trajectory between two states, assuming no obstacles.
Without differential constraints, it is the Euclidean distance.

Nearest Neighbor: Given a state z ∈ X and the tree
T = (V,E), the v = Nearest(T, z) function returns the
nearest node in the tree in terms of the distance function.

Near-by Vertices: Given a state z ∈ X , tree T = (V,E),
and a number n, the Znearby = Near(T , z, n) function returns
the vertices in V that are near z. More precisely, define
Reach(z, l) = {z� ∈ X | Dist(z, z�) ≤ l or Dist(z, z�) ≤
l}, and choose l(n) such that Reach(z, l(n)) contains a ball
of volume γ ((log n)/n)d, where γ is a fixed number [14].

Collision Check: The ObstacleFree(x) function checks
whether a path x : [0, T ] → X lies within the obstacle-free
region of state space, i.e., x(t) ∈ Xfree for all t ∈ [0, T ].

Steering: The (x, u, T ) = Steer(z1, z2) function solves
for the control input u : [0, T ] that drives the system from
x(0) = z1 to x(T ) = z2 along the path x : [0, T ] → X .

Node Insertion: Given the current tree T = (V,E),
an existing state zcurrent ∈ V , and a new state znew, the
InsertNode(zcurrent, znew, T ) procedure adds znew to V and
creates an edge to zcurrent as its parent, which it adds to E. It
assigns a Cost(znew) to znew equal to that of its parent, plus
the cost c(x) of the trajectory associated with the new edge.

Using these functions, the RRT∗ exhibits the general
structure outlined in Alg. 1. With the exception of the process
of extending an existing node in the tree toward a new node
(lines 8–11), the RRT∗ essentially behaves identically to the
RRT. The RRT∗ starts with an empty tree and adds a single
node corresponding to the initial state. It then builds and

refines the tree through a set of N iterations (lines 3–11).
Like the RRT, the RRT∗ incrementally builds the tree by
sampling a random state zrand from the obstacle-free space
(line 4) and solving for a trajectory xnew that extends the
closest node in the tree znearest toward the sample (lines 5–
6). If this trajectory does not collide with obstacles (line 7),
the standard RRT inserts the new node znew into the tree with
znearest as its parent and continues with the next iteration.

It is here that the operation of the RRT∗ differs. Rather
than choosing the nearest node as the parent, the RRT∗

considers all nodes in a neighborhood of znew (line 8) and
evaluates the cost of choosing each as the parent. This
process (Alg. 2) evaluates the total cost as the additive
combination of the cost associated with reaching the potential
parent node and the cost of the trajectory to znew. The node
that yields the lowest cost becomes the parent as the new
node is added to the tree (Alg. 1, line 10). The ReWire

procedure described in Alg. 3 then checks each node znear in
the vicinity of znew to see whether reaching znear via znew
would achieve lower cost than doing so view its current
parent (Alg. 3, line 3). When this connection reduces the total
cost associated with znear, the algorithm modifies (“rewires”)
the tree to make znew the parent of znear (line 4). The RRT∗

then continues with the next iteration.
Algorithm 1: T = (V,E) ← RRT

�(zinit)

1 T ← InitializeTree();
2 T ← InsertNode(∅, zinit, T );
3 for i = 1 to i = N do
4 zrand ← Sample(i);
5 znearest ← Nearest(T , zrand);
6 (xnew, unew, Tnew) ← Steer(znearest, zrand);
7 if ObstacleFree(xnew) then
8 Znear ← Near(T , znew, |V |);
9 zmin ← ChooseParent(Znear, znearest, znew, xnew);

10 T ← InsertNode(zmin, znew, T );
11 T ← ReWire(T , Znear, zmin, znew);

12 return T

Algorithm 2: zmin ← ChooseParent(Znear, znearest, xnew)

1 zmin ← znearest;
2 cmin ← Cost(znearest) + c(xnew);
3 for znear ∈ Znear do
4 (x�, u�, T �) ← Steer(znear, znew);
5 if ObstacleFree(x�) and x�(T �) = znew then
6 c� = Cost(znear) + c(x�);
7 if c� < Cost(znew) and c� < cmin then
8 zmin ← znear;
9 cmin ← c�;

10 return zmin

Algorithm 3: T ← ReWire(T , Znear, zmin, znew)

1 for znear ∈ Znear \ {zmin} do
2 (x�, u�, T �) ← Steer(znew, znear);
3 if ObstacleFree(x�) and x�(T �) = znear and

Cost(znew) + c(x�) < Cost(znear) then
4 T ← ReConnect(znew, znear, T );

5 return T

Anytime Motion Planning Anytime RRT* Experiments and Results Conclusion

So far, a standard RRT
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Anytime Motion Planning Anytime RRT* Experiments and Results Conclusion

So far, a standard RRT
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algorithm builds and maintains a tree T = (V,E) comprised
of a vertex set V of states from Xfree connected by directed
edges E ⊆ V ×V . The manner in which the RRT∗ generates
this tree closely resembles that of the standard RRT, with the
addition of a few key steps that achieve optimality. The RRT∗

algorithm uses a set of basic procedures, which we describe
in the context of kinodynamic motion planning [14].

Sampling: The Sample function randomly samples a state
zrand ∈ Xfree from the obstacle-free region of the state space.

Distance: Dist : X × X → R≥0 returns the cost of the
optimal trajectory between two states, assuming no obstacles.
Without differential constraints, it is the Euclidean distance.

Nearest Neighbor: Given a state z ∈ X and the tree
T = (V,E), the v = Nearest(T, z) function returns the
nearest node in the tree in terms of the distance function.

Near-by Vertices: Given a state z ∈ X , tree T = (V,E),
and a number n, the Znearby = Near(T , z, n) function returns
the vertices in V that are near z. More precisely, define
Reach(z, l) = {z� ∈ X | Dist(z, z�) ≤ l or Dist(z, z�) ≤
l}, and choose l(n) such that Reach(z, l(n)) contains a ball
of volume γ ((log n)/n)d, where γ is a fixed number [14].

Collision Check: The ObstacleFree(x) function checks
whether a path x : [0, T ] → X lies within the obstacle-free
region of state space, i.e., x(t) ∈ Xfree for all t ∈ [0, T ].

Steering: The (x, u, T ) = Steer(z1, z2) function solves
for the control input u : [0, T ] that drives the system from
x(0) = z1 to x(T ) = z2 along the path x : [0, T ] → X .

Node Insertion: Given the current tree T = (V,E),
an existing state zcurrent ∈ V , and a new state znew, the
InsertNode(zcurrent, znew, T ) procedure adds znew to V and
creates an edge to zcurrent as its parent, which it adds to E. It
assigns a Cost(znew) to znew equal to that of its parent, plus
the cost c(x) of the trajectory associated with the new edge.

Using these functions, the RRT∗ exhibits the general
structure outlined in Alg. 1. With the exception of the process
of extending an existing node in the tree toward a new node
(lines 8–11), the RRT∗ essentially behaves identically to the
RRT. The RRT∗ starts with an empty tree and adds a single
node corresponding to the initial state. It then builds and

refines the tree through a set of N iterations (lines 3–11).
Like the RRT, the RRT∗ incrementally builds the tree by
sampling a random state zrand from the obstacle-free space
(line 4) and solving for a trajectory xnew that extends the
closest node in the tree znearest toward the sample (lines 5–
6). If this trajectory does not collide with obstacles (line 7),
the standard RRT inserts the new node znew into the tree with
znearest as its parent and continues with the next iteration.

It is here that the operation of the RRT∗ differs. Rather
than choosing the nearest node as the parent, the RRT∗

considers all nodes in a neighborhood of znew (line 8) and
evaluates the cost of choosing each as the parent. This
process (Alg. 2) evaluates the total cost as the additive
combination of the cost associated with reaching the potential
parent node and the cost of the trajectory to znew. The node
that yields the lowest cost becomes the parent as the new
node is added to the tree (Alg. 1, line 10). The ReWire

procedure described in Alg. 3 then checks each node znear in
the vicinity of znew to see whether reaching znear via znew
would achieve lower cost than doing so view its current
parent (Alg. 3, line 3). When this connection reduces the total
cost associated with znear, the algorithm modifies (“rewires”)
the tree to make znew the parent of znear (line 4). The RRT∗

then continues with the next iteration.
Algorithm 1: T = (V,E) ← RRT

�(zinit)

1 T ← InitializeTree();
2 T ← InsertNode(∅, zinit, T );
3 for i = 1 to i = N do
4 zrand ← Sample(i);
5 znearest ← Nearest(T , zrand);
6 (xnew, unew, Tnew) ← Steer(znearest, zrand);
7 if ObstacleFree(xnew) then
8 Znear ← Near(T , znew, |V |);
9 zmin ← ChooseParent(Znear, znearest, znew, xnew);
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12 return T

Algorithm 2: zmin ← ChooseParent(Znear, znearest, xnew)
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2 cmin ← Cost(znearest) + c(xnew);
3 for znear ∈ Znear do
4 (x�, u�, T �) ← Steer(znear, znew);
5 if ObstacleFree(x�) and x�(T �) = znew then
6 c� = Cost(znear) + c(x�);
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9 cmin ← c�;
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Algorithm 3: T ← ReWire(T , Znear, zmin, znew)
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2 (x�, u�, T �) ← Steer(znew, znear);
3 if ObstacleFree(x�) and x�(T �) = znear and

Cost(znew) + c(x�) < Cost(znear) then
4 T ← ReConnect(znew, znear, T );

5 return T
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Without differential constraints, it is the Euclidean distance.
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Distance: Dist : X × X → R≥0 returns the cost of the
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Without differential constraints, it is the Euclidean distance.

Nearest Neighbor: Given a state z ∈ X and the tree
T = (V,E), the v = Nearest(T, z) function returns the
nearest node in the tree in terms of the distance function.

Near-by Vertices: Given a state z ∈ X , tree T = (V,E),
and a number n, the Znearby = Near(T , z, n) function returns
the vertices in V that are near z. More precisely, define
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Steering: The (x, u, T ) = Steer(z1, z2) function solves
for the control input u : [0, T ] that drives the system from
x(0) = z1 to x(T ) = z2 along the path x : [0, T ] → X .

Node Insertion: Given the current tree T = (V,E),
an existing state zcurrent ∈ V , and a new state znew, the
InsertNode(zcurrent, znew, T ) procedure adds znew to V and
creates an edge to zcurrent as its parent, which it adds to E. It
assigns a Cost(znew) to znew equal to that of its parent, plus
the cost c(x) of the trajectory associated with the new edge.

Using these functions, the RRT∗ exhibits the general
structure outlined in Alg. 1. With the exception of the process
of extending an existing node in the tree toward a new node
(lines 8–11), the RRT∗ essentially behaves identically to the
RRT. The RRT∗ starts with an empty tree and adds a single
node corresponding to the initial state. It then builds and

refines the tree through a set of N iterations (lines 3–11).
Like the RRT, the RRT∗ incrementally builds the tree by
sampling a random state zrand from the obstacle-free space
(line 4) and solving for a trajectory xnew that extends the
closest node in the tree znearest toward the sample (lines 5–
6). If this trajectory does not collide with obstacles (line 7),
the standard RRT inserts the new node znew into the tree with
znearest as its parent and continues with the next iteration.

It is here that the operation of the RRT∗ differs. Rather
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evaluates the cost of choosing each as the parent. This
process (Alg. 2) evaluates the total cost as the additive
combination of the cost associated with reaching the potential
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that yields the lowest cost becomes the parent as the new
node is added to the tree (Alg. 1, line 10). The ReWire

procedure described in Alg. 3 then checks each node znear in
the vicinity of znew to see whether reaching znear via znew
would achieve lower cost than doing so view its current
parent (Alg. 3, line 3). When this connection reduces the total
cost associated with znear, the algorithm modifies (“rewires”)
the tree to make znew the parent of znear (line 4). The RRT∗

then continues with the next iteration.
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Steering: The (x, u, T ) = Steer(z1, z2) function solves
for the control input u : [0, T ] that drives the system from
x(0) = z1 to x(T ) = z2 along the path x : [0, T ] → X .

Node Insertion: Given the current tree T = (V,E),
an existing state zcurrent ∈ V , and a new state znew, the
InsertNode(zcurrent, znew, T ) procedure adds znew to V and
creates an edge to zcurrent as its parent, which it adds to E. It
assigns a Cost(znew) to znew equal to that of its parent, plus
the cost c(x) of the trajectory associated with the new edge.

Using these functions, the RRT∗ exhibits the general
structure outlined in Alg. 1. With the exception of the process
of extending an existing node in the tree toward a new node
(lines 8–11), the RRT∗ essentially behaves identically to the
RRT. The RRT∗ starts with an empty tree and adds a single
node corresponding to the initial state. It then builds and

refines the tree through a set of N iterations (lines 3–11).
Like the RRT, the RRT∗ incrementally builds the tree by
sampling a random state zrand from the obstacle-free space
(line 4) and solving for a trajectory xnew that extends the
closest node in the tree znearest toward the sample (lines 5–
6). If this trajectory does not collide with obstacles (line 7),
the standard RRT inserts the new node znew into the tree with
znearest as its parent and continues with the next iteration.

It is here that the operation of the RRT∗ differs. Rather
than choosing the nearest node as the parent, the RRT∗

considers all nodes in a neighborhood of znew (line 8) and
evaluates the cost of choosing each as the parent. This
process (Alg. 2) evaluates the total cost as the additive
combination of the cost associated with reaching the potential
parent node and the cost of the trajectory to znew. The node
that yields the lowest cost becomes the parent as the new
node is added to the tree (Alg. 1, line 10). The ReWire

procedure described in Alg. 3 then checks each node znear in
the vicinity of znew to see whether reaching znear via znew
would achieve lower cost than doing so view its current
parent (Alg. 3, line 3). When this connection reduces the total
cost associated with znear, the algorithm modifies (“rewires”)
the tree to make znew the parent of znear (line 4). The RRT∗

then continues with the next iteration.
Algorithm 1: T = (V,E) ← RRT

�(zinit)

1 T ← InitializeTree();
2 T ← InsertNode(∅, zinit, T );
3 for i = 1 to i = N do
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Algorithm 2: zmin ← ChooseParent(Znear, znearest, xnew)

1 zmin ← znearest;
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3 for znear ∈ Znear do
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3 if ObstacleFree(x�) and x�(T �) = znear and

Cost(znew) + c(x�) < Cost(znear) then
4 T ← ReConnect(znew, znear, T );

5 return T
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The optimal motion planning problem imposes the addi-
tional requirement that the resulting feasible path minimize
a given cost function, c(x), mapping each non-trivial admis-
sible trajectory x : [0, T ] → X to a positive real number.

In solving the optimal motion planning problem, the RRT∗

algorithm builds and maintains a tree T = (V,E) comprised
of a vertex set V of states from Xfree connected by directed
edges E ⊆ V ×V . The manner in which the RRT∗ generates
this tree closely resembles that of the standard RRT, with the
addition of a few key steps that achieve optimality. The RRT∗

algorithm uses a set of basic procedures, which we describe
in the context of kinodynamic motion planning [14].

Sampling: The Sample function randomly samples a state
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Distance: Dist : X × X → R≥0 returns the cost of the
optimal trajectory between two states, assuming no obstacles.
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of volume γ ((log n)/n)d, where γ is a fixed number [14].
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Steering: The (x, u, T ) = Steer(z1, z2) function solves
for the control input u : [0, T ] that drives the system from
x(0) = z1 to x(T ) = z2 along the path x : [0, T ] → X .
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creates an edge to zcurrent as its parent, which it adds to E. It
assigns a Cost(znew) to znew equal to that of its parent, plus
the cost c(x) of the trajectory associated with the new edge.

Using these functions, the RRT∗ exhibits the general
structure outlined in Alg. 1. With the exception of the process
of extending an existing node in the tree toward a new node
(lines 8–11), the RRT∗ essentially behaves identically to the
RRT. The RRT∗ starts with an empty tree and adds a single
node corresponding to the initial state. It then builds and

refines the tree through a set of N iterations (lines 3–11).
Like the RRT, the RRT∗ incrementally builds the tree by
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(line 4) and solving for a trajectory xnew that extends the
closest node in the tree znearest toward the sample (lines 5–
6). If this trajectory does not collide with obstacles (line 7),
the standard RRT inserts the new node znew into the tree with
znearest as its parent and continues with the next iteration.

It is here that the operation of the RRT∗ differs. Rather
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combination of the cost associated with reaching the potential
parent node and the cost of the trajectory to znew. The node
that yields the lowest cost becomes the parent as the new
node is added to the tree (Alg. 1, line 10). The ReWire

procedure described in Alg. 3 then checks each node znear in
the vicinity of znew to see whether reaching znear via znew
would achieve lower cost than doing so view its current
parent (Alg. 3, line 3). When this connection reduces the total
cost associated with znear, the algorithm modifies (“rewires”)
the tree to make znew the parent of znear (line 4). The RRT∗
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assigns a Cost(znew) to znew equal to that of its parent, plus
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structure outlined in Alg. 1. With the exception of the process
of extending an existing node in the tree toward a new node
(lines 8–11), the RRT∗ essentially behaves identically to the
RRT. The RRT∗ starts with an empty tree and adds a single
node corresponding to the initial state. It then builds and

refines the tree through a set of N iterations (lines 3–11).
Like the RRT, the RRT∗ incrementally builds the tree by
sampling a random state zrand from the obstacle-free space
(line 4) and solving for a trajectory xnew that extends the
closest node in the tree znearest toward the sample (lines 5–
6). If this trajectory does not collide with obstacles (line 7),
the standard RRT inserts the new node znew into the tree with
znearest as its parent and continues with the next iteration.

It is here that the operation of the RRT∗ differs. Rather
than choosing the nearest node as the parent, the RRT∗

considers all nodes in a neighborhood of znew (line 8) and
evaluates the cost of choosing each as the parent. This
process (Alg. 2) evaluates the total cost as the additive
combination of the cost associated with reaching the potential
parent node and the cost of the trajectory to znew. The node
that yields the lowest cost becomes the parent as the new
node is added to the tree (Alg. 1, line 10). The ReWire

procedure described in Alg. 3 then checks each node znear in
the vicinity of znew to see whether reaching znear via znew
would achieve lower cost than doing so view its current
parent (Alg. 3, line 3). When this connection reduces the total
cost associated with znear, the algorithm modifies (“rewires”)
the tree to make znew the parent of znear (line 4). The RRT∗
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process (Alg. 2) evaluates the total cost as the additive
combination of the cost associated with reaching the potential
parent node and the cost of the trajectory to znew. The node
that yields the lowest cost becomes the parent as the new
node is added to the tree (Alg. 1, line 10). The ReWire

procedure described in Alg. 3 then checks each node znear in
the vicinity of znew to see whether reaching znear via znew
would achieve lower cost than doing so view its current
parent (Alg. 3, line 3). When this connection reduces the total
cost associated with znear, the algorithm modifies (“rewires”)
the tree to make znew the parent of znear (line 4). The RRT∗

then continues with the next iteration.
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3 if ObstacleFree(x�) and x�(T �) = znear and
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This section formally states the motion planning problem
and describes the RRT∗ algorithm. Consider a system with
dynamics of the following form: ẋ(t) = f(x(t), u(t)), where
x(t) ∈ X and u(t) ∈ U , where X ⊂ Rd and U ⊂ Rm denote
the state space and the input space, respectively. Let Xobs

denote the obstacle region, and Xfree = X \Xobs define the
obstacle-free space. Finally, let Xgoal ⊂ X denote the goal
region. The motion planning problem is to find a control
input u : [0, T ] → U that yields a feasible path x(t) ∈ Xfree

for t ∈ [0, T ] from an initial state x(0) = xinit to the goal
region x(T ) ∈ Xgoal that obeys the system dynamics.

The optimal motion planning problem imposes the addi-
tional requirement that the resulting feasible path minimize
a given cost function, c(x), mapping each non-trivial admis-
sible trajectory x : [0, T ] → X to a positive real number.

In solving the optimal motion planning problem, the RRT∗

algorithm builds and maintains a tree T = (V,E) comprised
of a vertex set V of states from Xfree connected by directed
edges E ⊆ V ×V . The manner in which the RRT∗ generates
this tree closely resembles that of the standard RRT, with the
addition of a few key steps that achieve optimality. The RRT∗

algorithm uses a set of basic procedures, which we describe
in the context of kinodynamic motion planning [14].

Sampling: The Sample function randomly samples a state
zrand ∈ Xfree from the obstacle-free region of the state space.

Distance: Dist : X × X → R≥0 returns the cost of the
optimal trajectory between two states, assuming no obstacles.
Without differential constraints, it is the Euclidean distance.

Nearest Neighbor: Given a state z ∈ X and the tree
T = (V,E), the v = Nearest(T, z) function returns the
nearest node in the tree in terms of the distance function.

Near-by Vertices: Given a state z ∈ X , tree T = (V,E),
and a number n, the Znearby = Near(T , z, n) function returns
the vertices in V that are near z. More precisely, define
Reach(z, l) = {z� ∈ X | Dist(z, z�) ≤ l or Dist(z, z�) ≤
l}, and choose l(n) such that Reach(z, l(n)) contains a ball
of volume γ ((log n)/n)d, where γ is a fixed number [14].

Collision Check: The ObstacleFree(x) function checks
whether a path x : [0, T ] → X lies within the obstacle-free
region of state space, i.e., x(t) ∈ Xfree for all t ∈ [0, T ].

Steering: The (x, u, T ) = Steer(z1, z2) function solves
for the control input u : [0, T ] that drives the system from
x(0) = z1 to x(T ) = z2 along the path x : [0, T ] → X .

Node Insertion: Given the current tree T = (V,E),
an existing state zcurrent ∈ V , and a new state znew, the
InsertNode(zcurrent, znew, T ) procedure adds znew to V and
creates an edge to zcurrent as its parent, which it adds to E. It
assigns a Cost(znew) to znew equal to that of its parent, plus
the cost c(x) of the trajectory associated with the new edge.

Using these functions, the RRT∗ exhibits the general
structure outlined in Alg. 1. With the exception of the process
of extending an existing node in the tree toward a new node
(lines 8–11), the RRT∗ essentially behaves identically to the
RRT. The RRT∗ starts with an empty tree and adds a single
node corresponding to the initial state. It then builds and

refines the tree through a set of N iterations (lines 3–11).
Like the RRT, the RRT∗ incrementally builds the tree by
sampling a random state zrand from the obstacle-free space
(line 4) and solving for a trajectory xnew that extends the
closest node in the tree znearest toward the sample (lines 5–
6). If this trajectory does not collide with obstacles (line 7),
the standard RRT inserts the new node znew into the tree with
znearest as its parent and continues with the next iteration.

It is here that the operation of the RRT∗ differs. Rather
than choosing the nearest node as the parent, the RRT∗

considers all nodes in a neighborhood of znew (line 8) and
evaluates the cost of choosing each as the parent. This
process (Alg. 2) evaluates the total cost as the additive
combination of the cost associated with reaching the potential
parent node and the cost of the trajectory to znew. The node
that yields the lowest cost becomes the parent as the new
node is added to the tree (Alg. 1, line 10). The ReWire

procedure described in Alg. 3 then checks each node znear in
the vicinity of znew to see whether reaching znear via znew
would achieve lower cost than doing so view its current
parent (Alg. 3, line 3). When this connection reduces the total
cost associated with znear, the algorithm modifies (“rewires”)
the tree to make znew the parent of znear (line 4). The RRT∗

then continues with the next iteration.
Algorithm 1: T = (V,E) ← RRT

�(zinit)
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2 T ← InsertNode(∅, zinit, T );
3 for i = 1 to i = N do
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9 zmin ← ChooseParent(Znear, znearest, znew, xnew);
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3 for znear ∈ Znear do
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5 if ObstacleFree(x�) and x�(T �) = znew then
6 c� = Cost(znear) + c(x�);
7 if c� < Cost(znew) and c� < cmin then
8 zmin ← znear;
9 cmin ← c�;

10 return zmin

Algorithm 3: T ← ReWire(T , Znear, zmin, znew)

1 for znear ∈ Znear \ {zmin} do
2 (x�, u�, T �) ← Steer(znew, znear);
3 if ObstacleFree(x�) and x�(T �) = znear and

Cost(znew) + c(x�) < Cost(znear) then
4 T ← ReConnect(znew, znear, T );

5 return T
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InsertNode(zcurrent, znew, T ) procedure adds znew to V and
creates an edge to zcurrent as its parent, which it adds to E. It
assigns a Cost(znew) to znew equal to that of its parent, plus
the cost c(x) of the trajectory associated with the new edge.

Using these functions, the RRT∗ exhibits the general
structure outlined in Alg. 1. With the exception of the process
of extending an existing node in the tree toward a new node
(lines 8–11), the RRT∗ essentially behaves identically to the
RRT. The RRT∗ starts with an empty tree and adds a single
node corresponding to the initial state. It then builds and

refines the tree through a set of N iterations (lines 3–11).
Like the RRT, the RRT∗ incrementally builds the tree by
sampling a random state zrand from the obstacle-free space
(line 4) and solving for a trajectory xnew that extends the
closest node in the tree znearest toward the sample (lines 5–
6). If this trajectory does not collide with obstacles (line 7),
the standard RRT inserts the new node znew into the tree with
znearest as its parent and continues with the next iteration.

It is here that the operation of the RRT∗ differs. Rather
than choosing the nearest node as the parent, the RRT∗

considers all nodes in a neighborhood of znew (line 8) and
evaluates the cost of choosing each as the parent. This
process (Alg. 2) evaluates the total cost as the additive
combination of the cost associated with reaching the potential
parent node and the cost of the trajectory to znew. The node
that yields the lowest cost becomes the parent as the new
node is added to the tree (Alg. 1, line 10). The ReWire

procedure described in Alg. 3 then checks each node znear in
the vicinity of znew to see whether reaching znear via znew
would achieve lower cost than doing so view its current
parent (Alg. 3, line 3). When this connection reduces the total
cost associated with znear, the algorithm modifies (“rewires”)
the tree to make znew the parent of znear (line 4). The RRT∗

then continues with the next iteration.
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x(t) ∈ X and u(t) ∈ U , where X ⊂ Rd and U ⊂ Rm denote
the state space and the input space, respectively. Let Xobs

denote the obstacle region, and Xfree = X \Xobs define the
obstacle-free space. Finally, let Xgoal ⊂ X denote the goal
region. The motion planning problem is to find a control
input u : [0, T ] → U that yields a feasible path x(t) ∈ Xfree

for t ∈ [0, T ] from an initial state x(0) = xinit to the goal
region x(T ) ∈ Xgoal that obeys the system dynamics.

The optimal motion planning problem imposes the addi-
tional requirement that the resulting feasible path minimize
a given cost function, c(x), mapping each non-trivial admis-
sible trajectory x : [0, T ] → X to a positive real number.

In solving the optimal motion planning problem, the RRT∗

algorithm builds and maintains a tree T = (V,E) comprised
of a vertex set V of states from Xfree connected by directed
edges E ⊆ V ×V . The manner in which the RRT∗ generates
this tree closely resembles that of the standard RRT, with the
addition of a few key steps that achieve optimality. The RRT∗

algorithm uses a set of basic procedures, which we describe
in the context of kinodynamic motion planning [14].

Sampling: The Sample function randomly samples a state
zrand ∈ Xfree from the obstacle-free region of the state space.

Distance: Dist : X × X → R≥0 returns the cost of the
optimal trajectory between two states, assuming no obstacles.
Without differential constraints, it is the Euclidean distance.

Nearest Neighbor: Given a state z ∈ X and the tree
T = (V,E), the v = Nearest(T, z) function returns the
nearest node in the tree in terms of the distance function.

Near-by Vertices: Given a state z ∈ X , tree T = (V,E),
and a number n, the Znearby = Near(T , z, n) function returns
the vertices in V that are near z. More precisely, define
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Steering: The (x, u, T ) = Steer(z1, z2) function solves
for the control input u : [0, T ] that drives the system from
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an existing state zcurrent ∈ V , and a new state znew, the
InsertNode(zcurrent, znew, T ) procedure adds znew to V and
creates an edge to zcurrent as its parent, which it adds to E. It
assigns a Cost(znew) to znew equal to that of its parent, plus
the cost c(x) of the trajectory associated with the new edge.

Using these functions, the RRT∗ exhibits the general
structure outlined in Alg. 1. With the exception of the process
of extending an existing node in the tree toward a new node
(lines 8–11), the RRT∗ essentially behaves identically to the
RRT. The RRT∗ starts with an empty tree and adds a single
node corresponding to the initial state. It then builds and

refines the tree through a set of N iterations (lines 3–11).
Like the RRT, the RRT∗ incrementally builds the tree by
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(line 4) and solving for a trajectory xnew that extends the
closest node in the tree znearest toward the sample (lines 5–
6). If this trajectory does not collide with obstacles (line 7),
the standard RRT inserts the new node znew into the tree with
znearest as its parent and continues with the next iteration.

It is here that the operation of the RRT∗ differs. Rather
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that yields the lowest cost becomes the parent as the new
node is added to the tree (Alg. 1, line 10). The ReWire

procedure described in Alg. 3 then checks each node znear in
the vicinity of znew to see whether reaching znear via znew
would achieve lower cost than doing so view its current
parent (Alg. 3, line 3). When this connection reduces the total
cost associated with znear, the algorithm modifies (“rewires”)
the tree to make znew the parent of znear (line 4). The RRT∗

then continues with the next iteration.
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4 (x�, u�, T �) ← Steer(znear, znew);
5 if ObstacleFree(x�) and x�(T �) = znew then
6 c� = Cost(znear) + c(x�);
7 if c� < Cost(znew) and c� < cmin then
8 zmin ← znear;
9 cmin ← c�;
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Algorithm 3: T ← ReWire(T , Znear, zmin, znew)

1 for znear ∈ Znear \ {zmin} do
2 (x�, u�, T �) ← Steer(znew, znear);
3 if ObstacleFree(x�) and x�(T �) = znear and

Cost(znew) + c(x�) < Cost(znear) then
4 T ← ReConnect(znew, znear, T );

5 return T
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II. THE RRT* ALGORITHM
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optimal trajectory between two states, assuming no obstacles.
Without differential constraints, it is the Euclidean distance.

Nearest Neighbor: Given a state z ∈ X and the tree
T = (V,E), the v = Nearest(T, z) function returns the
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Node Insertion: Given the current tree T = (V,E),
an existing state zcurrent ∈ V , and a new state znew, the
InsertNode(zcurrent, znew, T ) procedure adds znew to V and
creates an edge to zcurrent as its parent, which it adds to E. It
assigns a Cost(znew) to znew equal to that of its parent, plus
the cost c(x) of the trajectory associated with the new edge.

Using these functions, the RRT∗ exhibits the general
structure outlined in Alg. 1. With the exception of the process
of extending an existing node in the tree toward a new node
(lines 8–11), the RRT∗ essentially behaves identically to the
RRT. The RRT∗ starts with an empty tree and adds a single
node corresponding to the initial state. It then builds and

refines the tree through a set of N iterations (lines 3–11).
Like the RRT, the RRT∗ incrementally builds the tree by
sampling a random state zrand from the obstacle-free space
(line 4) and solving for a trajectory xnew that extends the
closest node in the tree znearest toward the sample (lines 5–
6). If this trajectory does not collide with obstacles (line 7),
the standard RRT inserts the new node znew into the tree with
znearest as its parent and continues with the next iteration.

It is here that the operation of the RRT∗ differs. Rather
than choosing the nearest node as the parent, the RRT∗

considers all nodes in a neighborhood of znew (line 8) and
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3 for znear ∈ Znear do
4 (x�, u�, T �) ← Steer(znear, znew);
5 if ObstacleFree(x�) and x�(T �) = znew then
6 c� = Cost(znear) + c(x�);
7 if c� < Cost(znew) and c� < cmin then
8 zmin ← znear;
9 cmin ← c�;

10 return zmin

Algorithm 3: T ← ReWire(T , Znear, zmin, znew)

1 for znear ∈ Znear \ {zmin} do
2 (x�, u�, T �) ← Steer(znew, znear);
3 if ObstacleFree(x�) and x�(T �) = znear and

Cost(znew) + c(x�) < Cost(znear) then
4 T ← ReConnect(znew, znear, T );
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III. EXTENSIONS FOR ANYTIME MOTION PLANNING
This section describes how to exploit the anytime nature

of the RRT∗ algorithm to achieve an online motion planning
algorithm that significantly improves path quality during
path execution, i.e. as the robot is moving toward its goal.
These extensions are inspired by techniques for real-time
kinodynamic planning [8].

A. Committed Trajectory
Upon receiving the goal region, the online planning algo-

rithm starts an initial planning phase, in which the RRT∗ runs
until the robot must start moving toward its goal. The amount
of time devoted to this initial phase is domain-dependent.
In the example presented in this paper involving a full-size
robotic forklift, this time is on the order of a few seconds,
which is the time required to put the vehicle in gear.
Once the initial planning phase is completed, the online

algorithm goes into an iterative planning phase, in which
the robot starts to execute the initial portion of the best
trajectory in the tree maintained by the RRT∗ algorithm.
Meanwhile, the RRT∗ algorithm focuses on improving the
remaining part of the trajectory. Once the robot reaches the
end of the portion that it is executing, the iterative phase
is restarted by picking the current best path in the tree and
executing its initial portion.
More precisely, the iterative planning phase occurs as

follows. Given a motion plan x : [0, T ] → Xfree generated
by the RRT∗ algorithm, the robot starts to execute an initial
portion of x : [0, tcom] until a given commit time tcom.
We refer to this initial path as the committed trajectory.
Once the robot starts executing the committed trajectory, the
RRT∗ algorithm deletes each of its branches and declares
the end of the committed trajectory x(tcom) to be the new
tree root. This effectively shields the committed trajectory
from any further modification. As the robot proceeds along
the committed trajectory, the RRT∗ algorithm continues to
improve the motion plan within the new (i.e., uncommitted)
tree of trajectories. Once the robot reaches the end of the
committed trajectory, the procedure restarts, using the initial
portion of what is currently the best path in the RRT∗ tree
to define a new committed trajectory. The iterative phase
repeats until the robot reaches the goal region.

B. Branch-and-Bound
In addition to considering a committed trajectory, we

also employ a branch-and-bound technique to more effi-
ciently build the tree. Branch-and-bound is used within many
domains in optimization and artificial intelligence. Most
notably, the approach we present in this section shares certain
aspects with the A∗ graph search algorithm and its variants,
which are widely used in robotics applications [15].
1) Cost-to-go functions: Before providing the details of

the branch-and-bound algorithm, let us first define a cost-to-
go function as follows. For an arbitrary state z ∈ Xfree, let
c∗z be the cost of the optimal path that starts at z and reaches
the goal region, Xgoal. A cost-to-go function CostToGo(z)
associates each z ∈ Xfree with a real number between 0

and c∗z . Essentially, CostToGo(z) provides a lower-bound
on the optimal cost to reach the goal from z. The cost-to-
go function described here is equivalent to the admissible
heuristic employed by A∗ planning algorithms.
There are many ways to define a cost-to-go function, the

most trivial being CostToGo(z) = 0 for all z ∈ Xfree.
Note that as the cost function more closely approximates
the optimal cost-to-go c∗z , the branch-and-bound algorithm
becomes more effective.
In this paper, we use the Euclidean distance between z

and Xgoal (neglecting obstacles) divided by the maximum
speed of the vehicle as a cost-to-go function.
2) Branch-and-bound algorithm: In the context of the

RRT and RRT∗, the branch-and-bound algorithm works as
follows. Let T = (V,E) be a tree and z ∈ V be a
vertex in T . Recall that Cost(z) denotes the cost of the
unique path that starts from the root node and reaches z
through the edges of T . Let zmin be the node that lies
in the goal region and has the lowest-cost trajectory that
reaches Xgoal along the edges of T . The cost of the unique
trajectory that starts from the root and reaches zmin gives
an upper bound on cost. Let V ′ denote the set of nodes z
for which the cost to get to z, plus the lower-bound on the
optimal cost-to-go, is more than the upper-bound cu, i.e.,
V ′ = {z ∈ V | Cost(z)+CostToGo(z) ≥ Cost(zmin)}. The
branch-and-bound algorithm keeps track of all such nodes
and periodically deletes them from the tree.

IV. SYSTEM DYNAMICS AND THE CONTROL PROCEDURE
This section, outlines the aforementioned steering function

and trajectory controller employed by the RRT∗.

A. Dubins Curve Steering Function
The RRT∗ algorithm uses a steering function that assumes

a Dubins vehicle model [16] to generate dynamically-feasible
trajectories for curvature-constrained vehicles. Dubins vehi-
cle dynamics have the general form:

ẋD = vD cos(θD)

ẏD = vD sin(θD)

θ̇D = uD, |uD| ≤
vD
ρ
,

where (xD, yD) and θD specify the position and orientation,
uD is the steering input, vD is the velocity, and ρ is the
minimum turning radius.
There are six types of paths that characterize the optimal

trajectory between two states for a Dubins vehicle, each
specified by a sequence of left, straight, or right steering
inputs [16]. In this paper, we consider four path classes and
choose the steering between two states that minimizes cost.
Karaman and Frazzoli [14] describe the steering function in
more detail.

B. Trajectory Tracking
The steering function returns a trajectory parametrized

by a sequence of reference states (xR, yR, θR) and a ref-
erence velocity vR. We employ a straightforward steering
controller [13] to track this reference trajectory.

III. EXTENSIONS FOR ANYTIME MOTION PLANNING
This section describes how to exploit the anytime nature

of the RRT∗ algorithm to achieve an online motion planning
algorithm that significantly improves path quality during
path execution, i.e. as the robot is moving toward its goal.
These extensions are inspired by techniques for real-time
kinodynamic planning [8].
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Upon receiving the goal region, the online planning algo-

rithm starts an initial planning phase, in which the RRT∗ runs
until the robot must start moving toward its goal. The amount
of time devoted to this initial phase is domain-dependent.
In the example presented in this paper involving a full-size
robotic forklift, this time is on the order of a few seconds,
which is the time required to put the vehicle in gear.
Once the initial planning phase is completed, the online

algorithm goes into an iterative planning phase, in which
the robot starts to execute the initial portion of the best
trajectory in the tree maintained by the RRT∗ algorithm.
Meanwhile, the RRT∗ algorithm focuses on improving the
remaining part of the trajectory. Once the robot reaches the
end of the portion that it is executing, the iterative phase
is restarted by picking the current best path in the tree and
executing its initial portion.
More precisely, the iterative planning phase occurs as

follows. Given a motion plan x : [0, T ] → Xfree generated
by the RRT∗ algorithm, the robot starts to execute an initial
portion of x : [0, tcom] until a given commit time tcom.
We refer to this initial path as the committed trajectory.
Once the robot starts executing the committed trajectory, the
RRT∗ algorithm deletes each of its branches and declares
the end of the committed trajectory x(tcom) to be the new
tree root. This effectively shields the committed trajectory
from any further modification. As the robot proceeds along
the committed trajectory, the RRT∗ algorithm continues to
improve the motion plan within the new (i.e., uncommitted)
tree of trajectories. Once the robot reaches the end of the
committed trajectory, the procedure restarts, using the initial
portion of what is currently the best path in the RRT∗ tree
to define a new committed trajectory. The iterative phase
repeats until the robot reaches the goal region.

B. Branch-and-Bound
In addition to considering a committed trajectory, we

also employ a branch-and-bound technique to more effi-
ciently build the tree. Branch-and-bound is used within many
domains in optimization and artificial intelligence. Most
notably, the approach we present in this section shares certain
aspects with the A∗ graph search algorithm and its variants,
which are widely used in robotics applications [15].
1) Cost-to-go functions: Before providing the details of
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follows. Let T = (V,E) be a tree and z ∈ V be a
vertex in T . Recall that Cost(z) denotes the cost of the
unique path that starts from the root node and reaches z
through the edges of T . Let zmin be the node that lies
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portion of x : [0, tcom] until a given commit time tcom.
We refer to this initial path as the committed trajectory.
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through the edges of T . Let zmin be the node that lies
in the goal region and has the lowest-cost trajectory that
reaches Xgoal along the edges of T . The cost of the unique
trajectory that starts from the root and reaches zmin gives
an upper bound on cost. Let V ′ denote the set of nodes z
for which the cost to get to z, plus the lower-bound on the
optimal cost-to-go, is more than the upper-bound cu, i.e.,
V ′ = {z ∈ V | Cost(z)+CostToGo(z) ≥ Cost(zmin)}. The
branch-and-bound algorithm keeps track of all such nodes
and periodically deletes them from the tree.

IV. SYSTEM DYNAMICS AND THE CONTROL PROCEDURE
This section, outlines the aforementioned steering function

and trajectory controller employed by the RRT∗.

A. Dubins Curve Steering Function
The RRT∗ algorithm uses a steering function that assumes

a Dubins vehicle model [16] to generate dynamically-feasible
trajectories for curvature-constrained vehicles. Dubins vehi-
cle dynamics have the general form:

ẋD = vD cos(θD)

ẏD = vD sin(θD)

θ̇D = uD, |uD| ≤
vD
ρ
,

where (xD, yD) and θD specify the position and orientation,
uD is the steering input, vD is the velocity, and ρ is the
minimum turning radius.
There are six types of paths that characterize the optimal

trajectory between two states for a Dubins vehicle, each
specified by a sequence of left, straight, or right steering
inputs [16]. In this paper, we consider four path classes and
choose the steering between two states that minimizes cost.
Karaman and Frazzoli [14] describe the steering function in
more detail.

B. Trajectory Tracking
The steering function returns a trajectory parametrized

by a sequence of reference states (xR, yR, θR) and a ref-
erence velocity vR. We employ a straightforward steering
controller [13] to track this reference trajectory.
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Anytime Motion Planning Anytime RRT* Experiments and Results Conclusion

• Series of Monte Carlo simulations of a non-holonomic vehicle

- Compare our anytime RRT* with anytime RRT

- Both planners utilized committed trajectory and branch-and-bound heuristics

- Both planners were allowed to maintain the tree until robot reached the goal

- High-fidelity forklift dynamics model

Anytime RRT Anytime RRT*
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CONCLUSION

Anytime Motion Planning Anytime RRT* Experiments and Results Conclusion

• Quickly find a feasible solution that the agent can begin to execute

• Take advantage of valuable execution time to asymptotically improve to optimal

The algorithm demonstrates the desired anytime properties:
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CURRENT WORK

Anytime Motion Planning Anytime RRT* Experiments and Results Conclusion

• Quickly find a solution that is feasible, but not necessarily optimal

• Asymptotic optimality: Exploit execution time to incrementally 
converge towards optimal solution

• (Probabilistic) completeness

• Computationally efficiency (limited resources)

• Plan despite incomplete, imperfect knowledge

• Accommodate dynamic environments
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OPTIMAL MANIPULATION PLANNING

RRT RRBT*

[Perez, Karaman, Walter, Shkolnik, Frazzoli, & Teller, IROS 2011 (submitted, under review)]

12-DOF pre-grasp planning on the PR2

5x 5x

Anytime Motion Planning Anytime RRT* Experiments and Results Conclusion

video: 2011_02_pr2_12dof_rrbtstar.mp4video: 2011_02_pr2_12dof_rrt.mp4

http://people.csail.mit.edu/mwalter/videos/2011_02_pr2_12dof_rrbtstar.mp4
http://people.csail.mit.edu/mwalter/videos/2011_02_pr2_12dof_rrbtstar.mp4
http://people.csail.mit.edu/mwalter/videos/2011_02_pr2_12dof_rrt.mp4
http://people.csail.mit.edu/mwalter/videos/2011_02_pr2_12dof_rrt.mp4
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OPTIMAL MANIPULATION PLANNING

RRT RRBT*

[Perez, Karaman, Walter, Shkolnik, Frazzoli, & Teller, IROS 2011 (submitted, under review)]

12-DOF pre-grasp planning on the PR2

RRT RRBT*
First solution time (sec) 29.9 9.7

Cost of first solution (rad) 19.8 8.6

Cost of final solution (rad) 19.8 7.5

Anytime Motion Planning Anytime RRT* Experiments and Results Conclusion

Averaged over several runs



Matthew Walter  |  10 May 2011

PLANNING IN UNCERTAIN ENVIRONMENTS

Closed-loop RRT with false obstacle detections

[Joint work with Adam Bry and Nicholas Roy]

Anytime Motion Planning Anytime RRT* Experiments and Results Conclusion

video: 2010_06_agile_rrt.mp4

http://people.csail.mit.edu/mwalter/videos/2010_06_agile_rrt.mp4
http://people.csail.mit.edu/mwalter/videos/2010_06_agile_rrt.mp4
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PLANNING IN UNCERTAIN ENVIRONMENTS

[Joint work with Adam Bry and Nicholas Roy]

Anytime Motion Planning Anytime RRT* Experiments and Results Conclusion

Chance-constrained optimization using incremental, 
sampling-based techniques

Darker shades imply higher collision likelihood

Optimal Motion Planning under Chance Constraints in Uncertain Obstacle Fields 5

paths in the graph using A* and allow for a “refinement” of the graph via an explo-
ration phase that performs sensing along high-uncertainty/high-utility paths, after
which the PRM is updated to account for new information. They describe two tech-
niques for evaluating collisions, one of which uses an occupancy grid and explicitly
ignores correlations between configurations.

2 Problem Formulation

We assume the planning problem is specified with an initial state xinit ∈ X and a
goal region Xgoal ⊂ X . Further, the state space is populated with a probabilistic,
time varying, obstacle field defined by a set of obstacles O and for each oi ∈O there
is an associated function hi(t) = P(Xoi ⊂ Xobs). From the robot’s perspective this
can equivalently be interpreted as either the probability that the object exists, or the
probability that the robot will be in collision if it is in the space of the obstacle.
We assume the obstacle probabilities are independent, but this assumption is not
restrictive as long as there is an available method for querying the joint probability
distribution over all the obstacles for a given path. A cost function c : X → R+

associates to every path, ! : [0,s]→ X , a positive real number which in this work
we assume to be the path length.
The planning problem is then to minimize the cost:

min [c(!)] , (1)

subject to:

Pcol < " (2)
!(0) = xinit (3)
!(s) ∈ Xgoal, (4)

where Pcol is calculated as:

Pcol = 1−#
j
(1−h j(t)), (5)

where j indexes the set of obstacles that the chosen path passes through.

3 Algorithm Description

The RRCOGalgorithm operates on a set of vertices V and edges E in state space.
Each vertex has an associated set of nodes v.N which represent different possible
paths to reach the vertex. Each node, n, stores the cost of the path and can be queried
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subject to:

video: 2011_04_constraint_optimization.mp4

http://people.csail.mit.edu/mwalter/videos/2011_04_constraint_optimization.mp4
http://people.csail.mit.edu/mwalter/videos/2011_04_constraint_optimization.mp4
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