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ABSTRACT

We consider the problem of learning multiscale graphical
models. Given a collection of variables along with covariance
specifications for these variables, we introduce hidden vari-
ables and learn a sparse graphical model approximation on the
entire set of variables (original and hidden). Our method for
learning such models is based on maximizing entropy over an
exponential family of graphical models, subject to divergence
constraints on small subsets of variables. We demonstrate the
advantages of our approach compared to methods that do not
use hidden variables (which do not capture long-range be-
havior) and methods that use tree-structure approximations
(which result in blocky artifacts).

Index Terms— Graphical models, multiscale models,
maximum entropy principle, model selection, hidden vari-
ables

1. INTRODUCTION

Multiscale priors have been widely used in large-scale sig-
nal processing applications to model statistical dependencies
among variables [1]. Multiscale representations can lead to
efficient algorithms, and are useful when the phenomenon of
interest, the available data, or the estimation objectives in-
volve behavior at multiple scales. In this paper, we view mul-
tiscale models as graphical models [2] in which the nodes of
the graph represent random variables and the edge structure
specifies the conditional independence (Markov) properties
among the variables.
Multiscale models defined on trees lead to efficient linear-

complexity estimation and inference algorithms [1]. How-
ever, tree-structured models possess limited modeling capa-
bilities; for example, tree-structured Gaussian models often
lead to blocky artifacts in the resulting covariance approxi-
mations [1]. In order to model a richer class of statistical
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dependencies among variables, one often requires graphical
models containing cycles. As a result, significant effort has
been, and still is being, devoted to tractable approximate esti-
mation algorithms for loopy graphical models. Motivated by
the development of such algorithms, we consider the problem
of learning multiscale graphical models containing cycles.
Specifically, given a collection of variables x and a desired
covariance structure among these variables ηx, we construct
additional coarse-scale hidden variables z and build a mul-
tiscale graphical model on the entire collection {x, z} with
two objectives. First, we attempt to find a global multiscale
model on {x, z} so that the marginal statistics on variables
x are close to the specified ηx. Second, we seek a global
structure that is a sparse graphical model on {x, z}, which
would permit tractable approximate estimation and inference
algorithms. Our approach for finding such models is based
on maximizing entropy subject to divergence constraints on
small subsets of variables [3]. When appropriately viewed
in the context of exponential families, this formulation re-
duces to a convex optimization program that can be efficiently
solved using a primal-dual interior-point algorithm.
In Section 2, we provide a brief background on graphical

models and exponential families. We discuss our approach for
learning multiscale graphical models in Section 3. We also
provide simulation results that demonstrate the advantages of
the multiscale framework in terms of modeling and estimation
performance. Our discussion is focused on Gaussian models,
with results for discrete models deferred to a longer paper.
Finally, we conclude with a brief discussion in Section 4.

2. BACKGROUND

2.1. Graphical models and Exponential families

A graphical model [2] is a collection of random variables in-
dexed by the vertices of a graph G = (V, E); each vertex
v ∈ V corresponds to a random variable xv , and where for
any A ⊂ V , xA = {xv|v ∈ A}. The set E is some subset

18891-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008



of
(
V
2

)
, the set of all pairs of edges.1 A distribution p(x) is

Markov with respect to a graph G = (V, E) if for any sub-
sets A,B ⊂ V that are separated by some S ⊂ V (each path
from a node in A to a node in B passes through a node in S),
the subset of variables xA is conditionally independent of xB

given xS , i.e. p(xA, xB |xS) = p(xA|xS) · p(xB |xS).
A distribution being Markov with respect to a graph im-

plies that it can be decomposed into local functions in a very
particular way [2]. We elaborate on this connection for expo-
nential family distributions [4]. Let X be either a continuous
or discrete sample space. We consider parametric families of
probability distributions with support X|V | defined by

pθ(x) = exp{θT φ(x) − Φ(θ)}, (1)

where φ : X
|V | → R

d are the sufficient statistics, θ are the
exponential parameters, and Φ(θ) = log

∫
exp(θT φ(x))dx

is the log-partition function.2 The family is defined by the set
Θ �

{
θ ∈ R

d : Φ(θ) < ∞} ⊂ R
d of all normalizable θ. A

class of graphical models is obtained by defining the collec-
tion of statistics φ to be local functions over small subsets of
variables. Let φ = {φv(xv), v ∈ V } ∪ {φE(xE), E ∈ (

V
2

)}
define a collection of node and pairwise statistics, where each
φE(xE) (or φv(xv)) is only a function of the variables xE (or
variable xv). Specializing the Hammersley-Clifford theorem
[2] to such exponential family distributions, we have that if
pθ is Markov with respect to G = (V, E), then θ is sparse
according to G, i.e. θE = 0 for E /∈ E .
By taking expectations of the statistics φ with respect to

pθ(x), we obtain the moment parameters η = Epθ
{φ(x)}.

Let M denote the set of realizable moment parameters that
can be obtained under expectations with respect to some θ ∈
Θ. The above expectation defines a bijective map Λ : Θ →
M; thus, an exponential family distribution has an alternate
moment parameterization given by pη(x) = pΛ−1(η)(x).
Entropy and Divergence: The entropyH(η) � H(pη(x))

of an exponential family distribution parameterized by mo-
ments η is the negative of the convex conjugate of the
log-partition function; thus, H(η) is concave as a func-
tion of η. The Kullback-Leibler divergence D(η‖ν) �
D(pη(x)‖pν(x)) is the Bregman distance induced by the
entropy function. As a result, D(η‖ν) is convex with respect
to the moment parameters η, keeping the moments ν fixed.
We refer the reader to [4] for more background.
Gaussian models as an exponential family: Consider

a zero-mean3 Gaussian graphical model with a symmetric
positive-definite covariance matrix P [2]. A natural para-
meterization for such a model that provides a connection to
exponential families is in terms of the information matrix
J = P−1, so that p(x) ∝ exp

{− 1
2xT Jx

}
. Thus, if p(x)

is Markov with respect to G = (V, E), then Jvu = Juv = 0
1This notion can be generalized to include high-order edges involving

more than two variables.
2The integral must be replaced by a sum for discrete models.
3The mean vector does not play a significant role in model selection.

if and only if the edge {v, u} /∈ E for every pair of ver-
tices v, u ∈ V . Defining statistics φv(xv) = x2

v,∀v ∈ V ,
and φv,u(xv, xu) = xvxu, ∀{v, u} ∈ (

V
2

)
, we obtain θ pa-

rameters as θ =
{− 1

2Jvv,∀v
} ∪ {−Jvu,∀{v, u}} and η

parameters as η = {Pvv, ∀v} ∪ {Pvu,∀{v, u}}. A key point
here is that the marginal density for a subset of variables
is determined by the corresponding subset of the moment
parameters (a principle submatrix of P ).

2.2. Maximum entropy modeling

The maximum-entropy principle states that subject to linear
constraints on a set of statistics, the entropy-maximizing dis-
tribution among all distributions lies in the exponential fam-
ily based on those statistics used to define the constraints.
Consider the following restricted maximum-entropy problem
within the framework of exponential family distributions [4].
Let η be the moment parameters of an exponential family, and
let ηV and ηE represent the subset of moments corresponding
to the set of all vertices V and a set of edges E respectively.
We constrain these moments to be equal to some η∗

V and η∗
E :

(ME)
arg maxη∈M H(η)
s.t. ηE = η∗

E , ηV = η∗
V .

Based on the maximum-entropy principle, we can conclude
that the optimal distribution (if it exists) of this ME problem
over the entire exponential family {pΛ−1(η) : η ∈ M} =
{pθ : θ ∈ Θ} is Markov with respect to the graph (V, E). This
suggests that entropy, when used as a maximizing objective
function, favors sparse graphical models.
Motivated by the maximum-entropy principle, consider

the following relaxed maximum-entropy formulation [3]:

(MER)
arg maxη∈M H(η)
s.t. DE(ηĒ‖η∗̄

E
) ≤ δE , ∀E ∈ E

Dv(ηv‖η∗
v) ≤ δv, ∀v ∈ V.

Here,DE andDv are the marginal divergences on E ∈ E and
v ∈ V respectively, the edge set E serves to specify the con-
straint set, and δ = {δE , E ∈ E}∪{δv, v ∈ V } are a specified
set of tolerances on marginal divergences. The moments ηĒ

specify the moments of the marginal distribution of variables
xE ; for example, η ¯{v,u} = {ηv, ηu, ηvu}. The moments η∗̄

E
and η∗

v denote the specified statistics on edge E and vertex v
respectively. We have that MER is a convex program due to
the convexity properties of H and D(·‖·), and the convexity
of the setM [3]. The MER solution is Markov with respect to
the graph G = (V, E). Further, it is also Markov with respect
to the graph specified by just the set of active edge constraints,
i.e. the subset of edge constraints in E that are satisfied with
equality by the MER solution. One expects that MER identi-
fies a sparse Markov model within the constraint set, with the
degree of sparsity obtained in the solution being controlled
by the tolerances δ. When the specified statistics η∗̄

E
and η∗

v

are empirical moments computed from samples, using the re-
laxed constraints with δ avoids parameter overfitting.
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(a) (b) (c)

Fig. 1. (a) Multiscale quad-tree model. (b) Finest scale of the multiscale MER solution. (c) Single-scale MER solution.

3. LEARNING MULTISCALE GRAPHICAL
MODELS

3.1. Multiscale Modeling

An important goal in constructing a graphical model to ap-
proximate a specified set of statistics on a collection of vari-
ables is to later use the model for estimation. Algorithms
for (approximate) estimation are typically more tractable
for sparser graphical models than for densely connected
ones. However, when the specified statistics correspond to
processes that have long-range correlations (variables at dis-
tant spatial locations having high correlation), the resulting
graphical model approximations tend to be very densely con-
nected. In order to model such processes, one approach is to
introduce additional hidden variables at coarser scales that
capture the long-range statistics, leaving the original variables
at the finest scale to capture short-range statistics.
Tree-structured multiscale models (for example, see Fig-

ure 1(a)) have been widely studied to provide tractable ap-
proximations to processes with long-range correlations [1].
However, the principal limitation with such models is that
they lead to blocky covariance approximations [1]. Other
multiscale modeling methods include designing fixed struc-
tures that have connected graphs at each scale [5].
We propose a method to learn a multiscale graphical

model using the MER approach for jointly Gaussian random
variables. We define coarse-scale variables that are aggre-
gates of the variables at child nodes as follows:

xp =
1

|C(xp)|
∑

c∈C(xp)

xc + v, (2)

where C(xp) is the set of child nodes of xp, and v is zero-mean
white Gaussian noise with variance σ2. Our focus here is on
collections of variables that are spatially located on a grid. For
example, coarse-scale variables correspond to variables at the
non-leaf nodes of the quad-tree in Figure 1(a). The set C(xp)
for each non-leaf node p are the four immediate children of p.
Given a desired set of covariances on the original collec-

tion of variables (at the finest scale), one can compute the

covariances between all pairs of nodes (original and newly-
defined hidden variables) based on (2). We supply these co-
variances as input to MER in order to learn a graphical model
approximation on the entire collection of original and hidden
variables. We note here that while the coarse-scale variables
are defined according to parent-child relationships on a quad-
tree, the MER solution can in general contain edges that are
not present in the quad-tree.
In order to solve MER in a tractable manner [3], we re-

strict the Markovianity of the MER solution based on the
parent-child relationships that define the aggregate computa-
tion in (2). We constrain the edge set E in the MER prob-
lem to allow arbitrary edges within each scale but only edges
that belong to the quad-tree to connect variables across scales.
Thus, the MER solution is Markov on a subgraph of a graph
that consists of a quad-tree and fully connected components
at each scale (as a result, the MER solution can contain edges
within each scale that are not present in the quad-tree).

3.2. Simulation results

We provide experimental results comparing the performance
of MER with and without the addition of coarse-scale hid-
den variables. For more details on primal-dual interior-point
methods to solve MER, see [3]. We consider a collection of
256Gaussian random variables arranged spatially on a 16×16
grid. The variance of each variable is given by ηxs

= 1.5
and the covariance between each pair of variables is given
by ηxs,xt

= d(s, t)−
1
2 , where d(s, t) is the distance between

nodes s and t. Polynomial decay in covariance is typically
found in models with long-range correlations (as opposed to
exponential decay in processes with short-range correlation).
We solve the MER problem directly with these covariance

specifications (i.e. with no hidden variables) using δv = γ
and δE = 3γ, with γ = 0.015 (see [3] for more details on
choosing these tolerance parameters). The resulting single-
scale MER solution is shown in Figure 1(c). Note that this
model is densely-connected, and also has several edges con-
necting variables that are far away spatially. Next, we intro-
duce coarse-scale hidden variables by aggregating variables
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Fig. 2. Covariance behavior of various modeling approaches.
The conditional covariance is the covariance of the finest scale
in the multiscale MER solution conditioned on coarser scales.

according to the quad-tree structure of Figure 1(a), and by us-
ing noise v with a variance of σ2 = 0.1 in (2). The resulting
MER solution (using δv = γ and δE = 3γ, with γ = 0.01)
consists of a quad-tree that connects variables across scales
and additional edges at the finest scale as shown in Figure 1(b)
(the only extra edges in addition to the quad-tree are at the
finest scale). The interesting aspect about most of these finest
scale edges is that they appear to connect variables that do
not have the same immediate common parent in the quad-
tree. Further, this multiscale model appears to be sparser than
the single-scale MER solution of Figure 1(c). We note here
that the divergence between the single-scale MER solution
and the original distribution is approximately 14.1, and the di-
vergence between the multiscale MER solution marginalized
to the finest scale and the original distribution is approximtely
14.6.
Figure 2 describes the covariance behavior of the multi-

scale and single-scale models learned by MER, and of a sim-
ple multiscale quad-tree-structured model that doesn’t have
any loops as in Figure 1(a).4 The plot shows the covariance
of a “row” of variables. Both the multiscale model com-
puted by MER, and the multiscale tree-structured model cap-
ture the long-range correlation behavior in the original model,
while the single-scale model learned by MER is poor in terms
of capturing such long-range behavior. As discussed previ-
ously, the multiscale tree-structured model provides a covari-
ance approximation that is blocky. Further, the conditional
covariance of the variables at the finest scale of the multi-
scale MER solution, conditioned on coarser scales, decays
very rapidly. Thus, the coarse-scale variables capture long-
range behavior, while the variables at the finest scale capture
short-range statistics. We conclude that using MER to learn
multiscale graphical models provides good modeling capabil-
ities for processes with long-range correlation.

4The divergence between this model and the true distribution is 34.2.
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Fig. 3. Comparison of estimation performance.

Finally, in Figure 3 we present a comparison of the esti-
mation performance of the multiscale and single-scale models
learned by MER. We generate a sample y = Cx+n, where x
is generated according to the true underlying distribution, and
n is zero-mean white Gaussian noise with variance 1. Here,
C is a “selection” matrix that randomly selects only 50% of
the entries of x. Such a scenario with sparse, noisy measure-
ments is commonly encountered in many applications [5]. We
compute estimates of x using a tractable estimation algorithm
called the embedded trees iteration [5]. The plot shows the
residual error vs. the number of iterations (each iteration has
comparable complexity) for the two models. The multiscale
approach provides a 10% gain in convergence rate.

4. CONCLUSION

We describe a multiscale modeling approach based on max-
imum entropy relaxation that learns multiscale graphical
model structure. Our method provides good modeling per-
formance especially for processes that exhibit long-range
covariance behavior. We focus on Gaussian models, and
defer a similar study of discrete models to a longer paper.
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