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Abstract

We consider a class of multiscale Gaussian models on pyramidally structured graphs. While such models have been considered in the
past, very recent advances in inference methods for graphical models not only yield additional motivation for this class of models but also
bring techniques that lead to new and powerful algorithms. We provide a brief summary of these recent advances – including so-called
walk-sum analysis, methods based on Lagrangian relaxation, and a new method for ‘‘low-rank,” wavelet-based, unbiased estimation of
error variances – and then adapt and apply them to problems of estimation for pyramidal models. We demonstrate that our models not
only capture long-range dependencies but that they also have the property that conditioned on neighboring scales, the correlation behav-
ior within a scale is dramatically compressed. This leads to algorithms resembling multipole methods for solving partial differential equa-
tions in which we alternate computations across-scale (using an embedded tree in the pyramidal graph) with local updates within each
scale. Not only are these algorithms guaranteed to converge to the correct answers but they also lead to new, adaptive methods for choos-
ing embedded trees and subgraphs to achieve rapid convergence. This approach also leads to a solution to the so-called re-estimation

problem in which we seek to update an estimate rapidly after local changes are made to the prior model or to the available data. In
addition, by using a consistent probabilistic model across as well as within scales, we are able both to exploit low-rank variance estima-
tion methods and to develop efficient iterative algorithms for parameter estimation.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years the idea of using multiscale stochastic
models for the purposes of statistical inference and estima-
tion has received considerable attention, motivated not
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only by the efficiencies that multiscale representations
may, in some cases, provide but also by the fact that either
the phenomenon of interest, the available data, or the infer-
ence objectives involve behavior at multiple scales. Despite
the already rich literature in this area (see, for example, [1]
or many of the references cited here), there remains consid-
erable motivation for further work. This paper describes
some of our recent contributions to this important line of
investigation.

As in much of the previous work, we focus on classes of
so-called graphical models, i.e., Markov random fields
defined on particular graphs, in which the nodes of the graph
index a collection of random variables or vectors and the
structure of the graph captures the dependency structure
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Fig. 1. Graphical models for a two-dimensional stochastic process: (a) lattice; (b) multiscale tree; and (c) pyramidal graph.
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among these variables. Three prototypical examples of such
graphs are those shown in Fig. 1. Estimation and inference
problems of importance for models such as these include
both data assimilation and model estimation. In the former
we are given noisy measurements at some or all of the nodes
and wish to compute both optimal estimates of the variables
throughout the graph (or only at a selected subset of nodes)
as well as the statistical structure (e.g., variances and corre-
lations) of the errors in those estimates. In the latter we wish
to use data to construct such a graphical model or to estimate
its parameters. Both of these problems are easy for the pyra-
midal tree in Fig. 1b, as optimal inference has complexity
that scales linearly with the number of nodes in the pyramid.
However, optimal estimation is far more complex – often
prohibitively so – for models on graphs as in Fig. 1a. The rea-
son for this difference stems from the simple fact that the
graph in Fig. 1b is a tree and hence has no loops (i.e., no
sequence of distinct edges that form a cycle), while the graph
in Fig. 1a has many loops.

This difference has sparked work in two directions,
namely (i) building (typically approximate) models for
problems of interest that involve multiscale trees as in
Fig. 1b and (ii) developing inference methods for so-called
loopy graphs, as in Fig. 1a that are both tractable (i.e., that
yield algorithms with complexity that scales modestly with
graph size) and as nearly optimal as possible. While there
are certainly interesting questions that remain along the
first of these lines of investigation (including our own
recent work [2]), the same characteristic that makes trees
so attractive computationally, namely the lack of loops,
also limits their expressive power – e.g., one can find pairs
of nodes at the finest scale of Fig. 1b that are spatial neigh-
bors at that scale but that are connected on the graph only
through a distant ancestor at a much coarser scale, a fact
that can lead to blocky artifacts in both statistics and infer-
ence results. This limitation has been recognized by others
[3–8] who have been motivated to consider graphs that
retain the pyramidal structure of Fig. 1b but introduce con-
nectivity among nodes at each level, as illustrated in
Fig. 1c. The focus of our development in Section 3 is on
Gaussian models with this type of pyramidal structure
and on new classes of algorithms that exploit several recent
advances in tractable inference.

In the next section, we introduce graphical models and
statistical inference problems of interest for such models
and summarize both some of the basic concepts associated
with solving such problems and some recent advances on
which we build in this paper. In particular, we briefly
review why inference problems are easily solved on cycle-
free graphs and are much more difficult in general on loopy
graphs. As the Gaussian case is the focus of the new meth-
ods in this paper, we devote most attention to that case and
review the recently introduced concept of walk-summability
for Gaussian graphical models. We then briefly review sev-
eral methods we have developed that exploit tractable sub-
structure in complex graphs, methods that make explicit
use of the concept of walk-summability.

Section 3 contains the new models, methods, and results
developed in this paper. We begin by providing motivation
for why models on pyramidal graphs represent a natural
and principled choice for many applications, including
those involving spatially extensive physical processes and
fields. We then introduce the class of pyramidal models
on which we focus and demonstrate that these models
not only can capture long-scale dependencies but also have
the important property that, when conditioned on neigh-
boring scales, in-scale correlations are dramatically com-
pressed. This leads to algorithms reminiscent of multipole
methods for solving partial differential equations. More-
over, the results described in Section 2 both guarantee con-
vergence and also lead to adaptive algorithms for rapid
convergence. These adaptive methods also lead to very effi-
cient methods for so-called re-estimation problems in which
we wish to update an estimated field rapidly given local
changes to model or data. Furthermore, we demonstrate
how both the structure of our models and the advances
summarized in Section 2 lead to other efficient algorithms
for estimation, for the computation of bounds on and accu-
rate approximations to error variances, and for parameter
estimation for our new multiscale models. Finally in Sec-
tion 4, we briefly discuss further research directions that
use the ideas developed here as a point of departure.



2 The models that we consider are defined with respect to undirected
graphs; we note that models defined on directed graphs can be converted
to models on undirected graphs with some loss in structure [14].
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2. Preliminaries

2.1. Graphical models

In this section, we introduce some basic notions for
graphical models. For more details, we refer the reader to
[9–13]. A graph G ¼ ðV ;EÞ consists of a set of vertices or

nodes V and associated edges E � V
2

� �
, where

V
2

� �
rep-

resents the set of all unordered pairs of vertices. An edge
between nodes i and j is denoted by fi; jg. Two vertices
are said to be neighbors if there is an edge between them.
We use the notation NðiÞ to denote the set of neighbors

of node i, i.e., the nodes of the graph that are each con-
nected to i by an edge. The cardinality of NðiÞ is referred
to as the degree of node i. A subgraph1 S of G ¼ ðV ;EÞ
is any graph whose vertex set is V 0 � V , and whose edge
set E0 is a subset E0 � EðV 0Þ, where

EðV 0Þ , fi; jg j fi; jg 2 E; i; j 2 V 0f g: ð1Þ
A subgraph is said to be spanning if V 0 ¼ V . An induced sub-

graph SðV 0Þ is a subgraph with vertices V 0 and edges
E0 ¼ EðV 0Þ. A supergraph H of G is any graph whose vertex
set V 0 is a superset V 0 � V , and whose edge setE0 is a superset
E0 � E. A path u0 � � � u‘ between two vertices u0 and u‘ in G is
a sequence of distinct vertices fukg‘k¼0 such that there exists
an edge between each successive pair of vertices, i.e.,
fuk; ukþ1g 2 E for k ¼ 0; . . . ; ‘� 1. A subset S � V is said
to separate subsets A;B � V if every path in G between any
vertex in A and any vertex in B passes through a vertex in
S. A graph is said to be connected if there exists a path be-
tween every pair of vertices. A clique is a fully connected sub-
graph, i.e., a subgraph in which each vertex is linked to every
other vertex by an edge. A clique is maximal if it is not con-
tained as a proper subgraph of any other clique. A cycle is the
concatenation of a path u0 � � � uk with the vertex u0 such that
fuk; u0g 2 E. A tree is a connected graph that contains no cy-
cles. A graph is said to be chordal or triangulated if every cy-
cle of length greater than three in the graph contains an edge
between non-neighboring vertices in the cycle. A special rep-
resentation for a chordal graph can be specified in terms of
the maximal cliques of the graph. LetC be the set of maximal
cliques in a connected graph G. A junction tree representa-
tion of G is a tree, with the nodes being the elements of C,
which satisfies the following running intersection property:
for every pair of nodes (cliques) Ci and Cj in the junction
tree, every node (clique) in the unique path between Ci and
Cj contains Ci \ Cj. Valid junction trees can only be defined
for chordal graphs [11]. A graph G is said to be thin if the
smallest chordal supergraph of G (i.e., one with the least
number of extra edges) has small maximal cliques.
1 While it is a bit redundant, a subgraph is sometimes referred to as an
embedded subgraph to emphasize that every node and edge in this
subgraph can be found in the original graph in which it is embedded.
A graphical model [11–13] is a collection of random vari-
ables indexed by the vertices of a graph2 G ¼ ðV ;EÞ; each
vertex i 2 V corresponds to a random variable xi, and
where for any A � V , xA � fxi j i 2 Ag. A distribution
pðxV Þ is Markov with respect to a graph G ¼ ðV ;EÞ if for
any subsets A;B � V that are separated by some S � V ,
the subset of variables xA is conditionally independent of
xB given xS , i.e., pðxA; xB j xSÞ ¼ pðxA j xSÞ � pðxB j xSÞ. In this
manner, graphical models generalize the concept of Mar-
kov chains, and are thus also referred to as Markov random

fields (MRFs). A distribution being Markov with respect to
a graph implies that it can be decomposed into local func-
tions in a very particular way. Specifically, the Hammers-
ley–Clifford Theorem [12] states that a sufficient
condition for Markovianity that is also necessary for
strictly positive probability distributions is that the joint
distribution for x � xV be expressible as a product of terms
each of which is a function that depends only on the vari-
ables in a clique of the graph. For strictly positive distribu-
tions each of these terms can be represented as an
exponential of a so-called potential function, so that the
overall distribution belongs to an exponential family of dis-
tributions. Such a distribution can be written in the form

phðxÞ ¼ expfhT/ðxÞ � UðhÞg; ð2Þ

where /ðxÞ is a vector of features or statistics, each of
which depends only on the variables in a single clique of
the graph; h is a vector of parameter coefficients; and
UðhÞ, which is known as the log-partition function, provides
the normalization so that the distribution has unit total
mass.3 The log-partition function has many very important
properties and deep connections to problems of inference
for graphical models. Of importance to us here are its crit-
ical role in parameter estimation and the fact that it is a
convex function.

For this paper, we focus on Gaussian distributions
which are examples of so-called pairwise models in which
the elements of /ðxÞ are all functions of variables at indi-
vidual nodes or pairs of variables connected by edges. Such
a model, which is also known as a Gauss–Markov Random
Field (GMRF), is commonly thought of as being parame-
terized by a mean vector l and a symmetric, positive-defi-
nite covariance matrix P which we denote by x �Nðl; PÞ4:

pðxÞ ¼ 1

ð2p � det P Þ
jV j
2

exp � 1

2
ðx� lÞTP�1ðx� lÞ

� �
: ð3Þ
3 An implicit assumption here is that the parameter vector h be
constrained to the set for which UðhÞ <1. For Gaussian models this
reduces simply to the constraint that the covariance matrix be positive-
definite.

4 For simplicity in this paper we assume that each xs is a scalar random
variable. It is a straightforward extension to allow each node to have a
vector random variable.



6 In some problems, one or more of the measurements may be of a
function of a set of variables not forming a clique in the original graph.
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An alternate natural parameterization for GMRFs is spec-
ified in terms of the information matrix J ¼ P�1 and poten-

tial vector h ¼ P�1l, and is denoted by x �N�1ðh; JÞ:

pðxÞ / exp � 1

2
xTJxþ hTx

� �
: ð4Þ

This is known as the information form representation.
Using (4) and the Hammersley–Clifford Theorem, we see
that there is a direct tie between the sparsity of J and the
Markov structure of x. Specifically, x is Markov with re-
spect to G ¼ ðV ;EÞ if and only if J ij ¼ 0 for every
fi; jg 62 E. Indeed the elements of J are also related to
so-called partial correlation coefficients. Specifically the cor-
relation coefficient between xi and xj conditioned on knowl-
edge of all the other variables is given by [12]

qi;j ,
covðxi; xj j xni;jÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðxi j xni;jÞvarðxj j xni;jÞ
p ¼ � J ijffiffiffiffiffiffiffiffiffiffi

J iiJ jj

p : ð5Þ

Hence, J ij ¼ 0 implies xi and xj are conditionally indepen-
dent given all other variables xni;j.

5

Comparing the information form in (4) to the form of an
exponential family in (2) we see that one natural way in
which to define the vector of features / is as

/ðxÞ ¼ x2
i

xi

� �
; 8i 2 V

� �
[ xixj; 8fi; jg 2

V

2

� �� �
; ð6Þ

which yields h and g parameters that are, respectively, gi-
ven by elements of the ðJ ; hÞ and ðP ; lÞ representations:

h ¼ � 1
2
J ii

hi;

� �
; 8i

� �
[ ð�J ij; 8fi; jgÞ; ð7Þ

g ¼
P ii

li

� �
; 8i

� �
[ ðP ij; 8fi; jgÞ: ð8Þ

These ‘‘dual” parameterizations point out the crux of the
estimation problem. The natural way in which many infer-
ence problems are specified – e.g., ranging from time series
models and Kalman filtering problems to so-called thin-plate
and thin membrane models described in Section 3 – is in
terms of the information parameters; the challenge of estima-
tion, then, is the computation of the moment parameters, a
process that can, at least conceptually, be solved via matrix
inversion (to recover P from J) and solving the linear equa-
tions Jl ¼ h to compute l from h.

Graphical models arise naturally when we employ the
principle of maximum entropy to construct models based
on data or on partial specifications of the overall probabilis-
tic structure of variables of interest. In particular, suppose
that we are given the moments g ¼ Ef/ðxÞg corresponding
to a set of features. Then, assuming that these moments are
consistent – i.e., that there is some distribution that can
match them – then the maximum entropy solution is pre-
cisely of the form given in (2), i.e., the maximum entropy
model is Markov with respect to the graph corresponding
5 We use the notation xnS to denote the collection of all components of x

other than those indexed by nodes in S.
to these features and moments. A generalization of this
result applies to the case in which the specified moments
are inconsistent – i.e., when there is no distribution exactly
matching all of the moments. In this case, it makes sense to
relax the constraint of exactly matching the moments by
allowing some tolerance for each. The Maximum Entropy
Relaxation approach developed in [15] solves such a prob-
lem, resulting in a model in the same exponential family
as in (2), but possibly with one or more of the edges (i.e.,
components of h and /ðxÞ) removed.

2.2. Statistical inference in graphical models

Consider the problem of estimating x given data, y, each
component of which is a possibly noisy measurement of the
value of x at a single node or on a clique of the graph,
where the noises on these individual measurements are
mutually independent. Thanks to Bayes’ rule, the condi-
tional distribution for x given y also has the same graphical
structure, with modified coefficients depending on the
observed measurement values.6 Thus the problem of esti-
mating x based on y involves computations on a model
of the form of (2) where the dependence on the observed
measurement values has been absorbed into the parameter-
ization. In the Gaussian case, this is quite simple to
describe. Specifically, if we have observations of the form:

y ¼ Cxþ v; ð9Þ

where v is zero-mean, Gaussian, with covariance S, then
the information parameterization for the conditional distri-
bution for x given y involves replacing the prior parameters
h and J with

hþ CTS�1y; ð10Þ
J þ CTS�1C; ð11Þ

respectively. Note that if C is a selection matrix – i.e., one
with only a single non-zero entry per row (so that each
measurement is of a single component of x) – and if S is
diagonal, then the sparsity structure of the information
matrix is unchanged by conditioning. For the development
and illustration of our new multiscale algorithms we will,
indeed, assume that S is diagonal.

There are at least two natural notions of estimation that
are widely considered, namely the computation of the
marginal statistics, i.e., the moments, g (which requires com-
puting the marginal distribution at individual nodes or edge-
pairs), and the computation of the MAP estimate, i.e., the
value of x corresponding to the peak of the joint distribution.
For GMRFs the MAP estimate is also the mean, so that we
focus our discussion here on the first problem, namely that of
This is accommodated simply by augmenting the graph with edges in
order to make this set a clique. That is, the graph used for statistical
inference captures all dependencies in either the phenomenon itself or in
the observed data.
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computing the marginal statistics at individual nodes in the
graph. This estimation problem can be solved very efficiently
– with complexity linear in jV j – for graphs without loops or
cycles, i.e., for trees such as in Fig. 1b, using a variety of
algorithms that collectively go under the name of Belief

Propagation (BP) [14]. BP is a generalization of the recursive
forward–backward algorithms originally developed for the
special case of inference in Markov chains [16]. BP has an
interpretation as a ‘‘message-passing” algorithm in that mes-
sages are passed locally between variables along the edges of
the tree, thus providing an efficient method to compute exact
estimates in a distributed manner.

For graphs without loops, single nodes act as separators
– i.e., conditioned on the value at any particular node, say
i, the sets of variables in the several disconnected subtrees
that result if node i is removed are mutually independent.
As a result, the marginal probability at a single node, say
i, is proportional to a product of the local ‘‘evidence” at
that node (corresponding to the potential function at that
single node) and likelihoods from each of its neighbors.
The likelihood provided by node j to node i can be thought
of as a ‘‘message”, capturing all of the evidence, relevant to
the marginal at node i, in the subtree rooted at node j and
extending away from i. Furthermore, this likelihood can
itself be decomposed in terms of likelihoods (messages)
from all of the neighbors of node j other than i, the local
evidence at node j, and then a ‘‘transition” of this informa-
tion from node j to i using the edge potential between these
two nodes. These likelihood equations then form a set of
coupled, fixed-point equations which can be iterated to
convergence. The choice of which messages are updated
at each stage of the iteration is quite flexible, ranging from
a completely parallel scheme to serial implementations. For
example, some arbitrary node i 2 V can be assigned as the
‘‘root” node, and messages can be passed in an up–down
sweep from leaves (degree-1 nodes) to the root and back
to the leaves. This is precisely the form often used to
describe optimal estimation algorithms for multiresolution
trees such as in Fig. 1b. Whatever scheme is used for updat-
ing or scheduling messages in a tree-structured graph, BP
iterations converge to the correct likelihoods, in a finite
number of iterations proportional to the diameter of the
graph (length of the longest path) [14].

In tree-structured Gaussian graphical models with
xjy �N�1ðh; JÞ, we obtain the following parametric BP
updates [17,18]:

J ðnÞjni ¼ J jj þ
X

u2NðjÞni
DJ ðn�1Þ

u!j ; hðnÞjni ¼ hj þ
X

u2NðjÞni
Dhðn�1Þ

u!j ;

ð12Þ

DJ ðnÞj!i ¼ �J ijJ
ðnÞ�1

jni J ji; DhðnÞj!i ¼ �J ijJ
ðnÞ�1

jni hðnÞjni ; ð13Þ

J ðnÞi ¼ J ii þ
X

j2NðiÞ
DJ ðnÞj!i; hðnÞi ¼ hi þ

X
j2NðiÞ

DhðnÞj!i: ð14Þ

At iteration n, the estimates for the mean and variance at
node i are computed as lðnÞi ¼ J ðnÞ

�1

i hðnÞi and P ðnÞii ¼ J ðnÞ
�1

i .
On convergence, these estimates yield the exact values of
the marginal means and variances, yielding an algorithm
with total complexity proportional jV j. This tremendous
savings in computing the diagonal elements of the inverse
of J and solving the estimation equations Jl ¼ h stem from
the very special sparsity structure of J for a tree-structured
graph: in such a case, there are elimination orders, i.e., or-
ders for Gaussian elimination, which induce no fill as var-
iable elimination proceeds.

For graphs with loops, exact estimation algorithms are
considerably more complex. In particular, because single
nodes do not in general form separators for graphs with
loops, we lose the conditional independence properties
that allow us to factor probabilities and likelihoods. In
particular, for GMRFs, in using Gaussian elimination
to solve for the variances or solving the equations for
the means, we induce fill after variable elimination. For
example, eliminating a column of nodes in the graph of
Fig. 1a results in a graphical model for the remaining
nodes in which there are dense connections between the
nodes in the columns immediately to the left and right
of the column eliminated. Such an exact approach to
inference corresponds to grouping nodes together in order
to form a so-called junction tree (to which exact tree-based
inference can be applied). However, as for graphs such as
Fig. 1a, the number of nodes that need to be grouped
together can be quite large (thanks to fill), rendering such
direct methods ineffective.

Developing estimation algorithms on loopy graphs rep-
resents an active area of continuing research. One approx-
imate method that has been widely used is Loopy Belief

Propagation (LBP) [19] which simply involves iterating
the fixed-point equations despite the fact that they are no
longer valid when the graph in question has loops. LBP
may or may not converge and if it does converge the results
it produces may or may not be good approximations to the
desired probabilities and moments.

For random fields with graphical structure as in Fig. 1a
several different algorithms have been developed that cor-
respond to approximating the statistics of this field by mul-
tiresolution models on a tree as in Fig. 1b and then
performing exact inference on this approximate model.
These approaches are based on construction of a particular
junction tree for the model in Fig. 1a obtained by a divide
and conquer approach – e.g., chopping the field up into
smaller and smaller subregions and using the set values
of the field around the boundary of each of these subre-
gions as the state at one of the nodes in the multiresolution
tree. As these boundaries grow in size for larger regions,
exact inference for the resulting tree model is itself intracta-
ble, requiring approximations. We refer the reader to [1,20]
for an early approach to making such approximations and
to [2,21] for a very recent method with considerably
enhanced performance.

In this paper, we make use of several advances in infer-
ence for Gaussian graphical models to develop high-perfor-
mance algorithms for the richer class of Gaussian models
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defined on graphs as in Fig. 1c. The next three subsections
provide brief summaries of these recent advances.

2.3. Walk-sum interpretation of Gaussian estimation

An insightful concept for both understanding and ana-
lyzing inference algorithms for GMRFs is that of walk-

sum analysis [18,22]. For simplicity only we assume in this
section that the matrix J has been normalized to have unit
diagonal entries,7 so that J ¼ I � R, where R is precisely
the matrix of partial correlation coefficients in (5). As a
result, the elements in any power of this matrix correspond
to sums of weighted walks along paths in the graph G
where the partial correlation coefficients, Rij, and their
products provide the weights.

Specifically, a walk in G is a sequence of vertices
w ¼ fwkg‘k¼0 such that fwk;wkþ1g 2 E for each k ¼ 0; . . . ;
‘� 1. The weight of the walk /ðwÞ is defined

/ðwÞ ,
Y‘�1

k¼0

Rwk ;wkþ1
:

It is then readily seen that ðR‘Þij equals the walk-sum
/ði!‘ jÞ, i.e., the sum of the weights of all of the walks in
the (finite) set of all length-‘ walks from i to j [18]. Conse-
quently, we have that the elements of the covariance matrix
P can be expressed and computed as

P ij ¼ ððI � RÞ�1Þij ¼
X1
‘¼0

ðR‘Þij ¼
X1
‘¼0

/ði!‘ jÞ , /ði! jÞ;

ð15Þ
where /ði! jÞ denotes the walk-sum of all walks from i to
j. Moreover, the mean can be computed in terms of these
walk-sums using the elements of h as weights:

lj ¼
X
i2V

P jihi ¼
X
i2V

hi/ði! jÞ: ð16Þ

Of course, these expressions are valid only if the infinite
sums of walks are well defined. Since different algorithms
– e.g., corresponding to different message-passing schedules
– may compute these terms in different orders, we are led
directly to the concept of walk-summability, namely the
requirement that all of these sums converge absolutely.
Walk-summability is an easily checked condition, namely
the spectral radius of the matrix R, in which every element
of R is replaced by its absolute value, is less than 1. While
there are valid GMRFs that are not walk-summable, there
are also large and important classes that are (including all
GMRFs on trees as well as those introduced in Section 3).
Walk-sum analysis has led to several important results
(e.g., in the analysis of LBP) [18,23] one aspect of which
we introduce in the next subsection and exploit in the mul-
tiresolution algorithms developed in this paper.
7 If D is a diagonal matrix containing the diagonal entries of J, then the
matrix D�

1
2JD�

1
2 contains re-scaled entries of J at off-diagonal locations

and 1’s along the diagonal.
2.4. Algorithms that exploit tractable subgraphs

A very important concept employed in a number of
advanced algorithms is that of exploiting exact inference
algorithms on tractable subgraphs of a graphical model.
In this section we briefly review two such approaches that
we exploit in later sections. The first of these involves serial
iterations using embedded subgraphs [23,24]. The general
idea behind this approach is that in each iteration we
choose a subset of the variables to be updated and a subset
of the edges of the graph to be enforced. For example, at
one extreme we might choose to update all of the nodes
of a graphical model but enforce only those edges corre-
sponding to an embedded spanning tree (or, more gener-
ally, a tractable subgraph – e.g., one with tractable
junction tree) of the full graph. This corresponds to rewrit-
ing the equation for the moments as

Jl ¼ ðJ tree � KÞl ¼ h; ð17Þ

where K includes terms ‘‘cut” to expose the tree captured
by J tree. Rewriting this as

J treel ¼ hþ Kl; ð18Þ

we have the starting point for the so-called Embedded Trees
(ET) algorithm in which at each iteration we substitute in
the current estimate of the mean l on the right-hand side
of (18) and solve the resulting equation to yield our next
estimate of l. Alternatively, we can consider a Gauss–Sei-
del iteration in which we choose a subvector, l1, of the
components of l to update, leaving the remaining compo-
nents, l2, fixed, where the only requirement is that solving
for l1, with all other components fixed in (17) is tractable.
Finally, one can imagine hybrids of these in which we both
choose a subset of variables to update (leaving all others
fixed) and then use embedded tree-like iterations to com-
pute the desired updates.

There are two very natural questions associated with
this very rich class of algorithms, namely the issue of con-
vergence and the method by which subgraphs are chosen at
each successive iteration. Both of these are addressed in
[23] with the following important results. First, for walk-
summable models, the only requirement for convergence
of any such embedded subgraph algorithm is that every
node and every edge be included infinitely often in the iter-
ation sequence – in this way guaranteeing that every walk
in the walk-sum (16) is eventually included. As for the issue
of the choice of each successive subgraph, [26] provides an
adaptive procedure aimed at choosing an embedded sub-
graph in order to reduce the principle errors in the preced-
ing iterations. Specifically, let x̂ðnÞ denote the estimate after
the nth iteration, and let hðnÞ ¼ h� J x̂ðnÞ denote the residual
error. For each edge fi; jg in G we then compute a weight:

xij ¼
j qi;j j

1� j qi;j j
� ðj hðn�1Þ

i j þ j hðn�1Þ
j jÞ: ð19Þ

This weight captures the reduction in residual error (from
iteration n� 1 to n) if we were to take our next embedded



8 It is not necessary that every node appear in every graph, e.g., as in
Section 4 for our pyramidal graph.

9 There is a simplified version of the algorithm that only updates hk to
achieve agreement of means (for a fixed set of Jk), which would be
sufficient to obtain the optimal estimates. However, we also optimize the
splitting of J into Jk because it should help make the linear system for the
means better conditioned (for faster convergence) and has the added
benefit of leading to upper-bounds on the variances.
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subgraph simply to be the nodes i and j and the edge con-
necting them. As shown in [23] minimizing an upper bound
on the error x� x̂ðnÞ is equivalent to solving the max-weight
spanning tree problem

arg max
Sn a tree

X
fi;jg2Sn

xij: ð20Þ

Solving this tractable problem yields a spanning tree to be
used in the next iteration.

As an alternative to updating all nodes using a spanning
tree, we can construct a version of Gauss–Seidel in which
we adaptively choose a subset of variables to update at each
iteration, leaving the remaining variables unchanged. An effi-
cient algorithm to do this is described in [23], and we refer
the reader to that paper for details. The basic idea is as fol-
lows: we initially assign weights to every node in the graph
equal to the absolute value of that nodes residual error, i.e.:

xi ¼j hðn�1Þ
i j : ð21Þ

At each stage in the selection process we examine the
weights on all nodes that have not yet been selected for
update at the next iteration and add to that set the node,
call it i	, with largest weight. We then adjust the weights
of each of the remaining unselected nodes to account for
the fact that walk-sums between any pair of selected nodes
will also be accounted for in the next Gauss–Seidel itera-
tion. Specifically, right after node i	 has been selected, we
adjust the weight of each neighbor, j, of i	 that has not been
selected as follows:

xj  xj þ j hðn�1Þ
i	 j þ j hðn�1Þ

j j
� � j qi	;j j

1� j qi	;j j
: ð22Þ

We then alternate steps of selecting a single node and
updating the weights of unselected nodes until the set of se-
lected nodes reaches a prespecified size.

The second approach to exploiting embedded tractable
subgraphs is that of solving a set of tractable inference
problems on such graphs in parallel, but subject to the con-
straint that the estimates produced by all of these sub-
graphs agree (i.e., produce a single, consistent estimate).
The algorithm starts with a decomposition of G into trac-
table subgraphs Gk ¼ ðV k;EkÞ and an initial valid decom-
position of J and h:

h ¼
X

k

hk; J ¼
X

k

J k and J k 
 0 for all k: ð23Þ

While the general approach in [25] allows the subgraphs to
share edges as well as nodes, we limit our discussion here to
the case in which the subgraphs only share nodes.

Note that the mean of a Gaussian as in (3) is the same as
finding the peak of the distribution or equivalently, maximiz-
ing the exponent in (4). Consider solving a set of separate max-
imizations, one for each ðJ k; hkÞ, but with the equality

constraint that the resulting ‘‘estimates” all be equal. Using
Lagrange multipliers to adjoin these equality constraints leads
to a set of necessary and sufficient conditions that can be
solved via an intuitively appealing iterative, Lagrangian Relax-
ation algorithm in which we alternately solve inference prob-
lems on the individual graphs and then modify the
decomposition in (23) to force equality of estimates and vari-
ances at a single node. Of course after such an exchange, when
we perform inference again on each of the separate graphs we
will in general not have equality at any other node. Thus, we
iteratively cycle through all of the nodes of the original graph
– in any order, just as long as each node is revisited during
each cycle. As shown in [25], this algorithm is guaranteed to
converge to the optimal estimates for our original problem.
The error covariances computed by this algorithm will not
be correct; however, thanks to the convexity of the log-parti-
tion function, they do provide upper bounds. Moreover, again
exploiting convexity, we can make these upper bounds as tight
as possible. This is closely related to the so-called tree-
reweighted belief propagation [26–28], but the Lagrangian
Relaxation algorithm is specified for Gaussian models and
also provides optimal choice of weights kk for each subgraph
as described below. We refer the reader to [25,29] for details
and simply state the resulting algorithm here.

� Given the current decomposition (23), we perform infer-
ence on each graph, yielding, for the kth graph, esti-
mates, x̂k

j , and error covariances, P k
j , for every node, j

in8 Gk, and compute the corresponding information
parameters bJ k

j ¼ ðP k
j Þ
�1 and ĥk

j ¼ bJ k
j x̂k

j .
� Choose a node i in the original graph and for every

graph Gk in which node i appears modify the potential
at that node as follows:9

J k
ii  J k

ii þ kk

X
k

bJ k
i

 !
� bJ k

i

 !
; ð24Þ

hk
i  hk

i þ kk

X
k

ĥk
i

 !
� ĥk

i

 !
; ð25Þ

where the non-negative weights kk sum to one and are cho-
sen to make the bounds on the log-partition function (and
variance estimates) as tight as possible. Specifically, using
the current decomposition (23), we compute these weights
as follows:

kk ¼
1

Z
exp

1

N
log det J k

� �
; ð26Þ

Z ¼
X

k

exp
1

N
log det J k

� �
: ð27Þ

The computation of log det Jk can be done efficiently as
along as Jk corresponds to a tractable subgraph. Note that
it is easily checked that the first two conditions in (23) are
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Fig. 2. Illustrating spliced bases for low-rank variance estimation: (a) the
full identity matrix and associated spliced basis appropriate for fields with
exponentially decaying correlations and (b) a full wavelet basis (illustrated
with the Haar basis) and associated spliced basis appropriate for fields
with long-distance correlations.
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satisfied. The positive-definiteness of the modified J k is also
maintained (see [29]).

� Note that when inference is again performed on each of
the individual graphs with this modification to the
decomposition, the estimates at the selected node i will
all agree, as will the weighted versions of the error vari-
ances, kkP k

i .
� Iterate through these steps, where the selection of the

node i should cycle through the nodes of the full graph.
� On convergence, the estimates at all nodes in each of the

graphs agree and equal the estimate for the original
model. Moreover, the weighted error variances, kkP k

i ,
will also agree at all nodes and are upper bounds on
the corresponding true error variances.

As stated this algorithm requires a set of full inference
computations on each of the graphs in our decomposition
in each iteration – even though the only change from the
preceding iteration is the modification of potentials at a
single node. As described in [29], if all of the graphs corre-
sponding to the decomposition (23) are acyclic, we only
need to perform a modest part of the full message-passing
computation for inference in each subgraph. In particular,
if the potential at node i is modified at a particular itera-
tion, and node j will have its potentials modified at the next
iteration, we need only perform message-passing to update
the messages on the path from node i to node j in each
graph in the decomposition. We refer the reader to [30]
for a proof that this much more efficient iteration main-
tains the same convergence properties.

2.5. Wavelet-based low-rank variance estimation

A new approach to scalable computation of variances
for graphical models, developed in [31,32] is based on the
idea of a low-rank approximation to the identity. Let J

denote the N � N information matrix of a graphical model;
the covariance P, then, is obviously the solution to the
equation JP ¼ I . Consider replacing the identity matrix I

in this equation by BBT, where B is an N �M matrix, with
M  N and with rows, bi, i ¼ 1; . . . ;N , all of unit norm.
Then the diagonal elements of the resulting approximate
covariance matrix can be expressed in terms of the true val-
ues of the elements of that matrix and the rows of B as
follows:bP ii , ðJ�1ðBBTÞÞii ¼ P ii þ

X
i6¼j

P ijb
T
i bj: ð28Þ

Note that the diagonal elements of bP can be computed effi-
ciently, with complexity OðMNÞ. We first solve the equation
JR ¼ B column by column, where the solution for each col-
umn corresponds to solving for estimates in a graphical
model with the corresponding column of B as h. Thanks
to the sparsity of J and any of the iterative estimation algo-
rithms described previously (or in the next section), solving
each estimation problems has OðNÞ complexity. Once we
have these solutions we then compute the diagonal ele-
ments of RBT.

Note also that according to (28), our approximation to
the variance at node i equals the true value plus a set of
interference terms. Each of these terms will be small if one
of two things is true: either P ij is small – i.e., the variables
at nodes i and j are nearly uncorrelated – or the rows bi

and bj are orthogonal. It is precisely the objective of keeping
each of the terms in the summation in (28) small that drives
the choice of the rows of B and, in particular, how that
choice is determined by the covariance structure of the pro-
cess being modeled. For example, consider the case of a sin-
gle-scale model on a grid such as in Fig. 1a and suppose that
the MRF in question has primarily local correlations. Then
we can imagine choosing a set of rows for, say, the upper
left corner of such a field that are standard, orthonormal
basis vectors corresponding exactly to the first few rows
of an identity matrix. However, when we move a distance
away from the upper left corner of this field, we then simply
repeat the same rows as were used for the upper left corner,
with a random flip of sign. We repeat this process, tiling the
entire grid with the same set of basis vectors used in the
upper left, but with randomly flipped signs. The result is a
‘‘spliced basis” as illustrated in Fig. 2a for a 1-D signal.



10 Testing consistency of a given set of statistics – i.e., the existence of any

model that matches the specified statistics exactly – is a non-trivial
problem. The MER methodology [15] provides a mechanism for relaxing
the constraints on specified statistics and producing graphical models that
match the available statistics to within specified tolerances.
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Assuming that we have chosen to start replicating vectors
beyond the correlation length of the field, the interference
terms on the right-hand side of (28) will be small; moreover,
thanks to the random flipping of signs, (28) represents an
unbiased estimate of P ii, which can be further improved
by averaging the results from several computations with dif-
ferent random flips of signs.

For processes with long-distance correlations, this sim-
ple approach does not work. However, taking advantage
of the well-known property of wavelets, namely that of
reducing the correlation length of processes with long-dis-
tance correlations, we can, in such cases, use spliced wavelet

bases such as is illustrated in Fig. 2b. We refer the reader to
[31,32] for details and for analysis of accuracy and asymp-
totic properties. As we develop in Section 3, the structure
of our multiresolution models allows us to take advantage
of both of the methods (illustrated in Fig. 2a and b) for
choosing the matrix B in order to obtain high-quality,
unbiased estimates of error variances.

3. Multipole stochastic models and algorithms

In this section we introduce our multiscale models,
describe some of their qualitative statistical properties, and
develop and demonstrate new inference algorithms that
exploit both model structure and recent advances in graphi-
cal models summarized in Section 2. The models that we
introduce here share the motivation that has driven much
of the other work on multiscale models – the desire to cap-
ture multiresolution characteristics of phenomena and/or
data or the objective of computational efficiency in which
inference at coarser scales can be used to guide inference at
finer scales. In addition, as with some other methods (e.g.,
see [2–8,21]) the models we describe, based on graphs as in
Fig. 1c, overcome the blocky artifacts that result from
employing multiscale models defined on trees as in Fig. 1b.

Moreover, we contend that models we introduce here
are, in fact, the natural models for many applications.
The reason for this stems from the principle of maximum
entropy modeling. In particular, for many large-scale data
assimilation problems we don’t have a complete statistical
description of the full field of interest. For example, in
describing the statistical variability in the ocean (e.g., vari-
ations in sea level that capture large-scale ocean circula-
tion), one might typically have only partial statistical
specifications. Specifically, we may have estimates of the
variance of sea level variations at different scales and also
may have estimates of correlation lengths for different scale
features. For example, we may know something about the
correlation structure on the order of kilometers near Cali-
fornia or near Japan, but we probably do not have reliable
information on the correlation of variations at that small
scale between regions close to California and close to
Japan. On the other hand, if we look at sea level variability
at coarser scales – e.g., on the order of hundreds of kilome-
ters – we may have estimates of correlations across much
larger parts of the ocean.
What this suggests is that the available information we
have about such a large-scale process echoes the graphical
structure in Fig. 1c (or a slightly more complex version in
which there are more edges within each individual scale)
– i.e., the statistics we have available might provide corre-
lations among spatial averages of a field at different scales
and at spatial separations commensurate with the scale. Of
course, this is only a partial specification of the full statis-
tics and might even be inconsistent if the estimated correla-
tions and variances have errors.10 In either case, the MER
methodology can be applied, resulting in a model that
matches the specified statistics as accurately as is possible
or desired and that has structure as in Fig. 1c.

For these reasons we believe that models with structure
as in Fig. 1c and as described next are quite natural multi-
scale descriptions for many important applications. Of
course, there are now significant computational issues to
be considered, as Fig. 1c is not a tree and, in fact, has a very
large number of loops. Fortunately, the structure and
properties of these models allows us to take advantage of
the recent advances in inference for loopy models described
in the preceding subsections, leading to new, powerful, and
insightful algorithms.

3.1. The model and its properties

The models we consider are defined on pyramidal graphs
as in Fig. 1c. While our framework can readily accommo-
date data, phenomena, and objectives at multiple scales,
we focus our attention here on the case in which our pri-
mary interest is in the finest scale in these models – i.e., all
measurements and desired estimates are at this scale – so
that the role of the coarser scales in the pyramid are simply
to aid in inference at the finest scale. Similar objectives can
also be gleaned from other, related work – e.g., that involv-
ing similar pyramidal graphs in [3,5–7] or ideas from renor-
malization groups [33]. However, in the former, aggregated
versions of finest scale measurements are inserted at coarser
scales and dependencies between these aggregate measure-
ments and their fine scale versions are ignored, while in
the latter, the complex inter-scale relationships are approx-
imated rather than represented exactly. Of course, if the real
objectives are only at the finest scale – so that, in true mul-
tigrid fashion [34] the existence of the coarser scales is only
to guide and speed up finer scale inference – these approxi-
mations need not be material in terms of the ultimate
results. In contrast, in our work we begin with a statistically
consistent multiscale graphical model, and this allows us to
make direct use of emerging methods for graphical models
to construct new, powerful, and insightful algorithms.
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We denote the coarsest scale11 in our pyramidal repre-
sentation as Scale 1 and the finest scale as Scale M. Let
V m denote the set of nodes at scale m, xðm;iÞ denote the ran-
dom variable at node i 2 V m, xm denote the vector of all
variables at scale m, and x ¼ ðxT

1 ; x
T
2 ; . . . ; xT

MÞ
T. In addition,

for i 2 V m, let NmðiÞ denote its neighbors at the same scale,
and for m 6¼ M , let CðiÞ denote its neighbors at the next,
finer scale. The structure of our Gaussian graphical model,
expressed in terms of its information matrix, can be
described in terms of two components:

J prior ¼ J t þ J s; ð29Þ

where J t encodes links between different scales, and J s rep-
resents edges within each scale.

For the sake of specificity in our development we employ
generalizations of the so-called thin membrane model for
both the intra- and inter-scale information matrices (other
choices such as thin-plate models, mixtures of these, etc.,
are also possible). Thin membrane models capture the idea
that each value of the field is most likely to be close in value
to its neighbors. However, ‘‘neighbors” mean different
things within and across-scales, and spatial distances are
different at each successive scale. These differences we cap-
ture as follows. First, consider J t, which captures the inter-
action between each parent node and its four children:

expf�xTJ txg ¼ exp �
XM�1

m¼1

bm

X
i2V m

X
j2CðiÞ
ðxðm;iÞ � xðmþ1;jÞÞ2

( )
;

ð30Þ

where the parameter bm determines how severely we penalize
the difference between the value at a node at scale m and the
value at each of its children at scale mþ 1. J t is a block tri-
diagonal matrix and can be decomposed by scale as follows:

J t ¼

cb1IN1
b1JT 12

0 0

b1J T 21
ðb1 þ cb2ÞIN2

b2J T 23
0

0 . .
. . .

. . .
.

0 0 bM�1J T M ;M�1
bM�1INM

0BBBB@
1CCCCA:
ð31Þ

Here, Nm is the number of nodes at scale m, and INm is the
Nm � N m identity matrix. The constant c is the number of
children of each parent, so in our pyramidal graph,
c ¼ 4. J T m;mþ1

is a sparse Nm � Nmþ1 matrix in which each
entry corresponding to a parent–child pair equals �1,
and all other entries are zero. Also, we define
b ¼ ðb1; b2; . . . ; bM�1Þ.

The nearest-neighbor grid model J s imposes smoothness
within each scale:
11 While Fig. 1c shows this coarsest scale as being a single point, we
generally use a coarsest scale that still has spatial extent – the only
assumption is that this coarsest scale is tractable, so that exact inference
can be performed efficiently.
J s ¼

a1J s1 0 0 0

0 a2J s2 0 0

0 0 . .
.

0

0 0 0 aM J sM

0BBBB@
1CCCCA; ð32Þ

where J sm represents a thin membrane prior at scale m:

expf�xTJ sxg ¼ exp �
XM

m¼1

am

X
i2V m

X
j2NmðiÞ

ðxðm;iÞ � xðm;jÞÞ2
( )

:

ð33Þ

Notice that an off-diagonal entry ðJ smÞij ¼ �1 if j 2 N mðiÞ
and 0 otherwise. The diagonal elements of J sm are equal
to the number of neighbors each node has within scale m.
The parameter am determines how severely we penalize
the gradient of the field at scale m. Coarser scale nodes rep-
resent spatial regions in which the center points are located
farther apart, so it is natural to decrease am as we go to a
coarser scale. We also define a ¼ ða1; a2; . . . ; aMÞ.

Note that the thin membrane model, as well as its exten-
sion to a quadtree and multiple grids, yields singular J

matrices. Therefore, in order to make J prior a valid prior
model, we add a small regularization term �I to J prior to
make it positive definite.12 This small positive diagonal
addition can be viewed as adding a weak upper limit on
the variance at each node in our model. Further, as long
as all of the parameters a and b are non-negative, all of
the non-zero off-diagonal elements of J are negative, so
that all partial correlation coefficients across edges in the
graph are positive. Our model is then what is known as
an attractive model, the entire class of which is known to
be walk-summable [18].

The measurements that we consider are all at the finest
scale. In the simplest case these measurements are at indi-
vidual finest scale nodes, corrupted by independent zero-
mean Gaussian noise. However, in some of our examples,
our finest scale model represents a discrete set of points
on a continuous random field surface. In this case, if a real
measurement occurs at a point other than at one of our
grid points, we model it as a measurement of a weighted
sum of the values at the nearest grid points (using bilinear
interpolation). In either case, our measurements take the
form y ¼ Cxþ v, where v is zero-mean with diagonal
covariance S. As a result, the conditional information
matrix for our random field (see (11))

J ¼ J prior þ CTS�1C ð34Þ

adds, at worst, some additional local edges at the finest
scale. In particular, if a measurement is taken at a point
interior to one of the small squares in Fig. 1a, then the ef-
fect of bilinear interpolation is to introduce off-diagonal
12 The regularization term can be made arbitrarily small. In our
experiments, we set e to 10�10, and the model is not sensitive to the
choice of e as long as it is sufficiently small.
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Fig. 3. The correlation decays realized by a pyramidal graph, a tree, and a
single-scale model: (a) correlations conditioned on measurements. For the
pyramidal graph and the tree, correlations at the finest scales are plotted
and (b) correlations at the finest scale of the pyramidal graph conditioned
on coarser scales and correlations of its single-scale counterpart.
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elements in CTS�1C corresponding to the diagonal edges
connecting opposite vertices in that small square.

The class of pyramidal models just introduced can exhibit
a range of behaviors depending on the choices of the param-
eters a and b. We illustrate here two important qualitative
properties that result if we use a particular choice of param-
eter settings that captures the differing spatial dimensions at
different scales. Since the spatial distance13 between a pair of
neighboring nodes at scale m is twice the corresponding dis-
tance at scale mþ 1 and since our prior involves the squares
of differences, it is appealing to decrease am (and bm) by a fac-
tor of 4 as we move from a finer scale to its parent. Further-
more, since the spatial distance between a child and a parent
is 1=

ffiffiffi
2
p

of the distance between a pair of siblings, we are led
to set bm�1 ¼ 1

2
am. Therefore, we let aM ¼ u and set the rest

of the parameters as follows:

am ¼
u

4M�m ; m ¼ 1; 2; . . . ;M ; ð35Þ

bm ¼
1

2

u

4M�1�m ; m ¼ 1; 2; . . . ;M � 1: ð36Þ

To illustrate the qualitative properties of this model, we
use a 1-D process and a total of 4 scales for our multiscale
pyramid and tree models (so that the single-scale model is a
Markov chain and the tree counterpart is a dyadic tree).
We set u ¼ 1, which sets the parameters of our pyramidal
model. For comparison we use a tree model with the same
parameter vector b (which is equivalent to setting a to zero
in our pyramidal model); for our single-scale model we use
the parameter aM from the pyramidal model. Fig. 3a
depicts the correlation decays realized by these three differ-
ent models. The figure illustrates several important qualita-
tive features. The first is that our pyramidal model displays
far stronger long-range correlations than the single-scale
counterpart. As a result, this pyramidal model can more
easily capture such long-range correlations – e.g., as found
in processes with 1/f – behavior. To be sure, single-scale
models can do this as well, but such models will of necessity
be of much higher-order (corresponding, for example, to
far more connected single-scale graphs). As is well known,
tree models can also capture long-distance correlations, but
their limited modeling capability leads to the blocky, stair-
case correlation structure present in the figure. Of course
more complex, higher-order tree models (e.g., those involv-
ing so-called overlapping trees or keeping vectors of wave-
let coefficients at each node [35,36]) can be used to smooth
out these artifacts, but our pyramidal models do this with-
out such added complexity.

Fig. 3b illustrates a second very powerful property of
our pyramidal models – and one that has significant impli-
cations for our inference algorithms. Specifically, in this fig-
ure we show the conditional correlation at the finest scale
when we condition on the coarser scales (rather than on
13 Each node in the pyramidal graph represents a region on a plane. The
spatial distance between two nodes is the distance between the center
points of the corresponding regions.
measurements). Note that this conditional correlation
shows substantial, exponential decay. Indeed, as shown in
[30] the ratio of the condition number of the covariance
matrix at the finest scale for our pyramidal model and
the condition number for the covariance at the finest scale
conditioned on coarser scales is enormous (17 orders of
magnitude for the parameter settings used in our figures).
This suggest not only that coarse-to-fine algorithmic struc-
tures will offer considerable advantages but also that each
fine scale iteration – i.e., the computation of conditional
walk-sums at each scale – can be well approximated by
only a few iterations (i.e., by very short walks), as the resid-
ual correlation that needs to be captured is concentrated
very locally. This is reminiscent of the structure of so-called
multipole algorithms [37] in which corrections to coarser
scale approximations are implemented using FIR filters.
As we will see, our use of the emerging graphical model
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methods described in Section 2 leads to algorithms that
exploit these qualitative properties.

3.2. Computation of estimates

In this section, we describe two new approaches to per-
forming estimation for the class of models described in the
preceding section. These methods make extensive use of the
recent advances in inference for graphical models summa-
rized in Section 2. Our first approach is reminiscent of multi-
pole algorithms for the solution of elliptic PDEs, namely an
approach in which we use coarser scale estimates to capture
longer-scale effects, which then allows us to take advantage
of the much more local conditional correlation within each
scale. Embedding these ideas within the framework of graph-
ical inference leads to embedded subgraph algorithms with
structure inherited from our pyramidal models and with guar-
anteed convergence, thanks to walk-summability. Moreover,
using the methods summarized in Section 2.4 and [23], we can
choose the embedded subgraphs adaptively in each iteration,
accelerating convergence considerably.

Since we can view our pyramidal model as a 1-D Mar-
kov chain in-scale, there is a conceptually simple two-sweep
optimal estimation algorithm: we propagate messages from
fine-to-coarse first,14 and then conclude with a coarse-to-
fine sweep. This approach requires that exact inference be
performed at each scale in both sweeps, as this is needed
to compute both the estimates at each scale as well as the
‘‘messages” passed to adjacent scales. While one can cer-
tainly imagine doing this using the iterative methods
described in Section 2 for the operations within each scale,
this naive approach collects ‘‘walks” in a manner that does
not make maximal use of the structure of our models. To
take advantage of this requires that we be more judicious
in which computations we perform in each fine-to-coarse
and coarse-to-fine step, thereby making each step in these
sweeps far simpler but, then also requiring their iterative
application (to capture walks not included in each simpli-
fied step). We first describe how this is done with a fixed
structure for the subgraphs used in each step of each sweep
of the algorithm.

Our algorithm first performs a coarse-to-fine sweep
using the natural embedded quadtree of Fig. 1b – i.e., we
compute the upward, Gaussian elimination step using only
the tree-based component, J t, of our prior model (29) and
ignoring J s – with one exception. Specifically, note that if
we use a full pyramid as in Fig. 1c, the coarsest scale con-
sists of a single node so that there is no contribution from
J s at that coarsest scale. More generally, if we truncate our
pyramid at a resolution so that the coarsest scale itself has
a non-trivial grid, we assume that it is still small enough so
that exact inference at this scale is tractable. Consequently,
this upward sweep performs coarse-to-fine computations
14 Note that since we are assuming that data are available only at the
finest scale – i.e., the only non-zero elements of h are at the finest scale, it
only makes sense to start with a fine-to-coarse sweep.
exactly as in quadtree models, with the understanding that
at the coarsest scale, this computation involves exact com-
putations on a small grid of variables.

This initial upward sweep produces estimates at each
scale, and we then perform a coarse-to-fine sweep, followed
by alternating sweeps from fine to coarse and coarse-to-
fine. In each step of the coarse-to-fine sweep we update
the estimates at one scale, say m, using the just-computed
estimates at its coarser neighbor, m� 1, and the previous
upward sweep estimates at the next finer scale, mþ 1. A
complete version of this update corresponds to solving
the equations:

J ½m;m�x̂d
m ¼ hm � J ½m;m�1�x̂d

m�1 � J ½m;mþ1�x̂u
mþ1; ð37Þ

where J ½j;k� denotes the ðj; kÞ-block of the full J matrix in
(34), and the superscripts ‘‘d” and ‘‘u” are included to
emphasize the structure of the coarse-to-fine step, namely
in using the just-computed ‘‘downward” sweep estimates
at scale m� 1 and the previously computed ‘‘upward”

sweep estimates at scale mþ 1. Also, hm ¼ 0 for all scales
other than m ¼ M (since we only have data at the finest
scale), and x̂u

Mþ1 � 0. This recursion begins at scale 2, using
the just-computed coarsest scale estimates from the preced-
ing fine-to-coarse iteration. However, at each of these
scales, solving (37) is typically intractable, thanks to the
sizes of the grids involved. Consequently, rather than solv-
ing this equation exactly, we can instead perform several
ET iterations within scale – i.e., we decompose J ½m;m� into
one term on an acyclic graph and a ‘‘cutting matrix” term,
i.e., we rewrite (37) as15

J ax̂d
m ¼ hm � Kax̂u

m � J ½m;m�1�x̂d
m�1 � J ½m;mþ1�x̂u

mþ1; ð38Þ

where J ½m;m� ¼ J a þ Ka, and perform one or more iterations
using this decomposition, as suggested in (18). Thanks to
the multipole character of our models, we expect that the
additional smoothing required conditioned on the coarser
scale, is local in nature. A decomposition that makes this
completely evident is simply to cut all edges, i.e., to take
J a to be diagonal.

Each subsequent fine-to-coarse sweep uses the just-com-
puted estimates from the downward sweep and performs
the fine-to-coarse portion of an ET iteration (see (18)) using
the quadtree in Fig. 1b with all in-scale edges cut. The result-
ing overall algorithm thus involves a mixture of global, fine-
to-coarse ET iterations and scale-by-scale local computa-
tions within each scale during each coarse-to-fine sweep, in
which the computation at each scale is itself replaced by
an ET iteration. Thanks to walk-summability this algorithm
is guaranteed to converge to the optimal estimates. More-
over, we can make this algorithm adaptive, and hence speed
up convergence, by adaptively choosing the spanning trees
used at each step of the process. Specifically, rather than
constraining ourselves to using a completely disconnected
15 Notice that x̂m on the right-hand side has the superscript u, indicating
that the previous upward sweep estimates at scale m is used to compute the
term Kax̂u

m.



Table 1
Multipole-motivated inference algorithm using the adaptive ET iterations

(1) Initialization: get initial estimates based on the tree prior and the
thin membrane prior within the coarsest scale

(2) In-scale inference: starting from the coarsest scale and proceed-
ing to finer scales, smooth the estimates using an adaptively cho-
sen spanning tree within each scale

(3) Tree-inference: apply one ET iteration using a spanning tree
embedded in the pyramid chosen by the adaptive ET algorithm

(4) Repeat the in-scale inference and tree-inference steps until a
stopping criterion is met
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tree for each in-scale iteration, we can choose a max-weight
spanning tree to accomplish this using the method summa-
rized in Section 2.4. Similarly, in the upward ET sweep,
rather than using the standard quadtree as in Fig. 1b, we
can use the same max-weight spanning tree algorithm to
choose an embedded spanning tree for each fine-to-coarse
iteration over the entire pyramidal graph. The steps in this
adaptive algorithm are summarized in Table 1.16

Fig. 4 depicts several experiments on a 64� 64 synthetic
example, with the true field to be reconstructed given in
Fig. 4a, two dense sets of measurements with low-level
noise (Fig. 4b, with a per-pixel SNR of approximately
20), high-level noise (Fig. 4c with a per-pixel SNR of 6),
and sparse measurements with low-level noise in Fig. 4d.
Fig. 5 depicts the resulting estimates for these three cases,
and Fig. 6 compares the convergence performance of our
pyramidal multipole algorithm (referred to as ‘‘pyramid”

in the figure) with two different algorithms based on a sin-
gle-scale thin membrane model. One of these (referred to as
‘‘monoscale” in the figure) uses a Gauss–Jacobi iteration
directly on this model. The other uses a standard multigrid
algorithm for solving such single-scale problems efficiently
in which approximate, coarser versions of the problem are
solved in order to guide the finer version. The plots on the
left in Fig. 6 are for algorithms with fixed subgraphs used
in each iteration (Gauss–Jacobi within each scale), while
the plots on the right are for adaptive ET iterations
described in Table 1.

Since we know truth for this example, the error measure
used in these plots compares estimates to truth. In particu-
lar at iteration n we compute the RMS error as

eðnÞrms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i2V M
ðxi � x̂ðnÞi Þ

2

NM

s
ð39Þ

where x̂ðnÞ denotes the vector of estimates at iteration n and
NM is the number of nodes at the finest scale. As a full iter-
ation in either our pyramidal multipole algorithm or in the
multigrid algorithm involve more computations than a sin-
gle monoscale Gauss–Jacobi step, the horizontal axes in
Fig. 6 are in units of ‘‘equivalent” monoscale iterations.
As one would expect, the monoscale algorithm converges
16 For the non-adaptive version of this algorithm, the in-scale coarse-to-
fine Step 2 uses the completely disconnected graph, which reduces the in-
scale computations to several Gauss–Jacobi iterations, and the standard
quadtree in Fig. 1b is used in the fine-to-coarse Step 3.
much more slowly than our pyramidal model which, after
a very few iterations using either fixed (left side of Fig. 6)
or adaptive (right side) subgraphs,17 achieves performance
comparable to multigrid. This would seem to imply that
the method to prefer is the multigrid approach, and indeed,
if one were only interested in these estimates, that might
very well be the case. However, we may be interested in
much more – e.g., computing error variances, in solving
efficiently what we refer to as the re-estimation problem,
or in computing estimates of parameters – and in such sit-
uations, it is important to have consistent statistical mod-
els, which is precisely what our pyramidal models provide.

The multipole algorithm just described provides us with
optimal estimates but not variances. In the next subsection
we will have more to say about computing good approxi-
mations to the error variances, but for now we turn to a
second approach, namely that based on Lagrangian relax-
ation, which also provides bounds on variances. We apply
the general ideas introduced in Section 2.4 by decomposing
our graphical model into a set of models on subgraphs that
separate the multiscale and within scale structure. One of
the graphs used in our decomposition is that capturing only
the multiscale interactions, i.e., the quadtree in Fig. 1b.
While one choice for the remaining subgraphs is the set
of 2-D grids at each individual scale, inference on these
graphs themselves is complex. While we can overcome this
by performing inference within each scale using iterative
procedures (such as an ET-based procedure), we choose
here to illustrate the Lagrangian relaxation methodology
by further decomposing the grid within each scale into
two spanning subgraphs, one including all horizontal edges
within the scale and the other including all vertical edges.
Note that with this full decomposition, each edge of the
pyramidal model in Fig. 1c appears in only one of the com-
ponent subgraphs. Note also that while one of these sub-
graphs is the quadtree that is also used in the multipole
algorithm described previously, its use here is substantially
different, as the key idea in Lagrangian relaxation is that of
ensuring that the (weighted) inference results on the quad-
tree and on each of the individual in-scale subgraphs agree.

Fig. 7 depicts the result of applying Lagrangian relaxa-
tion to the estimation of the field in Fig. 4a based on the
sparse measurements in Fig. 4d. Here the initial decompo-
sition used in the Lagrangian relaxation is as follows:

J 1 ¼ J t þ ð1� 2dÞCTS�1C h1 ¼ ð1� 2dÞCTS�1y;

J 2 ¼ J sv þ dCTS�1C h2 ¼ dCTS�1y;

J 3 ¼ J sh þ dCTS�1C h3 ¼ dCTS�1y;

ð40Þ

where J sv and J sh denote the vertical and horizontal por-
tions of the smoothness terms within each scale captured to-
gether in J s in (32). The constant d assigns weights of
17 While for this example there is little difference between the perfor-
mance using fixed or adaptive subgraphs, there are cases in which using
adaptively chosen subgraphs can offer speed ups. We refer the reader to
the next subsection on re-estimation problems.



Fig. 4. Test surface and measurements: (a) true surface; (b) dense measurements with low-level noise (r2=1); (c) dense measurements with high-level noise
(r2=25) and (d) sparse measurements (10% of the finest scale nodes) with low-level noise (r2=1).

18 Another advantage of Lagrangian relaxation method is that it is easily
extendible to non-Gaussian problems.
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measurements to each subgraph and can be taken as any va-
lue between 0 and 1 to ensure that the J k are positive defi-
nite. For the example shown here we set d ¼ 1=3, which
corresponds to the equal distribution of measurements to
each subgraph. Note in Fig. 7 that while initially the esti-
mates produced using these different subgraphs yield differ-
ent estimates (with the expected artifacts), at convergence,
these estimates agree and the artifacts are no longer present.

In our experiments the Lagrangian relaxation method
required more computational effort than the multipole algo-
rithm (although both of them scale in the same manner with
problem size). Of course the Lagrangian relaxation algo-
rithms also gives bounds on error variances at the same time
and thus might be better compared to the combined use of
our multipole algorithm for the computation of estimates
and the method for computing unbiased estimates of vari-
ances described subsequently in Section 3.4. The tradeoff
in that comparison – using Lagrangian relaxation for both
estimates and bounds on variances versus the use of multi-
pole estimation and unbiased variance estimation – is more
complex, as it involves a tradeoff of computation (although
both variations scale similarly with problem size) versus
accuracy (as the Lagrangian relaxation method provides
only bounds on variances rather than unbiased estimates).18

3.3. Re-estimation

An interesting and important variation on the estima-
tion problem on which we have focused is what we refer
to as the Re-Estimation Problem. In particular, to this point
in our development we have assumed that both the prior
model and the available data are provided to us at the start
and all that is desired are estimates based on these specifi-
cations. However, there are two related but distinct reasons
to examine problems in which, we wish to change the prior
model or provide additional data after estimates based on
our previous specification have been computed. The more
obvious of these is the case in which we find that, based
on the originally supplied data, the smoothness prior, both



Fig. 5. Estimates using adaptive ET iterations on the pyramidal graph when the normalized residual is reduced to 0.01: (a) dense measurements with low-
level noise; (b) dense measurements with high-level noise; and (c) sparse measurements with low-level noise.

3506 M.J. Choi et al. / Comput. Methods Appl. Mech. Engrg. 197 (2008) 3492–3515
within and across-scales, is not appropriate in some regions
of the field being estimated, e.g., because of the presence of
abrupt discontinuities or cliffs. Such cliffs might be detected
automatically by pinpointing locations at which measure-
ments and estimates differ significantly compared to the
variation consistent with the variance computed at that
location.19 An alternative – one that we have encountered
in developing interactive algorithms with analysts –
involves external specification, e.g., by human expert, of
changes that must be made in the prior model (such as
excluding smoothness terms either within scale or across-
scale at particular locations or in particular regions).

There are also cases in which we wish to update esti-
mates given some additional measurement points. This
can occur in some situations in which such data become
available over time (e.g., as may be the case in remote sens-
19 Of course such an automatic detection method requires that we be able
to compute the variances across the field, a topic considered a bit further
in the following subsection and also in [31,32]. Also, see [36] for an
example of such an approach for multiresolution models on quadtrees.
ing applications) or in situations in which an analyst,
unsatisfied with the current estimate, injects additional
measurements in order to improve the resulting estimate.
In either of these cases, the problem of re-estimation can
be stated simply as follows:

� Re-estimation problem: Suppose that we have x̂ ¼ J�1h.
Efficiently compute the updated estimates ~x ¼ ðJ þ DJÞ�1

ðhþ DhÞ, where DJ and Dh have non-zero elements only
in a localized area.

Here a ‘‘localized” area might correspond to a small set
of nearby points or an entire ridge or narrow swath of
points corresponding to a detected discontinuity. The asso-
ciated changes DJ and Dh correspond to changes in the
prior model, both in- and across-scale and the addition
of new measurements.20
20 Note that from (10), (11) changes in the prior model induce changes
only in J, while the incorporation of additional measurements induces
changes in both J and h.
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Fig. 6. RMS errors in surface estimation using multipole-motivated algorithms on the pyramidal graph and corresponding multigrid methods and
iterations on the monoscale model. Left: fixed subgraphs iterations (Gauss–Jacobi). Right: adaptive ET iterations.
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Of course if we initialize any of the iterative algorithms we
have described with the estimates prior to these changes and
carry out iterations with the changes, we will eventually con-
verge to the new optimal estimates. However, what we seek



Fig. 7. Estimates using the Lagrangian relaxation method for sparse measurements. Left: Estimates after the initialization step. Right: Estimates after convergence.
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are algorithms that can do this most rapidly. Because of the
locality of these changes and the multipole statistical structure
of our models, we expect that changes will be at finer scales
only near the regions where changes have been made, and
that primarily coarser scale changes need to be made in
regions farther away. This suggests an adaptive structure with
some similarities to the multipole algorithm described previ-
ously and summarized in Table 1 but with steps adapted to
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Fig. 8. The estimates of a complex surface from operator-supplied sparse
data.
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the locality of the changes that require re-estimation. Specif-
ically, let S denote the region at the finest scale in which
changes have been made, i.e., in which either DJ or Dh is
non-zero. Also, let TS denote the set of (disjoint) quadtrees,
each of which is rooted at a single node at the coarsest scale
and which has finest scale nodes that have non-empty inter-
section with the nodes in S. Our algorithm alternates
Qm ¼

J ½m�1;m�

J ½mþ1;m�

� �T P ½m�1;m�1� P ½m�1;mþ1�

P ½mþ1;m�1� P ½mþ1;mþ1�

� �
J ½m�1;m�

J ½mþ1;m�

� �
1 < m < M ;

J ½1;2�P ½2;2�J ½2;1� m ¼ 1;

J ½M ;M�1�P ½M�1;M�1�J ½M�1;M � m ¼ M :

8>>><>>>: ð42Þ
between tree-based inference iterations in parallel on these
quadtrees and adaptive Gauss–Seidel iterations using the
adaptive algorithm described in [23] and summarized in Sec-
tion 2.4 in order to choose a subset of variables to be updated.
The latter steps provide rapid estimate adjustments, primarily
at finer scales and in the vicinity of S, while the tree-inference
steps propagate these estimates more broadly across the field.

Fig. 8 depicts an example of surface reconstruction from
human-operator input data points. This is typically an iter-
ative process in which the operator will examine a recon-
struction, pinpoint regions in which the smoothness
penalties need to be relaxed or removed, and also add some
additional data points. Because of the human interactive
nature of such a process, it is essential that re-estimation
be performed rapidly. The 1757� 1284 surface shown in
Fig. 8 is the result of applying our pyramidal estimation
algorithm (using 4 scales) to a sparse set of 377,384 human-
and computer entered measurements scattered throughout
the region. The total number of nodes in the pyramidal
graph is on the order of 3 million. We introduce an addi-
tional 100 measurements in the small 17� 17 square indi-
cated in the figure and apply our re-estimation algorithm,
which uses tree-inference steps involving 765 nodes and
adaptive Gauss–Seidel steps using 100 nodes. Fig. 9 depicts
a zoomed-in look at the updated estimates at convergence
(achieved after only 10 iterations) as well as a cross-section
comparing the original estimates, those resulting form our
re-estimation algorithm and truly optimal re-estimates
obtained by re-solving the estimation problem. Note that
the re-estimates and the new optimal estimates are indistin-
guishable; however, the completely recomputed estimates
required iterative computation at all 3 million nodes of
the pyramid, while the re-estimation algorithm adjusted
fewer than 1000 nodes in each of its 10 iterations.

3.4. Computation of variances

In this section, we describe two different approximate
methods for the scalable computation of approximate error
variances for our pyramidal model. The first begins with an
exact expression for the marginal covariance at each scale
obtained by viewing our multiscale model as a Markov
chain in-scale. As derived in [30], the error covariance at
scale m is given by

P ½m;m� ¼ ðJ ½m;m�Þ�1 þ ðJ ½m;m�Þ�1QmðJ ½m;m�Þ
�1
; ð41Þ

where
Here P ½m;m� , ðJ ½m;m�Þ�1 is the conditional covariance at
scale m conditioned on its parent scale m� 1 and its child scale
mþ 1. We denote the ði; jÞ entry of P ½m;m� as �pij. Then, we have
the following lower bound on the error variance at node i:

pii ¼ �pii þ
X
j2V m

X
k2V m

�pij � �pik � ðQmÞjk

> �pii þ �pii � �pii � ðQmÞii þ
X

j2NmðiÞ

X
k2NmðiÞ

�pij � �pik � ðQmÞjk;

ð43Þ

where NmðiÞ is the set of neighboring nodes of i within scale
m. The first equality follows from (41), and the inequality
follows from the fact that within the pyramidal graph,
every partial correlation coefficient and hence every walk-
sum is positive. Then the covariance, as well as the condi-
tional covariance between any pair of nodes is positive. It is
also straightforward to show that every element of the ma-
trix Qm is also non-negative.

As we have seen, conditional covariances decay quickly,
so �pij becomes very small when i and j are not neighbors.
Therefore, although the lower bound in (43) is not tight,
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Table 2
The coarse-to-fine variance computation using the low-rank approxima-
tion algorithm

(1) Compute the exact variances of nodes at scale 1
(2) For all finer scales, use the low-rank variance approximation

algorithm (see Section 2.5) to compute conditional covariance
P ½m;m� conditioned on adjacent scales

(3) Initialize the variances of nodes at finer scales as the conditional
variances computed at Step 2, i.e. qð0Þi ¼ �pii for all i 2 V n V 1

(4) At nth coarse-to-fine sweep, for m ¼ 2; 3; . . . ;M :
(a) Compute eQðnÞm in (45) using the approximate variances of

nodes at adjacent scales
(b) Compute the lower bound on variances qðnÞi < pii for i 2 V m

using (44)
(5) Repeat Step 4 until a stopping criterion is met
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it closely approximates the true value. In addition, we can
estimate �pij rapidly for j ¼ i or j 2 NmðiÞ using the low-
rank variance approximation algorithm [31] discussed in
Section 2.5.

This is only part of the story, as we must also consider
the computation of the matrix Qm in (42). While the various
blocks of the J matrix appearing in this expression are
sparse (with no more than four non-zero elements per
row), the middle term in the factor is in general full, repre-
senting the joint covariance of all nodes at scales m� 1 and
mþ 1. Exact computation of this matrix scales cubically
with the number of nodes at these scales, and its storage
scales quadratically. This is problematic (especially at finer
scales) and, in fact, becomes infeasible for large random
fields. As the entire idea of using multiscale models such
as those developed here is to develop completely scalable
methods, we are led to introduce an approximation. In par-
ticular, since we are interested in computing only a subset
of the elements of Qm, we further relax the bound in (43)
and replace this joint covariance for m� 1 and mþ 1 by
keeping only the diagonal elements. This then leads to a
coupled set of equations for approximate variances which
can be iterated using coarse-to-fine sweeps. Let qðnÞi denote
the approximate variance at node i 2 V m computed in the
nth iteration. Then, from (43) we have that
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21 Here we have ignored the constant 1
2 N logð2pÞ in the log-partition

function.
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qðnÞi ¼ �pii þ �pii � �pii � ðeQðnÞm Þii þ
X

j2NmðiÞ

X
k2NmðiÞ

�pij � �pik

� ðeQðnÞm Þjk; ð44Þ

where eQðnÞm is defined as follows:

eQðnÞm ¼
J ½m�1;m�

J ½mþ1;m�

� �T !ðnÞ½m�1� 0

0 !ðn�1Þ
½mþ1�

0@ 1A J ½m�1;m�

J ½mþ1;m�

� �
1<m<M ;

J ½M ;M�1�!
ðnÞ
½M�1�J ½M�1;M � m¼M ;

8>>><>>>:
ð45Þ

!ðnÞ½m� is a diagonal matrix with ith diagonal element corre-
sponding to the approximate variance at i 2 V m computed
at nth coarse-to-fine sweep, i.e., qðnÞi . It is tractable to com-
pute the variances of the nodes at the coarsest scale exactly,
so we define !ðnÞ½1� to be a diagonal matrix with entries taken
from P ½1;1�. Table 2 summarizes the iterative variance
approximation algorithm.

Fig. 10 illustrates this bound (referred to as ‘‘low-rank”

in the figure) as well as the upper bound provided directly
by Lagrangian relaxation for the example shown in Fig. 4.
Note that the Lagrangian relaxation bound is quite loose,
while in these cases the lower bounds are quite close to
the true values. This is not, however, always the case, as
in some sparse measurement cases even conditional corre-
lations decay slowly. An alternative that provides accurate
variances even in such cases is the low-rank method using
spliced wavelet bases developed in [32]. In our case, if we
are only interested in variances at the finest scale, we can
take B ¼ ð0;BT

MÞ
T with 0 for all coarser scales. Fig. 11 illus-

trates the very accurate variances estimates obtained for
the same three examples using this method.
3.5. Parameter estimation

The tractable methods we have described both for the
computation of estimates and variances allows us to derive
an efficient expectation-maximization (EM) algorithm
[2,38] for the estimation of the parameters of our model,
namely the parameter u that controls the within- and
across-scale smoothness terms in our prior model (see
(35) and (36)) and c, the reciprocal of the measurement
noise variance. If we define the parameter vector
h ¼ ðh1; h2Þ ¼ ðu; cÞ, then our parameterized probability
distribution can be written as in (2), with UðhÞ ¼
Uðh1Þ þ Uðh2Þ, with21
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Fig. 11. A cross-section of estimates of variances using the wavelet-based low-rank approach on the pyramidal graph: (a) dense measurements with low-
level noise; (b) dense measurements with high-level noise; and (c) sparse measurements with low-level noise.
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/1ðxÞ ¼ �
1

2
xTJ priorx

/2ðx; yÞ ¼ �
1

2
ky � Cxk2

U1ðh1Þ ¼ �
1

2
log detðuJ priorÞ

U2ðh2Þ ¼ �
1

2
log detðcCTCÞ

ð46Þ

where k � k2 denotes the standard squared Euclidean norm.
The E-step of the EM algorithm computes the expected

values of the /i using the conditional mean of x and the
error covariances computed using the previous iteration’s
values of the parameter estimates. Some simple matrix
manipulations yields the following:

g1 , E½xTJ priorx j y; hðn�1Þ�

¼ trðJ prior
bP ðn�1ÞÞ

þ ðx̂ðn�1ÞÞTJ priorx̂ðn�1Þ: ð47Þ

Due to the sparsity of J prior, we only need variances of
individual nodes and covariances between pairs of neigh-
boring nodes to perform this computation. Similarly

g2 , E½ky � Cxk2ky; hðn�1Þ� ¼ ky � Cx̂ðn�1Þk2

þ trðCbP ðn�1ÞCTÞ; ð48Þ
which can be computed from individual node variances.
Thus all these quantities can be computed exactly or with
accurate approximations using the inference algorithms de-
scribed previously.

The M-step then computes updated estimates of the
parameters. Thanks to the form of the log-partition func-
tion for our model, this maximization can be performed
analytically, leading to the following expressions for the
next parameter estimates:

uðnÞ ¼ N
g1

; ð49Þ

cðnÞ ¼ N meas

g2

; ð50Þ

where N is the number of nodes in the graph, and Nmeas is
the number of measurements.

As the estimation of the noise variance is straightfor-
ward and standard, we illustrate only the result of estimat-
ing the parameter u controlling the level of smoothness in
our prior. In this case, we really cannot think of obtaining
multiple, independent samples of the underlying random
field, although we can consider using multiple sets of mea-

surements of that field. It is not difficult in this case to see
that the estimation of u depends only weakly on the
number of measurement sets available but much more
strongly on the overall size of the underlying field, with
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more accurate estimates resulting from data over larger
fields. Fig. 12 illustrates this for three different examples
of our model (corresponding to different choices for
u and c) where each curve displays estimates of u for fields
of differing sizes (where for the larger-sized fields we used
our adaptive multipole algorithm to compute estimates in
each E step and the spliced wavelet method for computing
the needed error variances and covariances).

4. Discussion

In this paper, we have introduced a class of Gaussian
multiscale models defined on pyramidal lattices and
described key properties of these models. Models of this
type have been proposed before, but, thanks to very recent
advances in inference for graphical models, we not only can
provide additional motivation for these models but also
develop a number of new and scalable algorithms for the
solution of inference problems for these models.

One approach to the computation of optimal estimates
for these models has conceptual ties to so-called multipole
algorithms for the solution of partial differential equations.
This algorithm takes advantage of the fact that long-distance
correlations are mostly the result of the pyramidal structure
of the models, while conditional correlations within scale are
very local. These features led to an iterative algorithm that
alternates global propagation of information using an
embedded spanning tree and scale-by-scale local updates.
Using recent results on so-called walk-sum analysis, such
an algorithm is guaranteed to converge to the optimal esti-
mates; moreover walk-sum analysis provides the basis for
the adaptive choice of spanning trees and local updates at
each iteration in order to achieve very rapid convergence.
Furthermore, walk-sum analysis also leads to very efficient
methods for so-called re-estimation problems in which we
wish to modify an estimated field when local changes are
made to the prior model or to the available data. A second
approach to optimal estimation is based on so-called
Lagrangian relaxation methods in which estimation is simul-
taneously carried out on a set embedded subgraphs (on each
of which estimation is tractable), with coordination at each
iteration to drive the separate inference results to common
(and optimal) estimates and weighted error variances (that
are upper bounds on the optimal values).

We have also presented two alternate methods for com-
puting accurate approximations to the error variances in a
fully scalable manner. Both of these make use of very
recent results on so-called low-rank approximations using
‘‘spliced bases” to exploit the correlation structure of the
field of interest in order to produce unbiased estimates of
guaranteed accuracy. One of our approaches yields an iter-
ative scale-by-scale method for approximation of variances
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that also exploits the fast correlation decay at any scale
when conditioned on neighboring scales. The other exploits
the long-distance correlation of the finest scale of our pyra-
midal models and uses spliced wavelet bases for very accu-
rate approximations to the variances. We also
demonstrated that the structure of our models and the scal-
able algorithms we have developed lead to a very efficient
expectation-maximization algorithm for the estimation of
model parameters.

This work suggests a variety of further lines of inquiry.
Two such lines are related to the construction and meaning
of the coarser scales in these pyramidal models. One of
these focuses on giving physical meaning to the variables
represented at these coarser scales. Indeed, some of the
motivation we provided for our models comes from prob-
lems in which the available data on which we wish to base
our model are themselves at multiple scales. Developing
this idea will also allow our framework to seamlessly fuse
data at multiple resolutions. An alternative point of view
concerning the coarser scale variables is that they are there
simply for statistical convenience – indeed we have shown
that it is the inter-scale structure that captures long-dis-
tance correlations. As a result, it is of interest to consider
designing these coarser scale variables and the relationships
between scales in order to simplify the intrascale models –
e.g., to thin the graphs within each scale in a principled
manner. Such thinning methods are at the core of
entropy-based methods such as those used in [2,15].

We anticipate that the investigations just described will
have areas of overlap with wavelet-based representations
– e.g., in which coarser variables represent sets of wavelet
and scaling coefficients. Such an approach has been devel-
oped for purely quadtree models [35], and it is of interest to
consider its extension to this richer framework. In addition,
using wavelets may open up the possibility of developing
new algorithms for non-linear wavelet cascade models [39]
that are capable of directly capturing abrupt changes –
e.g., due to edges in images or cliffs in surfaces. More gen-
erally, the extension of these ideas to pyramidal graphical
models with discrete states or non-Gaussian variables is
of considerable interest and applicability, something that
can already be seen in the literature [3–8,33]. Developing
methods for constructing such models based on maximum
entropy principles and then developing inference algo-
rithms exploiting the advances described in this paper rep-
resent exciting and promising avenues for further work.

References

[1] A.S. Willsky, Multiresolution Markov models for signal and image
processing, Proc. IEEE 90 (August) (2002) 1396–1458.

[2] J.K. Johnson, A.S. Willsky, A recursive model-reduction method for
estimation in Gaussian Markov random fields, IEEE Trans. Image
Process 17 (1) (2008) 70–83.

[3] C. Graffigne, F. Heitz, P. Perez, F. Prêteux, M. Sigelle, J. Zerubia,
Hierarchical Markov random field models applied to image analysis:
a review, in: SPIE Conference on Neural, Morphological Stochastic
Methods in Image Signal Processing, vol. 2568, 1995, pp. 12–17.
[4] F. Heitz, P. Perez, P. Bouthemy, Multiscale minimization of global
energy functions in some visual recovery problems, in: CVGIP: Image
Understanding, vol. 59, no. 1, 1994, pp. 125–134.

[5] Z. Kato, M. Berthod, J. Zerubia, Multiscale Markov random field
models for parallel image classification, in: Proceedings ICCV, Berlin,
May 1993.

[6] Z. Kato, M. Berthod, J. Zerubia, A hierarchical Markov random field
model and multitemperature annealing for parallel image classifica-
tion, Graph. Model Image Process. 58 (1) (1996) 18–37.

[7] Z. Kato, J. Zerubia, M. Berthod, Unsupervised parallel image
classification using Markovian models, Pattern Recogn. 32 (4) (1999)
591–604.

[8] J. Li, R.M. Gray, R.A. Olshen, Multiresolution image classification
by hierarchical modeling with two-dimensional hidden Markov
models, IEEE Trans. Image Process. 46 (August) (2000) 1826–1841.

[9] B. Bollobás, Modern Graph Theory, Springer, 1998.
[10] R. Diestel, Graph Theory, Springer, 2000.
[11] M.I. Jordan, An Introduction to Graphical Models, MIT Press, in press.
[12] S.L. Lauritzen, Graphical Models, Oxford University Press, Oxford,

UK, 1996.
[13] M.I. Jordan, Graphical models, Stat. Sci. 19 (2004) 140–155 (Special

Issue on Bayesian Statistics).
[14] J. Pearl, Probabilistic Reasoning in Intelligent Systems, Morgan

Kaufmann, San Mateo, CA, 1988.
[15] J.K. Johnson, V. Chandrasekaran, A.S. Willsky, Learning Markov

structure by maximum entropy relaxation, in: 11th International
Conference on Artificial Intelligence and Statistics (AISTATS’07),
San Juan, Puerto Rico, March 2007.

[16] T. Kailath, A.H. Sayed, B. Hassibi, Linear Estimation, Prentice Hall,
2000.

[17] K. Plarre, P. Kumar, Extended message passing algorithm for
inference in loopy Gaussian graphical models, Ad Hoc Networks
(2004).

[18] D.M. Malioutov, J.K. Johnson, A.S. Willsky, Walk-sums and belief
propagation in Gaussian graphical models, J. Mach. Learning Res. 7
(October) (2006) 2003–2030.

[19] Y. Weiss, W.T. Freeman, Correctness of belief propagation in
Gaussian graphical models of arbitrary topology, Neural Computat.
13 (2001) 2173–2200.

[20] M.R. Luettgen, W.C. Karl, A.S. Willsky, R.R. Tenney, Multiscale
representations of Markov random fields, IEEE Trans. Signal
Process. 41 (December) (1993) 3377–3396.

[21] J.K. Johnson, Estimation of GMRFs by recursive cavity modeling,
Master’s thesis, MIT, Cambridge, MA, March 2003.

[22] J.K. Johnson, D.M. Malioutov, A.S. Willsky, Walk-sum interpre-
tation and analysis of Gaussian belief propagation, in: advances in
Neural Information Processing Systems, vol. 18, 2006, pp. 579–
586.

[23] V. Chandrasekaran, J.K. Johnson, A.S. Willsky, Estimation in
Gaussian graphical models using tractable subgraphs: A walk-sum
analysis, IEEE Trans. Signal Process., in press.

[24] E.B. Sudderth, M.J. Wainwright, A.S. Willsky, Embedded trees:
estimation of Gaussian processes on graphs with cycles, IEEE Trans.
Signal Process. 52 (11) (2004) 3136–3150.

[25] J.K. Johnson, D.M. Malioutov, A.S. Willsky, Lagrangian relaxation
for MAP estimation in graphical models, in: 45th Annual Allerton
Conference on Communication, Control and Computing, 2007.

[26] M.J. Wainwright, T.S. Jaakkola, A.S. Willsky, A new class of upper
bounds on the log partition function, IEEE Trans. Inform. Theory 51
(7) (2005) 2313–2335.

[27] M.J. Wainwright, T.S. Jaakkola, A.S. Willsky, MAP estimation via
agreement on (hyper) trees: Message-passing and linear-programming
approaches, IEEE Trans. Inform. Theory 51 (11) (2005) 3697–3717.

[28] V. Kolmogorov, Convergent tree-reweighted message passing for
energy minimization, IEEE Trans. on Pattern. and Mach. Intell. 28
(10) (2006) 1568–1583.

[29] J.K. Johnson, Convex relaxation methods for graphical models, MIT,
Cambridge, MA, in preparation.



M.J. Choi et al. / Comput. Methods Appl. Mech. Engrg. 197 (2008) 3492–3515 3515
[30] M.J. Choi, Multiscale Gaussian graphical models and algorithms for
large-scale inference, Master’s thesis, MIT, Cambridge, MA, May 2007.

[31] D.M. Malioutov, J.K. Johnson, A.S. Willsky, Low-rank variance
estimation in large-scale GMRF models, in: IEEE International
Conference on Acoustics, Speech, and Signal Processing, Toulouse,
France, May 2006.

[32] D.M. Malioutov, J.K. Johnson, A.S. Willsky, GMRF variance
approximation using spliced wavelet bases, in: IEEE International
Conference on Acoustics, Speech, and Signal Processing, Honolulu,
Hawaii, April 2007.

[33] B. Gidas, A renormalization group approach to image processing
problems, IEEE Trans. Pattern Anal. Mach. Intell. 11 (2) (1989) 164–
180.

[34] W.L. Briggs, A Multigrid Tutorial, SIAM, Philadelphia, PA, 1987.
[35] K. Daoudi, A.B. Frakt, A.S. Willsky, Multiscale autoregressive
models and wavelets, IEEE Trans. Inform. Theory 45 (3) (1999) 828–
845.

[36] P.W. Fieguth, W.C. Karl, A.S. Willsky, Efficient multiresolution
counterparts to variational methods for surface reconstruction,
Comput. Vision Image Underst. 70 (2) (1998) 157–176.

[37] L. Greengard, V. Rokhlin, A fast algorithm for particle simulations,
J. Comput. Phys. 73 (2) (1987) 325–348.

[38] A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum-likelihood from
incomplete data via the EM algorithm, J. Roy. Stat. Soc. 39 (1977) 1–
38.

[39] M.J. Wainwright, E.P. Simoncelli, A.S. Willsky, Random cascades on
wavelet trees and their use in modeling natural images, Appl.
Computat. Harmonic Anal. 11 (2001) 89–123.


	Multiscale stochastic modeling for tractable inference and data assimilation
	Introduction
	Preliminaries
	Graphical models
	Statistical inference in graphical models
	Walk-sum interpretation of Gaussian estimation
	Algorithms that exploit tractable subgraphs
	Wavelet-based low-rank variance estimation

	Multipole stochastic models and algorithms
	The model and its properties
	Computation of estimates
	Re-estimation
	Computation of variances
	Parameter estimation

	Discussion
	References


