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Motivating Example: Ship Hull Inspection with an AUV

290 meter liquefied natural gas (LNG) tanker

• 2.3 billion tons of waterborne cargo in the U.S. in 2000, 75000 vessels.

Ship Hull Inspection Problem

Localization is critical to:

• Build an accurate map of the hull.

• Ensure 100% coverage.

• Multi-path corrupts acuracy.

• On-site, expedited surveys.

Can not rely on LBL

How can we localize the vehicle?
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Simultaneous Localization and Mapping (SLAM)

Probabilistic framework: track a joint distribution over the map and pose

p
(
xt,M | zt,ut

)
vehicle pose

map: collection of features

feature observation data

vehicle motion data

M = {m1,m2, . . . ,mn}

Uncertainty in the measurement and motion data

Mutual dependence between mapping and localization
+

Ship Hull Inspection Problem



ICRA 2008  |  May 22, 2008M. Walter, F. Hover, & J. Leonard, MIT

Extended Kalman Filter (EKF) SLAM

Independent Gaussian noise

+
Linearized motion and measurement models

Gaussian posterior

p
(
xt,M | zt,ut

)
= N

(
μt, Σt

)

mean
vector

covariance
matrix

Ship Hull Inspection Problem
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A Major Problem in SLAM is Scalability

Extended Kalman Filter (EKF) SLAM is quadratic in the 
number of features.

limited to hundreds of landmarks

 

Covariance Matrix Σt

• Quadratic time complexity 
(measurement update step)

• Quadratic memory requirement.

Ship Hull Inspection Problem
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A Major Problem in SLAM is Scalability

Extended Kalman Filter (EKF) SLAM is quadratic in the 
number of features.

limited to hundreds of landmarks

290 meter liquefied natural gas (LNG) tanker

Length: 290 meters

Beam (width): 49 meters

Draft: 12 meters

5,000-10,000 features
15 m

Ship Hull Inspection Problem
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State of the art in Scalable SLAM

Information Filter

• Sparse Extended Information Filter  
[Thrun et al., 2002]

• Thin Junction Tree Filter [Paskin, 2002]

• Treemap [Frese, 2004]

• Exactly Sparse Delayed State Filter 
[Eustice et al. 2005]

• Exactly Sparse Extended Information 
Filter [Walter et al., 2005]

Submap Decomposition

• Constant-Time SLAM     
[Newman et al., 2003]

• Atlas [Bosse et al., 2004]

Graphical/Optimization Techniques

• Graphical SLAM              
[Folkesson et al., 2004]

• Graph SLAM [Thrun et al., 2004]

• Square Root SAM [Dellaert, 2005]

• Iterative pose graph optimization 
[Olson et al., 2006]

Particle Filter Technique

• FastSLAM           
[Montemerlo et al., 2003]

ESEIF Bayesian Filter
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The Canonical Parametrization

robot pose

map

mean vector

covariance matrix

[
xt

]
M

μt

Σt
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μt, Σt

)
∝ exp
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− 1
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�Σ−1
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(
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)

}

ξt

Λt = Σ
−1

t

η
t
= Λtμt

information matrix

information vector

p (ξt) = N−1
(
ξt; ηt, Λt

)
Λt =
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Information matrix encodes 
Markov Random Field

ESEIF Bayesian Filter
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Λt = Σ−1

tCovariance Matrix Information MatrixΣt

The ESEIF Exploits the Structure of the Information Matrix

small but not zero!

ESEIF Bayesian Filter
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ESEIF:  Filtering Summary

• Measurement updates are constant-time.

• Time prediction:
- complexity is quadratic in the number of active landmarks.
- active map becomes fully-connected.

• Active map size grows monotonically to include the entire map.

Complexity and storage are quadratic in the size of the map.

Information matrix is inherently fully-populated (single maximal clique)

Efficient filtering requires sparsification of the information matrix.

ESEIF Bayesian Filter
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An Argument for Bounding the Active Map Size

Delicate issue: How do you approximate the 
                     information matrix as sparse?

Information Matrix

small but not zero!

1. Approximate conditional independence.

2. ESEIF sparsification strategy: track a version 
of the posterior that is naturally sparse.

ESEIF Bayesian Filter
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ESEIF Achieves Sparsity by Bounding Active Landmarks

Active features share information
with the robot pose

(Markov blanket over robot pose)
Λt =

xt

m1
m2

m3

m4

m5

xt

xt m1

m1

m2

m2

m3

m3

m4

m4

m5

m5

m+ = {m1,m2,m3,m5}Active map:

Passive map: m− = m4

robot pose

landmark

information matrix

information vector

[
xt

]
mi

Λt

ηt

ESEIF Bayesian Filter
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ESEIF Sparsification Strategy*

• Novel sparsification strategy that achieves sparsity without approximating 
conditional independence.

• Key idea: periodically marginalize out the robot and relocate the vehicle within 
the map.

• Track a slightly modified posterior using all of the feature measurements and 
nearly all odometry data.

• Preserves the exact sparsity of the information matrix.

• The ESEIF posterior is consistent in the linear Gaussian case.

* This section covers material described within: 
    a) Walter, Eustice, and Leonard. “A Provably Consistent Method for Imposing Exact Sparsity in Feature-based SLAM       
Information Filters,” ISRR 2005.
    b) Walter, Eustice, and Leonard. “Exactly Sparse Extended Information Filters for Feature-based SLAM,” IJRR 2007.

ESEIF Bayesian Filter
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ESEIF:  Filtering Summary

• Measurement updates are constant-time*.

• Time prediction complexity is quadratic in the active map size.

• Storage is quadratic in the active map size.

ESEIF bounds the number
of active landmarks

The ESEIF offers improved scalability without inducing inconsistent  
state estimates.

Time prediction is constant-time
&

Storage is linear in map size

ESEIF Bayesian Filter
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Hovering Autonomous Underwater Vehicle (HAUV)

• Developed & built by a collaboration between MIT and Bluefin.

• Stable, well-actuated (8 thrusters)

• Proprioceptive sensor suite includes:

• Linear velocities: Doppler Velocity Log (DVL)

• Angular rates: IMU

• Attitude: roll and pitch (IMU)

• Depth

• Dual Frequency Identification Sonar (DIDSON)

DIDSON

DVL

DIDSON
pitch axis

DVL
pitch
axis

Two of eight thrustersIMU, depth, 
compass

Underwater Mapping and Localization
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DIDSON

DVL

28.8°

Dual Frequency Identification Sonar (DIDSON)

• Measures acoustic return intensity as a function of range and bearing

     512 x 96 (range x bearing) intensity image

• FOV: 29  (azimuth) x 12  (elevation) x 2.5 m (range, adjustable)

• 1.8 MHz, 5 Hz frame rate

• Non-uniform resolution in Cartesian space.

û

v̂

r

θ

u = (u, v)

DIDSON

DVL

12°

DIDSON

DVL

DIDSON

DVL

Ship hull

Underwater Mapping and Localization
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Dual Frequency Identification Sonar (DIDSON)
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Cartesian Space Image

box target

Underwater Mapping and Localization
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Using the ESEIF for Data Fusion

• Track a 12 element vehicle state (6 for pose, 6 for velocity).

• Exploit onboard motion and pose measurements for updates.

• Hand-selected features within DIDSON imagery.

• Resolve elevation ambiguity with estimate for local hull geometry.

Underwater Mapping and Localization
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Mapping and Localization on a Barge

• 36.2 m (length) x 13.4 m (width)

• Both natural as well as 30 man-made targets

• 45 minute near-full barge survey (13 hours total)

• No compass (magnetic interference)

Barge at AUVFest 2007

23 cm diameter cylinder
(“cake” target)

50 cm x 30 cm
(“box” target)

cast-shadow

15 cm x 7 cm
(“brick” target)

Underwater Mapping and Localization
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Final ESEIF Target Map
Barge (bird’s eye view)
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Barge (side view)

Underwater Mapping and Localization
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Target Map Projection

DIDSON image

Underwater Mapping and Localization
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Questions?


