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Dependency Structure of 
Monthly Stock Returns

• The monthly return of one stock is correlated to all other 
stocks.
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Dependency Structure of 
Monthly Stock Returns

• Because stock prices tend to move together driven by the 
market situation.
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Multiresolution (MR) Tree Models
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Multiresolution (MR) Tree Models
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Multiresolution (MR) Tree Models
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Sparse Markov and Covariance Structure

• MR tree model (sparse Markov structure)
+ Sparse covariance structure to capture residual 

correlations conditioned on other scales

• Q1) Given noisy measurements at some of the nodes, how do 
we find the optimal estimate at all nodes?

• Q2) Given target covariance at the finest scale, how do we 
learn such a model?
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Gaussian Graphical Models

Gaussian Process  

x is Markov with respect to                       :

Information Matrix   
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Gaussian Graphical Models

Gaussian Processes  

x is Markov with respect to                       :

Information Matrix   

Conditional Distribution
p(x1 , x2 , x3 , x4 | x5)
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Conjugate Graphs

Sparsity of a 
covariance matrix
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Conjugate Graphs

Conjugate edges in blue.
Sparsity of a 

covariance matrix
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Sparse In-scale Conditional Covariance 
Multiresolution Model (SIM Model)
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Sparse In-scale Conditional Covariance 
Multiresolution Model (SIM Model)

• Conditioned on scale 1 and scale 3, 
x2 is independent to x4.
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• Conditioned on scale 1 and scale 3, 
x2 is independent to x4.

Scale 3

Scale 2

Scale 1

Corresponding graphical model structure

Sparse In-scale Conditional Covariance 
Multiresolution Model (SIM Model)
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Information Matrix of a SIM Model
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Inference on Gaussian Models

Noisy measurements:

Solving iteratively by “matrix splitting”

Prior distribution of      :

preconditioner
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Inference in SIM Models
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Inference in SIM Models

• Tree Inference
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Inference in SIM Models

• Tree Inference

Computing

Solving
sparse, well-conditioned
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Inference in SIM Models

• In-scale Inference
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Inference in SIM Models

• In-scale Inference

Sparse matrix multiplications
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Learning a SIM model

Given the target covariance at the finest scale,
1. Learn an MR tree model.

2. Augment in-scale structures so that the marginal covariance 
at the finest scale exactly matches the target covariance.

3. Optimize the in-scale structure.
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Learning a SIM model

Given the target covariance at the finest scale,
1. Learn an MR tree model.

2. Augment in-scale structures so that the marginal covariance 
at the finest scale exactly matches the target covariance.

3. Optimize the in-scale structure.
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Optimizing In-scale Structure

• Convex optimization problem

• sparse.



Stochastic Systems Group

Experimental Results

SIM modelSparse MR model

MR tree modelSingle-scale model 
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Stock Returns Example

• Monthly returns of 84 companies in the S&P 100 index (1990-2007)
• Hierarchy based on the Standard Industrial Classification system
• Market, 6 divisions, 26 industries, and 84 individual companies
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Stock Returns Example

Oil and Gas 
Extraction 
(Schlumberger)

Petroleum Refining 
(Exxon Mobile, 
Chevron)
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Stock Returns Example

Other Electrical 
Equipment   
(TI, Intel, GE)

Machinery And        
Computer Equipment 
(Dell, Apple, IBM, Xerox)
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Stock Returns Example

Business Services 
(Microsoft, Oracle)

Machinery And        
Computer Equipment 
(Dell, Apple, IBM, Xerox)
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Stock Returns Example
- Sparsity Pattern -

Divergence between the approximate and the empirical distribution

Single-scale Sparse MR (finest scale) SIM (finest scale)

122.48 28.34 16.36

* Tree: 38.22
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Fractional Brownian Motion
- Covariance Approximation -

Original

Tree

Single-scale

SIM
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Fractional Brownian Motion
- Estimation -

• Covariance decay in distance.

Single-scale

Tree SIM
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Conclusion and Future Work

• Sparse In-scale Conditional Covariance MR Models

– Compact structure

– Modeling and inference advantages

• Future work:  extension to discrete models
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Polynomially Decaying Covariance

• 256 Gaussian variables arranged spatially on a 16x16 grid.

• Covariance with polynomial decay:

d = 5
d = 1
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Polynomially Decaying Covariance 
- Conjugate Graphs -

• Conjugate graph at each scale of the SCM model.
• Single-scale approximation densely connected (minimum degree 31).
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Polynomially Decaying Covariance 
- Estimation Performance -

• Estimation given sparse noisy measurements.
• Residual error vs. computation time.
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