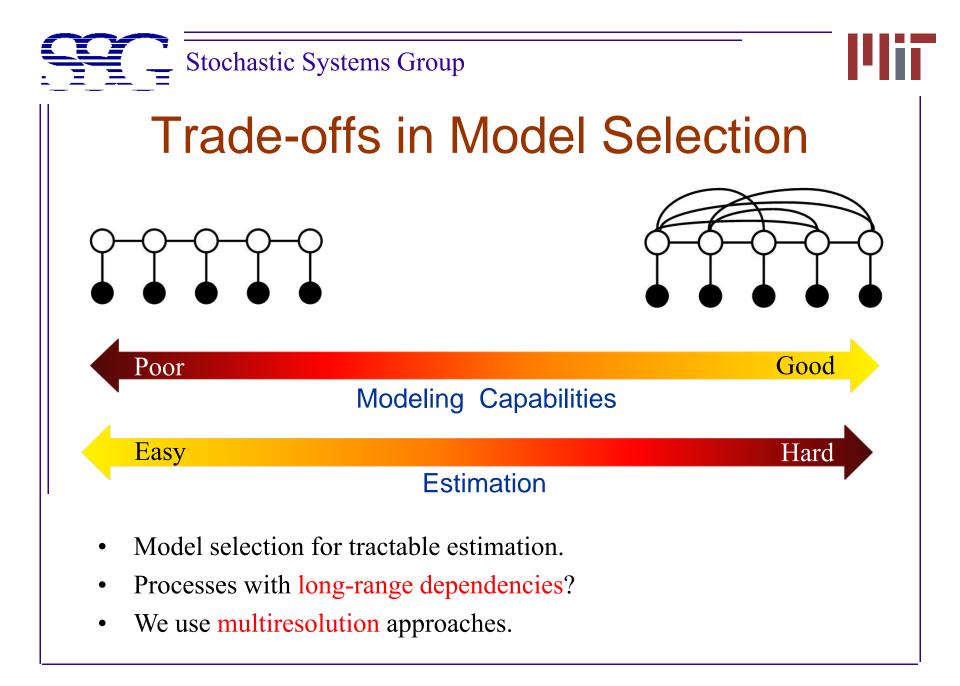


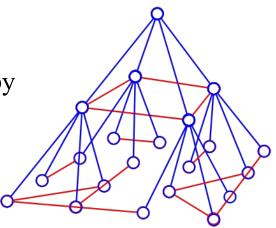
Maximum Entropy Relaxation for Multiscale Graphical Model Selection

Myung Jin Choi, Venkat Chandrasekaran, and Alan S. Willsky

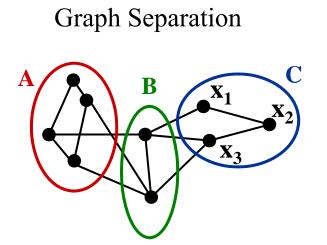
Laboratory for Information and Decision Systems Massachusetts Institute of Technology April 3, 2008



- Background
 - Graphical Models
 - Maximum Entropy Modeling
- Multiscale Modeling Using Maximum Entropy
 - Introducing coarser scale variables.
 - Learning multiscale models with loops.
- Simulation Example
 - Modeling and Estimation Performance
- Conclusion and Future Work



Graphical Models



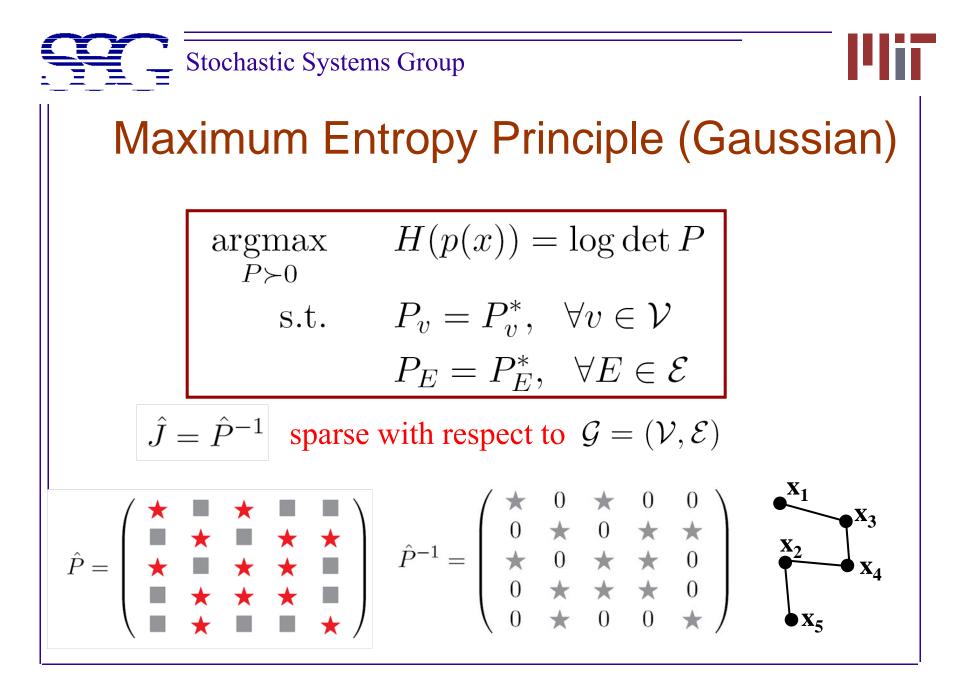
Conditional Independence

 $p(x_A, x_C | x_B)$ $= p(x_A | x_B) p(x_C | x_B)$

e.g. Gaussian distribution $p(x) \propto \exp\{-\frac{1}{2}x^T P^{-1}x\}$ $J = P^{-1}$

The inverse covariance matrix sparse with respect to $\mathcal{G} = (\mathcal{V}, \mathcal{E})$

$$J_{ij} \neq 0 \Leftrightarrow \{i, j\} \in \mathcal{E}$$



Maximum Entropy Relaxation (MER)

(Johnson, Chandrasekaran, Willsky 07)

argmax

$$P \succ 0$$

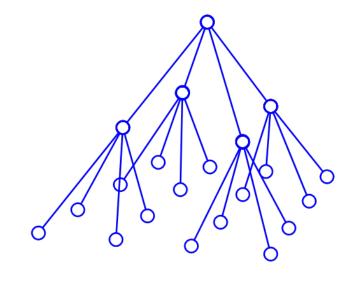
s.t. $H(p(x)) = \log \det P$
 $d_1(P_v, P_v^*) \le \delta_v, \quad \forall v \in \mathcal{V}$
 $d_2(P_E, P_E^*) \le \delta_E, \quad \forall E \in \mathcal{E}$

 $\hat{J} = \hat{P}^{-1}$ sparse with respect to $\mathcal{G} = (\mathcal{V}, \mathcal{E}_{active})$

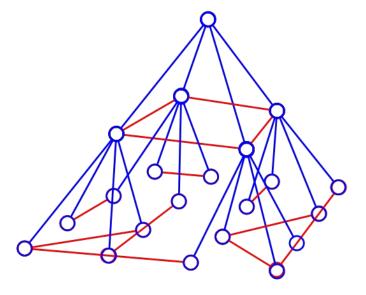
$$\mathcal{E}_{active} = \{ E \mid d_2(\hat{P}_E, P_E^*) = \delta_E \} \subset \mathcal{E}$$

Plii

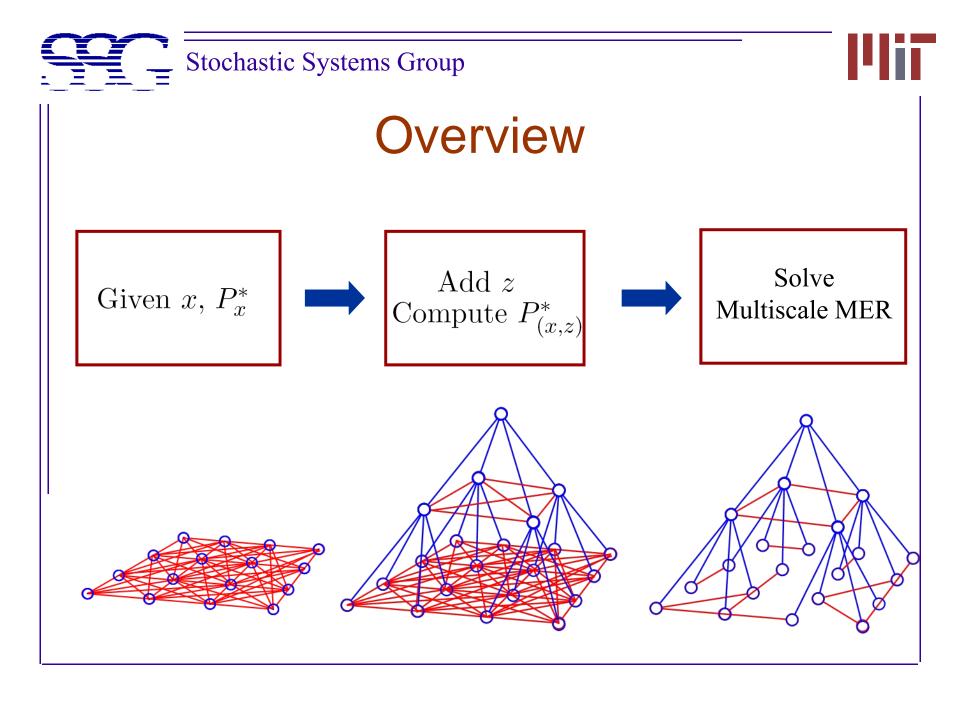
Multiscale Models and Algorithms



- Multiscale tree models
 - Estimation is easy.
 - Limited modeling capabilities.



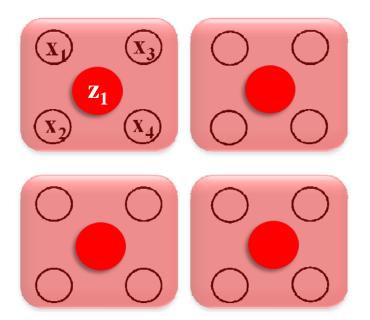
- Multiscale models with loops
 - Efficient estimation using hierarchy (Choi and Willsky, 07)



Introducing Coarse Variables

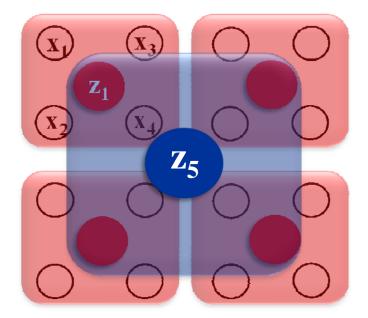
- (\mathbf{x}_1) (\mathbf{x}_3) \bigcirc \bigcirc
- (\mathbf{x}_2) (\mathbf{x}_4) (
- Original random variables: ${\mathcal X}$
- Target covariance: P_x^*

Introducing Coarse Variables



- Original random variables: x
- Target covariance: P_x^*
 - Coarser scale variables: \mathcal{Z} e.g.: $z_1 = \frac{1}{4} \sum_{i=1}^{4} x_i + n$
- Joint target covariance $P^*_{(x,z)}$ \rightarrow Input to multiscale MER.

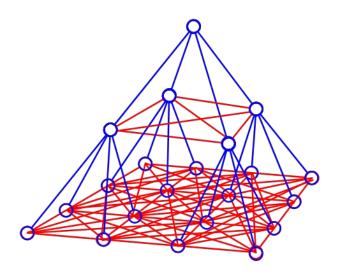
Introducing Coarse Variables



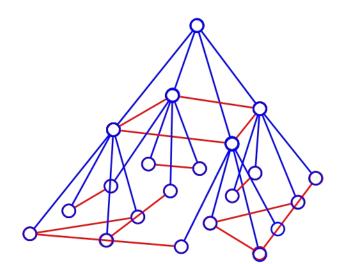
- Original random variables: \mathcal{X}
- Target covariance: P_x^*
- Coarser scale variables: \mathcal{Z} e.g: $z_1 = \frac{1}{4} \sum_{i=1}^{4} x_i + n$
- Joint target covariance $P^*_{(x,z)}$ \rightarrow Input to multiscale MER.

Multiscale MER

- Target covariance $P^*_{(x,z)}$
- Maximize entropy (s.t. constraints graph)
- Efficient primal-dual interior point method.



Constraints Graph



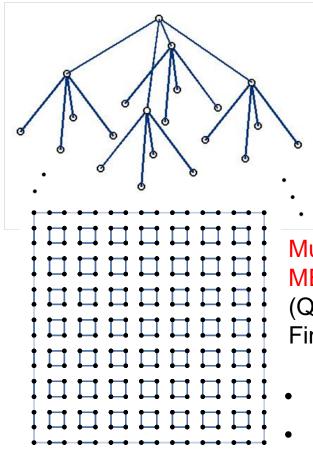
Multiscale MER Solution

Simulation Example

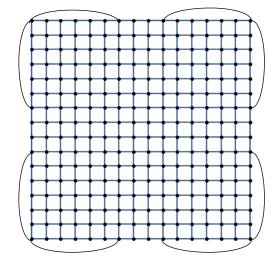
- 256 Gaussian variables arranged spatially on a 16x16 grid.
- Covariance with polynomial decay:

- Compare four models
 - The original model (fully connected)
 - Single-scale MER (without coarse variables)
 - Multiscale tree (one coarse variable per four children)
 - Multiscale MER

Models Learned

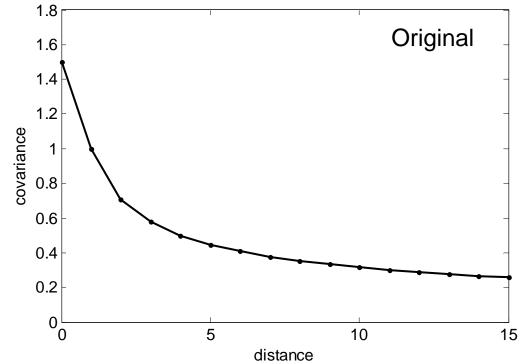


Multiscale MER solution (Quadtree + Finest scale)



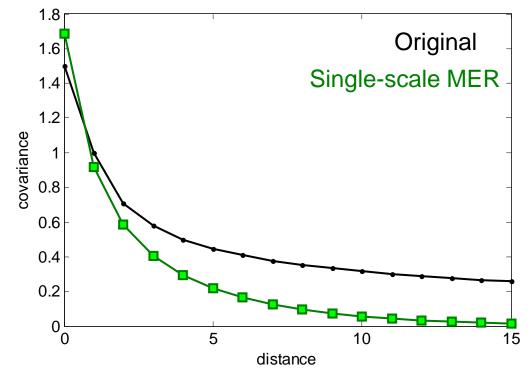
Single-scale MER solution

- More number of variables yet simple structure.
- Efficient algorithms available.

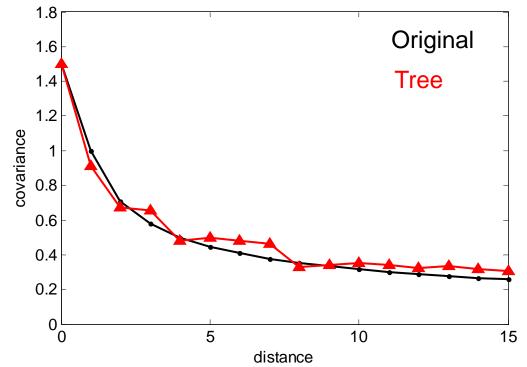


• Covariance decay in distance.

Stochastic Systems Group

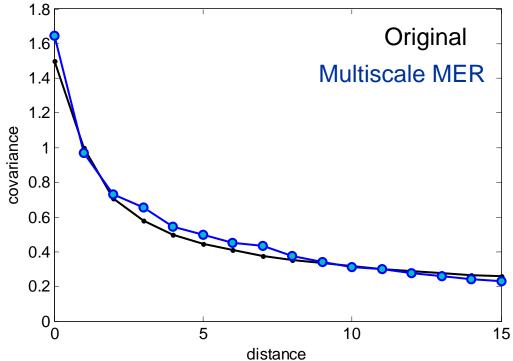


• Covariance decay in distance.



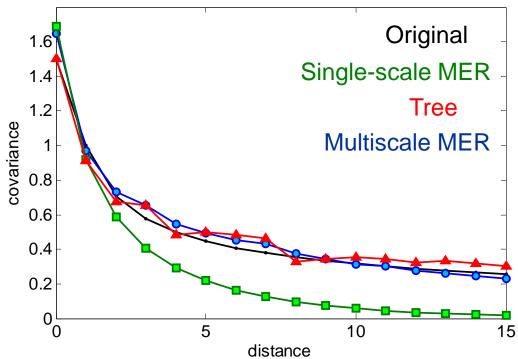
• Covariance decay in distance.

Stochastic Systems Group



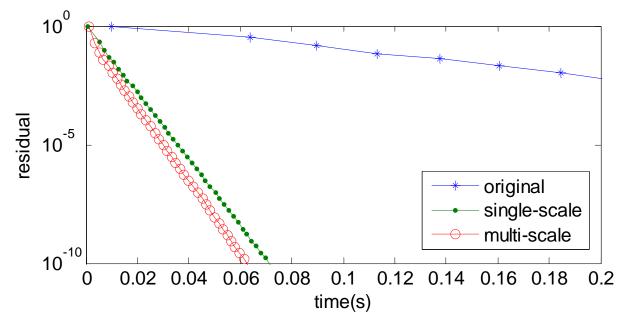
- Covariance decay in distance.
- Multiscale model captures long-range dependencies without blocky artifacts.

Stochastic Systems Group



- Covariance decay in distance.
- Multiscale model captures long-range dependencies without blocky artifacts.

Estimation Performance



- Estimation given sparse noisy measurements.
- Residual error vs. computation time.
- Adaptive embedded trees, multipole-motivated estimation methods.
- Multiscale MER solution 10% faster than single-scale MER.

Conclusion and Future Work

- Multiscale modeling based on maximum entropy relaxation.
- Coarse hidden variables as a computational tool.

Poor		Good
	Modeling Capabilities	
Easy		Hard
	Estimation	

- Future work
 - Adaptive introduction of hidden variables.