

Exploiting Sparse Markov and Covariance Structure in Multiresolution Models

Myung Jin Choi

Joint work with Venkat Chandrasekaran and Alan Willsky

Laboratory for Information and Decision Systems Massachusetts Institute of Technology June 15, 2009

• The monthly return of one stock is correlated to all other stocks.

• Because stock prices tend to move together driven by the market situation.

Sparse Markov and Covariance Structure

• MR tree model (sparse Markov structure)

+ Sparse covariance structure to capture residual correlations conditioned on other scales

- Q1) Given noisy measurements at some of the nodes, how do we find the optimal estimate at all nodes?
- Q2) Given target covariance at the finest scale, how do we learn such a model?

Gaussian Graphical Models

Gaussian Process $x \sim \mathcal{N}(\mu, \Sigma)$

Information Matrix $J = \Sigma^{-1}$

x is Markov with respect to $\mathcal{G} = (\mathcal{V}, \mathcal{E})$: $J_{ij} \neq 0 \Leftrightarrow \{i, j\} \in \mathcal{E}$

Gaussian Graphical Models

Gaussian Processes $x \sim \mathcal{N}(\mu, \Sigma)$

Information Matrix $J = \Sigma^{-1}$

x is Markov with respect to $\mathcal{G} = (\mathcal{V}, \mathcal{E})$: $J_{ij} \neq 0 \Leftrightarrow \{i, j\} \in \mathcal{E}$

Conditional Distribution $p(x_1, x_2, x_3, x_4 | x_5)$

Conjugate Graphs

Sparsity of a covariance matrix

Sparsity of a covariance matrix

Conjugate edges in blue.

Conditioned on scale 1 and scale 3,
x₂ is independent to x₄.

Inference on Gaussian Models

Prior distribution of $x: \mathcal{N}(0, J^{-1})$

Noisy measurements: y = Cx + v

$$\hat{x} = \operatorname*{argmax}_{x} p(x|y) = (J + J^{p})^{-1} h_{\Xi C^{T} R^{-1} C}$$
$$\equiv C^{T} R^{-1} C \quad C^{T} R^{-1} y$$

Solving $A\hat{x} = h$ iteratively by "matrix splitting"

$$A = M - K \implies \underline{M} \hat{x}^{new} = h + K \hat{x}^{old}$$

preconditioner

Inference in SIM Models

$$(J^h + (\Sigma^c)^{-1} + J^p)\hat{x} = h$$

Inference in SIM Models

$$\frac{(J^h + (\Sigma^c)^{-1} + J^p)\hat{x} = h}{\equiv C^T R^{-1} C}$$

• Tree Inference

$$(J^h + J^p \qquad)\hat{x}^{new} = h - (\Sigma^c)^{-1}\hat{x}^{old}$$

Inference in SIM Models

• In-scale Inference

$$(\Sigma^c)^{-1}\hat{x}^{new} = (h - J^h\hat{x}^{old} - J^p\hat{x}^{old})$$

 \cap

 $() \cdots () \cdots () \cdots ()$

Learning a SIM model

Given the target covariance at the finest scale,

1. Learn an MR tree model.

- 2. Augment in-scale structures so that the marginal covariance at the finest scale exactly matches the target covariance.
- 3. Optimize the in-scale structure.

Learning a SIM model

Given the target covariance at the finest scale,

1. Learn an MR tree model.

- 2. Augment in-scale structures so that the marginal covariance at the finest scale exactly matches the target covariance.
- 3. Optimize the in-scale structure.

• Convex optimization problem

•
$$(\hat{J}_{[m]})^{-1}$$
 sparse.

- Monthly returns of 84 companies in the S&P 100 index (1990-2007)
- Hierarchy based on the Standard Industrial Classification system
- Market, 6 divisions, 26 industries, and 84 individual companies

Stock Returns Example - Sparsity Pattern -

Stochastic Systems Group

Fractional Brownian Motion - Covariance Approximation -

Stochastic Systems Group

Fractional Brownian Motion - Estimation -

0.6

0.8

0.4

0.2

Single-scale

Conclusion and Future Work

- Sparse In-scale Conditional Covariance MR Models
 - Compact structure
 - Modeling and inference advantages

• Future work: extension to discrete models

Polynomially Decaying Covariance

- 256 Gaussian variables arranged spatially on a 16x16 grid.
- Covariance with polynomial decay:

- Conjugate graph at each scale of the SCM model.
- Single-scale approximation densely connected (minimum degree 31).

- Estimation given sparse noisy measurements.
- Residual error vs. computation time.