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Trade-offs in Model Selection

• Model selection for tractable estimation.
• Processes with long-range dependencies?
• We use multiresolution approaches.

Estimation

Modeling  Capabilities
Poor Good

Easy Hard
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Outline
• Background

– Graphical Models
– Maximum Entropy Modeling

• Multiscale Modeling Using Maximum Entropy
– Introducing coarser scale variables.
– Learning  multiscale models with loops.

• Simulation Example
– Modeling and Estimation Performance

• Conclusion and Future Work
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Graphical Models

Graph Separation   Conditional Independence

A B Cx1 x2

x3

e.g. Gaussian distribution  

The inverse covariance matrix sparse with respect to
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Maximum Entropy Principle (Gaussian)
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Maximum Entropy Relaxation (MER)

sparse with respect to

(Johnson, Chandrasekaran, Willsky 07)
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Multiscale Models and Algorithms

• Multiscale tree models
– Estimation is easy.
– Limited modeling capabilities.

• Multiscale models with loops
– Efficient estimation using 

hierarchy (Choi and Willsky, 07)
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Overview

Solve
Multiscale MER
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Introducing Coarse Variables

• Original random variables: 
• Target covariance: 
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Introducing Coarse Variables

• Coarser scale variables: 
e.g.:

x1

x2

x3

x4

• Original random variables: 
• Target covariance:

• Joint target covariance
→ Input to multiscale MER.

z1
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Introducing Coarse Variables

• Coarser scale variables: 
e.g:

• Original random variables: 
• Target covariance:

• Joint target covariance
→ Input to multiscale MER.
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Multiscale MER

• Target covariance
• Maximize entropy (s.t. constraints graph)
• Efficient primal-dual interior point method.

Multiscale MER SolutionConstraints Graph
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Simulation Example
• 256 Gaussian variables arranged spatially on a 16x16 grid.
• Covariance with polynomial decay:

• Compare four models
− The original model (fully connected)
− Single-scale MER (without coarse variables)
− Multiscale tree (one coarse variable per four children)
− Multiscale MER

d = 5
d = 1
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Models Learned

• More number of variables yet simple structure.
• Efficient algorithms available.

Multiscale 
MER solution 
(Quadtree +      
Finest scale)

Single-scale 
MER solution
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Modeling Performance

• Covariance decay in distance.
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Modeling Performance

• Covariance decay in distance.
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Modeling Performance

• Covariance decay in distance.
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Modeling Performance

• Covariance decay in distance.
• Multiscale model captures long-range dependencies without blocky artifacts.
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Modeling Performance

• Covariance decay in distance.
• Multiscale model captures long-range dependencies without blocky artifacts.

Multiscale MER

Original

Tree
Single-scale MER
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Estimation Performance

• Estimation given sparse noisy measurements.
• Residual error vs. computation time.
• Adaptive embedded trees, multipole-motivated estimation methods.
• Multiscale MER solution 10% faster than single-scale MER.
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Conclusion and Future Work

• Multiscale modeling based on maximum entropy relaxation.

• Coarse hidden variables as a computational tool.

• Future work
– Adaptive introduction of hidden variables.

Estimation

Modeling  Capabilities
Poor Good

Easy Hard
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