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Abstract—We study the problem of learning a latent tree
graphical model where samples are available only from a subset
of variables. We propose two consistent and computationally
efficient algorithms for learning minimal latent trees, that is,
trees without any redundant hidden nodes. Our first algorithm,
recursive grouping, builds the latent tree recursively by identifying
sibling groups. Our second and main algorithm, CLGrouping,
starts with a pre-processing procedure in which a tree over
the observed variables is constructed. This global step guides
subsequent recursive grouping (or other latent-tree learning
procedures) on much smaller subsets of variables. This results
in more accurate and efficient learning of latent trees. We com-
pare the proposed algorithms to other methods by performing
extensive numerical experiments on various latent tree graphical
models such as hidden Markov models and star graphs.

I. INTRODUCTION

Latent tree models are tree-structured graphical models in

which samples are only available from a subset of nodes

known as the observed nodes. These samples are used for

reconstructing the structure and the parameters of the tree.

This problem has many applications, e.g., the inference of a

phylogenetic or evolutionary tree from genetic data of extant

species [5], inference of the network routing tree from end-to-

end delay measurements at a subset of nodes [1] and building

a hierarchical contextual tree to predict object co-occurrences

in images [14]. Reconstructing general latent tree models is in

general, formidable as finding the maximum-likelihood (ML)

estimate of a latent tree is NP-hard [17].

There are three main contributions in this paper. Firstly,

we propose two novel algorithms for general latent tree

reconstruction under a unified approach for Gaussian and dis-

crete distributions. Secondly, we provide provable guarantees

for the proposed algorithms, viz., consistency, computational

and sample complexities. Thirdly, our experimental results

demonstrate the superiority of our approach for a wide variety

of models including the hidden Markov model (HMM), the

star and the complete tree models.1

As [15] points out, the identification of latent tree models

has some built-in ambiguity, as there is an entire equivalence

class of models in the sense that when all latent variables

1A r-Cayley tree is one where each non-leaf has constant degree r. A r-HMM is a

r-Cayley tree in which non-leaf nodes form a chain. A r-complete tree is a r-Cayley
tree where all leaves have the same graph distance from the root.

are marginalized out, each model in this class yields the same

joint distribution over the observed variables. For example, we

can take any latent tree and add another hidden variable as a

leaf node connected to only one other (hidden or observed)

node. Hence, much as one finds in fields such as state space

dynamic systems (e.g., [13]), there is a notion of minimality

that is required here, and our results are stated in terms of

consistent learning of such minimal latent models.

Our first algorithm recursive grouping constructs the latent

tree in a bottom-up fashion, by using information distances

to add hidden nodes as neighbors to the existing nodes

recursively. Our second algorithm CLGrouping (which stands

for Chow-Liu grouping) includes a preprocessing step to group

subsets of observed nodes, predicted to be “close” to one

another in the latent tree, and then executes the recursive

grouping algorithm on each of the smaller groups. When all

the nodes are observed, the CLGrouping algorithm outputs the

ML-estimate of the tree model [4].

The performance of our algorithms is naturally influenced

by the structure and parameters of the underlying latent tree

model. CLGrouping is significantly faster and more accurate

than the recursive grouping algorithm, when the group sizes at

the end of its pre-processing step are small. This occurs in the

case of tree models with small maximum degree. In fact, for

a fixed number of observed nodes, CLGrouping has optimal

accuracy and running time for 3-HMM while the worst-case

is the star model, and this is corroborated by our experiments.

We now provide an overview of the related work. Recon-

structing latent tree models has been studied extensively in

the context of learning phylogenetic trees. Efficient algorithms

with provable performance guarantees are available (see [9],

[5], [7]). However, the works mostly assume the trees are

Cayley trees with only the leaves being observed. The most

popular algorithm for constructing phylogenetic trees is the

neighbor-joining (NJ) method by [18]. The algorithm proceeds

by recursively pairing two nodes that are the closest neighbors

in the true latent tree and introducing a hidden node as the

parent of the two nodes. Many works also propose recon-

structing latent trees using expectation maximization (EM) [8],

[20]. However, these approaches suffer from the possibility of

attaining local optima and thus no consistency guarantees can

be provided.



II. SYSTEM MODEL AND PRELIMINARIES

Let G = (W,E) be an undirected graph with node set

W = {1, . . . ,M} and edge set E ⊂
(
W
2

)
and let nbd(i;G)

and nbd[i;G] be the set of neighbors of node i and the closed

neighborhood of i respectively, i.e., nbd[i;G] := nbd(i;G)∪
{i}. If an undirected graph does not include any loops, it is

called a tree. For a tree T = (W,E), the set of leaf nodes

(nodes with degree 1), the maximum degree and the diameter,

are denoted by Leaf(T ) and ∆(T ), and diam(T ) respectively.
The path between two nodes i and j in a tree T = (W,E)
is the set of edges connecting i and j and is denoted as

Path((i, j);E). The distance between any two nodes i and

j is the number of edges in Path((i, j);E). In an undirected

tree, we can choose a root node arbitrarily, and define the

parent-child relationships with respect to the root: for a pair

neighboring nodes i and j, if i is closer to the root than j is,

then i is called the parent of j, and j is called the child of i.
Note that the root node does not have any parent, and for all

other nodes in the tree, there exists exactly one parent. A set

of nodes that share the same parent is called a sibling group.

A family is the union of the siblings and the associated parent.

We consider latent trees with node set W := V ∪ H ,

the union of V (with m = |V |), the set of observed

nodes, and H , the set of latent (or hidden) nodes. The

effective depth δ(T ;V ) (wrt V ) is maximum distance of a

hidden node to its closest observed node, i.e., δ(T ;V ) :=
maxi∈H minj∈V |Path((i, j);T )|.

A. Latent Tree Model

An undirected graphical model [12] with respect to graph

G corresponds to a family of multivariate probability dis-

tributions that factorize according to G. More precisely, a

random vector X = (X1, . . . ,XM ), where each random

variable Xi (i.e., variable at node i) takes values in the

alphabet X is said to be Markov on G if for every node i,
Xi is conditionally independent of other variables given its

neighbors, i.e, p(xi|xnbd(i;G)) = p(xi|x\i), where x\i denotes

the set of variables excluding xi. Let x
n := {x(1), . . . ,x(n)}

be i.i.d. samples drawn from p, a graphical model Markov

on Tp = (W,Ep). In our setup, the learner has access to

the values only on the node set V , and we denote this

set of sub-vectors containing only the elements in V , as

x
n
V := {x(1)

V , . . . ,x
(n)
V }.

We consider both Gaussian (X = R) and discrete (X =
{1, . . . ,K}) graphical tree models. For a Gaussian distribution

with a covariance matrix Σ, the correlation coefficients be-

tween variables Xi and Xj is given by ρij := Σij/
√

ΣiiΣjj .

Let di,j := − log |ρij | be the information distance between Xi

and Xj . Intuitively, if the information distance di,j is large,

then Xi and Xj are weakly correlated and vice-versa. Given

the information distances di,j on edges (i, j) ∈ Ep of tree Tp,

we can find the information distance between any two nodes

k, l ∈ W using the Markov property:

dk,l =
∑

(i,j)∈Path((k,l);Ep)

di,j . (1)

For discrete random variables, let Jij denote the joint prob-

ability matrix between Xi and Xj (i.e., J ij
ab = p(xi = a, xj =

b), a, b ∈ X ). Also let Mi be the diagonal marginal probability

matrix of Xi (i.e., M i
aa = p(xi = a)). We can define the

information distance as di,j := − log | detJ
ij|√

detMi detMj
, and the

Markov property in (1) holds [11]. In the rest of the paper,

we map the parameters of Gaussian and discrete distributions

to an information distance matrix d = [di,j ] to unify the

analyses for both cases. Given samples of observed variables

x
n
V , we compute the maximum-likelihood (ML) estimates of

the parameters, and use those parameters to compute the ML

estimates of information distances between observed variables

d̂ = [d̂i,j ]i,j∈V .

B. Minimal Tree-extensions

Our goal is to recover the graphical model p, i.e., the latent

tree structure and its parameters, given n i.i.d. samples of

the observed variables x
n
V . However, in general, there can

be multiple models generating the same observed statistics.

We consider the class of tree models where it is feasible to

recover the model uniquely and provide necessary conditions

for identifiability.

Firstly, we limit ourselves to the scenario where all the

random variables (both observed and latent) take values on a

common alphabet X . Thus, in the Gaussian case, each hidden

and observed variable is a univariate Gaussian. In the discrete

case, each variable takes on values in the same finite alphabet

X . Note that the model may not be identifiable if some of

the hidden variables are allowed to have arbitrary alphabets.

As an example, consider a discrete latent tree model with

binary observed variables (K = 2). A latent tree with the

simplest structure (fewest number of nodes) is a tree in which

all m observed binary variables are connected to one hidden

variable. If we allow the hidden variable to take on 2m states,

then the tree can describe all possible statistics among the

m observed variables, i.e., the joint distribution pV can be

arbitrary.2

A probability distribution pV (xV ) is said to be tree-

decomposable if it is the marginal of a tree-structured dis-

tribution p(xV ,xH), and p is said to be a tree-extension of

pV [15]. A latent tree Tp = (W,Ep) is said to have redundant

hidden node h ∈ H if we can remove h and the marginal on

the set of visible nodes V remains as pV . A latent tree without

redundant nodes is said to be minimal, and the corresponding

distribution p is said to be a minimal tree-extension of pV .

The following conditions ensure that a latent tree is minimal

[15]:

(C1) Each hidden variable has at least three neighbors

(which can be either hidden or observed). Note that this

ensures that all leaf nodes are observed. (C2) Any two

variables in the tree model are neither perfectly dependent nor

independent, i.e., 0 < l ≤ di,j ≤ u < ∞ for all (i, j) ∈ Ep.

We assume throughout the paper that (C2) is satisfied for

all probability distributions. Let T≥3 be the set of (latent)

2This follows from a elementary parameter counting argument.



trees satisfying (C1). We refer to T≥3 as the set of minimal

(or identifiable) latent trees. Using marginalization operations,

any non-minimal latent tree distribution can be reduced to a

minimal latent tree model.

Proposition 1. (Minimal Tree-extensions) [15] (i) For each

tree-decomposable distribution pV , there exists a minimal tree

extension p Markov on tree Tp ∈ T≥3, which is unique up to

renaming of the variables or their values. (ii) For Gaussian

and binary distributions, if pV is know exactly, the minimal

tree extension p can be recovered. (iii) The structure of Tp is

uniquely determined by the information distance matrix.

We now define the notion of consistency.

Definition 1. (Consistency) A reconstruction algorithm A,

which is a map of observed samples x
n
V to a tree T̂n and a

tree-structured graphical model p̂n, is structurally consistent

if there exists a graph homomorphism h such that

lim
n→∞

Pr({xn
V : h(T̂n) 6= Tp}) = 0. (2)

Furthermore, we say that A is risk consistent if to every ǫ > 0,

lim
n→∞

Pr({xn
V : D(p || p̂n) > ǫ}) = 0, (3)

where D(p || p̂n) is the KL-divergence between the true distri-

bution p and the estimated distribution p̂n.

In order to prove structural consistency, we analyze the

output of algorithms given the exact information distances

between observed nodes d. It suffices to show that the algo-

rithms output the correct latent tree Tp, since the ML estimates

of information distance converge (in probability) to the true

information distances. Once we reconstruct a tree structure and

the associated information distance matrix, it is straightforward

to recover the parameters of Gaussian distributions, so our

algorithms are also risk consistent for Gaussian tree models.

However, for discrete models, information distances between

observed nodes are, in general, not sufficient to recover the pa-

rameters [2]. Therefore, we only prove structural consistency

for discrete latent tree models.3 Due to space constraints, most

of the proofs of the main results can be found in the longer

version of the paper [3].

III. RECURSIVE GROUPING

The main idea behind our first algorithm for reconstructing

latent trees is to identify nodes that belong to the same family

and to learn the tree structure by grouping these observed

nodes recursively in a bottom-up fashion.

A. Testing Node Relationships

Define Φijk := di,k − dj,k to be the difference between the

two information distances di,k and dj,k. The following result

shows that we can identify leaf nodes, their observed parents,

and whether a pair of leaf nodes are siblings (i.e., whether

they share the same parent) using Φijk.

3We can consider a two-step procedure for structure and parameter estima-
tion: Firstly, we estimate the structure of the latent tree using the algorithms
suggested in this paper. Subsequently, we use the Expectation Maximization
(EM) algorithm [6] to infer the parameters.

Lemma 2. (Sibling Grouping) The quantity Φijk satisfies the

following properties: (i) Φijk = di,j for all k /∈ {i, j} if and

only if i is a leaf node and j is its parent. (ii) −di,j <Φijk =
Φijk′ <di,j for all k, k′ /∈{i, j} if and only if both i and j are

leaves and they have the same parent, i.e., they belong to the

same sibling group.

Using the above lemma, we design tests to identify all

(parent, leaf child) pairs and leaf-siblings among observed

variables. We first compute Φijk for all triples i, j, k ∈ V .

For a pair of nodes i, j ∈ V , consider the set {Φijk : k ∈
V \ {i, j}}. If all the values in the set are equal to dij , then

i is a leaf node and j is a parent of i. If the values are the

same but not equal to dij or −dij , then i and j are siblings

and both are leaf nodes.

When only the estimates of information distances d̂ are

available, we relax the constraints for testing node relation-

ships. Firstly, we only compute Φ̂ijk := d̂i,k − d̂i,k for those

estimated distances d̂ij , d̂ik and d̂jk that are below a prescribed

threshold τ > 0, because longer information distance estimates

(i.e., lower correlation estimates) are less accurate for a given

number of samples. Thus, we use only reliable estimates of

information distances for testing node relationships. For each

pair of nodes (i, j) such that d̂ij < τ , associate the set

Kij :=
{

k ∈ V \{i, j} : max{d̂ik, d̂jk} < τ
}

. Secondly, we

declare that nodes i, j ∈ V are in the same family (i.e.,

parent-leaf child or leaf sibling pairs) if maxk∈Kij
Φ̂ijk −

mink∈Kij
Φ̂ijk < ǫ for another threshold ǫ > 0. See [3] for

more detailed descriptions of testing node relationships in a

reliable way.

B. Recursive Grouping (RG) Algorithm

RG is a recursive procedure in which at each step, tests

described in Section III-A are used to identify nodes that

belong to the same family. Subsequently, RG introduces a

parent node if a family of nodes (i.e., a sibling group) does not

contain an observed parent. This newly introduced parent node

corresponds to a hidden node in the original unknown latent

tree. Once such a parent (i.e., hidden) node h is introduced,

the information distances from h to all other observed nodes

can be computed. More precisely, to compute statistics di,h

and dj,h from observed nodes i and j to their parent h, we
solve the following linear equations: di,h − dj,h = di,k − dk,j

and di,h + dj,h = di,j . Both equations can be readily verified

by the Markov property in (1). For any other node k that is

not a child of h, we can compute dk,h using a child i of

h since dk,h = di,k − di,h. Thus, we can regard h as an

observed variable. Once a new layer of hidden variables has

been introduced, we remove all child nodes, and build up the

tree recursively. See Fig. 1 for an illustration of RG.

Theorem 3. (Consistency, Sample & Computational Com-

plexity of Recursive Grouping) (i) The recursive grouping al-

gorithm is structurally consistent for all latent trees Tp ∈ T≥3.

In addition, it is risk consistent for Gaussian latent trees. (ii)

Assume that the effective depth is δ(Tp;V ) = O(1). Then
for every η > 0, there exists thresholds ǫ, τ > 0 such that
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Fig. 1. An illustrative example of RG. Solid nodes indicate the active set at each iteration for which tests in Section III-A are applied. (a) Original latent
tree. (b) Output after the first iteration of RG. Red dotted lines indicate the group of families. (c) Output after the second iteration of RG. Note that nodes
4,5, and 6 do not belong to the active set for the second iteration, and h1, which was introduced in the first iteration, is now an active node. (d) Output after
the third iteration of RG, which is same as the original latent tree.

if n > C log(m/ 3
√

η) (for some C > 0), then the error

probability in (2) is bounded above by η. For Gaussian models,
the error probability in (3) is bounded above by η as well.

(iii) The computational complexity to recover the latent tree

estimate T̂p is O(diam(T̂p)m
3).

A potential drawback of RG is that it involves computing

Φ̂ijk for all observed triples, which may result in a high

computational complexity. Indeed, from Theorem 3, the worst-

case complexity is O(m4) which occurs when Tp, the true

latent tree, is a hidden Markov model (HMM). This may be

computationally prohibitive if m is large. In the next section,

we design an algorithm which uses a global pre-processing

step to reduce the overall complexity substantially, especially

for trees with large diameters (of which HMMs are extreme

examples).

IV. CLGROUPING

In the previous section, we presented a recursive method

to recover the structure of a latent tree. In this section, we

improve the computational efficiency by performing a pre-

processing clustering procedure before executing recursive

grouping on smaller subsets of nodes. The pre-processing

clustering procedure is based on the Chow-Liu tree [4] over

the set of observed nodes V . We then obtain an estimate of

the latent tree by recursively adding hidden variables to the

Chow-Liu tree. For simplicity, we focus on Gaussian models

first, and discuss the extension to discrete models in Section

IV-D.

A. A Review of the of Chow-Liu Algorithm

The Chow-Liu tree T̂CL is the ML tree with vertex set

V given the samples x
n
V . Denoting D(T (V )) as the set

of distributions Markov on any tree spanning V , p̂CL :=
argminν∈D(T (V )) D(µ̂ || ν) is the corresponding tree dis-

tribution “closest” to the empirical distribution µ̂(x) :=
n−1

∑
k 1{x = xk}. It was shown [4] that the tree that attains

the minimum in p̂CL is given by

T̂CL = argmax
T=(V,E)∈T

∑

e∈E

I(µ̂e), (4)

where (with abuse of notation) I(µ̂e) denotes the empirical

mutual information between the two variables in the node

pair e. That is, the Chow-Liu algorithm proceeds by first

forming the empirical mutual information edge weights from

the samples x
n
V and then searches for the tree that maximizes

the sum of these weights. The parameters (node and pairwise

marginals) are then estimated by ML.

B. Relationship between Chow-Liu and Latent Trees

Given the information distance estimates d̂ between the

observed nodes in V , the Chow-Liu tree in (4) reduces to

a minimum spanning tree (MST) problem with edge weights

d̂.
T̂CL = MST(V ; d̂) := argmin

T=(V,E)∈T

∑

e∈E

d̂e. (5)

The above result is due to the fact that the empirical mutual

information I(µ̂e) is a monotonically decreasing function of

the ML distance estimates d̂e.

When the latent tree Tp has no hidden variables, the Chow-

Liu tree MST(V ; d̂) is the ML estimate of the tree structure

and is consistent [4]. However, when there are hidden nodes,

we need a transformation of MST(V ; d̂) to obtain a consistent

estimate of Tp. To this end, we first analyze relationships

between the latent tree and the Chow-Liu tree using the

concept of the surrogate nodes defined as follows:

Definition 2. (Surrogate Node) Given the latent tree Tp =
(W,Ep) and a node i ∈ W , the surrogate node of i wrt V is

defined as Sg(i;Tp, V ) := argminj∈V di,j .

Note that if i∈V , then Sg(i;Tp, V )= i since di,i =0. When

the tree and the observed set are unambiguous, the surrogate

node of i will be denoted as Sg(i). Intuitively, the surrogate

node of h ∈ H is an observed node j with the strongest

correlation or the smallest information distance dh,j . We now

relate the the original latent tree Tp = (W,Ep) with the Chow-

Liu tree given exact information distances MST(V ;d).

Lemma 4. (Properties of Chow-Liu tree) The Chow-Liu tree

and surrogate nodes satisfy the following: (i) The surrogate

nodes of any two neighboring nodes in Ep are neighbors in

the Chow-Liu tree, i.e., for i, j ∈ W with Sg(i) 6= Sg(j),

(i, j) ∈ Ep ⇒ (Sg(i),Sg(j)) ∈ MST(V ;d). (6)

(ii) The maximum degree of the Chow-Liu tree satisfies

∆(MST(V ;d)) ≤ ∆(Tp)
1+ u

l
δ(Tp;V ), (7)

where l, u are the bounds on the information distances on

edges in Tp.



For example, in Figure 2(a), a latent tree is shown with its

corresponding surrogacy relationships, and Figure 2(b) shows

the corresponding MST over the observed nodes.

C. CLGrouping Algorithm

In this section, we propose CLGrouping, which reconstructs

all minimal latent trees consistently and efficiently. CLGroup-

ing uses the properties of the Chow-Liu tree described in

Lemma 4.

At a high-level, CLGrouping involves two distinct steps:

Firstly, we construct the Chow-Liu tree MST(V ; d̂) over the

set of observed nodes V . Secondly, we apply RG or NJ to

reconstruct a latent subtree over the closed neighborhoods of

every internal node in MST(V ; d̂). If RG (respectively NJ)

is used, we term the algorithm CLRG (respectively CLNJ).

CLRG proceeds as follows:

1) Construct the Chow-Liu tree MST(V ; d̂) as in (5). Set

T = MST(V ; d̂).
2) Identify the set of internal nodes in MST(V ; d̂).
3) For each internal node i, let nbd[i;T ] be its closed

neighborhood in T and let S = RG(nbd[i;T ], d̂) be the
output of RG with nbd[i;T ] as the set of input nodes.

4) Replace the subtree over node set nbd[i;T ] in T with

S. Denote the new tree as T .

5) Repeat steps 3 and 4 until all internal nodes have been

operated on.

See Fig. 2 for an illustration of CLGrouping. The only

difference between CLRG and CLNJ is Step 3 in which the

subroutine NJ replaces RG. Note that in Step 3 that RG is

only applied to a small subset of nodes which have been

identified in Step 1 as possible neighbors in the true latent

tree. This reduces the computational complexity of CLRG

compared to RG. Let |J | := |V \ Leaf(MST(V ; d̂))| < m
be the number of internal nodes in the MST. We now state

one of the main results of this paper that the CLGrouping

algorithm is consistent, and is also computationally efficient.

Theorem 5. (Consistency, Sample & Computational Com-

plexity of CLGrouping) (i) The CLGrouping algorithm is

consistent for all minimal latent trees Tp ∈ T≥3. (ii) As-

sume that the effective depth is δ(Tp;V ) = O(1). Then for

every η > 0, there exists thresholds ǫ, τ > 0 such that

if n > C ′ log(m/ 3
√

η) (for some C ′ > 0), then the error

probabilities in (2) and (3) are bounded above by η. (iii) The
computational complexity to reconstruct the latent tree from

distance estimates d̂ is O(m2 log m + |J |∆(MST(V ; d̂))3).

Thus, the computational complexity of CLRG is low when

the latent tree Tp has a small maximum degree and a small

effective depth (such as the HMM) because (7) implies that

∆(MST(V ;d)) is also small. Indeed, we demonstrate in

Section V that there is a significant speedup compared to

applying RG over the entire observed node set V .

D. Extension to Discrete Models

For discrete models, MST(V ; d̂) is not necessarily same

as the Chow-Liu tree, but all the relationships between

MST(V ;d) and the latent tree in Lemma 4 still hold. Thus, we

first learn MST(V ; d̂) using the information distances as edge

weights and apply CLGrouping to recover latent tree models.

Theorem 5 holds for discrete models as well except for the

risk consistency.

V. SIMULATIONS

In this section, we compare the performances of various

latent tree learning algorithms. We generate samples from

known latent tree structures with varying sample sizes, and

apply the following learning algorithms: the neighbor-joining

method (NJ) [18], the recursive grouping algorithm (RG),

CLGrouping with NJ (CLNJ), and CLGrouping with RG

(CLRG).

Figure 3 shows the three latent tree structures used in our

simulations. The double-star has 2 hidden and 80 observed

nodes, the HMM has 78 hidden and 80 observed nodes, and

the 5-complete tree has 25 hidden and 81 observed nodes

including the root node. For simplicity, we present simulation

results only on Gaussian models but note that the behavior

on discrete models is similar. All correlation coefficients on

the edges ρij were independently drawn from a uniform

distribution supported on [0.2, 0.8]. The performance of each

method is measured by averaging over 200 independent runs

with different parameters. We use the following performance

metrics to quantify the performance of each algorithm in

Figure 4: (i) Structure recovery error rate: This is the

proportion of times that the proposed algorithm fails to recover

the true latent tree structure. Note that this is a very strict

measure since even a single wrong hidden node or misplaced

edge results in an error for the entire structure. (ii) Robinson

Foulds metric [16]: This popular phylogenetic tree-distortion

metric computes the number of graph transformations (edge

contraction or expansion) needed to be applied to the estimated

graph in order to get the correct structure. This metric quan-

tifies the difference in the structures of the estimated and true

models. (iii) Error in the number of hidden variables: We

compute the average number of hidden variables introduced

by each method and plot the absolute difference between

the average estimated hidden variables and the number of

hidden variables in the true structure. (iv) KL-divergence

D(pV || p̂n
V ): This is a measure of the distance between the

estimated and the true models over the set of observed nodes

V .4

We first note that from the structural error rate plots that

the double star is the easiest structure to recover and the 5-

complete tree is the hardest. In general, given the same number

of observed variables, a latent tree with more hidden variables

or larger effective depth (see Section II) is more difficult to

recover.

For the double star, RG clearly outperforms all other meth-

ods. With only 1,000 samples, it recovers the true structure

exactly in all 200 runs. On the other hand, CLGrouping

4We plot D(pV || p̂n

V
) because if the number of hidden variables is

estimated incorrectly, D(p || p̂n) is infinite.
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iteration of RG, (f) Output after the second RG procedure, which is same as the original latent tree.
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Fig. 3. Latent tree structures used in our simulations.

performs significantly better than RG for the HMM. There

are two reasons for such performance differences. Firstly,

for Gaussian distributions, it was shown [19] that given the

same number of variables and their samples, the Chow-Liu

algorithm is most accurate for a chain and least accurate for a

star. Since the Chow-Liu tree of a latent double star graph is

close to a star, and the Chow-Liu tree of a latent HMM is close

to a chain, the Chow-Liu tree tend to be more accurate for the

HMM than for the double star. Secondly, the internal nodes in

the Chow-Liu tree of the HMM tend to have small degrees,

so we can apply RG or NJ to a very small neighborhood,

which results in a significant improvement in both accuracy

and computational complexity.

Note that NJ is particularly poor at recovering the HMM

structure. In fact, it has been shown that even if the number

of samples grows polynomially with the number of observed

variables (i.e., n = O(mB) for any B > 0), it is insufficient

for NJ to recover HMM structures [10]. The 5-complete tree

has two layers of hidden nodes, making it very difficult to

recover the exact structure using any method. CLNJ has the

best structure recovery error rate and KL divergence, while

CLRG has the smallest Robinson-Foulds metric.

Table I shows the running time of each algorithm averaged

over 200 runs and all sample sizes. All algorithms are imple-

mented in MATLAB. As expected, we observe that CLRG is

significantly faster than RG for HMM and 5-complete graphs.

NJ is fastest, but CLNJ is also very efficient and leads to much

RG NJ CLRG CLNJ

HMM 10.16 0.02 0.10 0.05

5-complete 7.91 0.02 0.26 0.06

Double star 1.43 0.01 0.76 0.20

TABLE I
AVERAGE RUNNING TIME OF EACH ALGORITHM IN SECONDS.

more accurate reconstruction of latent trees.

Based on the simulation results, we conclude that for a latent

tree with a few hidden variables, RG is most accurate, and for

a latent tree with a large diameter, CLNJ performs the best.

A latent tree with multiple layers of hidden variables is more

difficult to recover correctly using any method, and CLNJ and

CLRG outperform NJ and RG.

VI. CONCLUSIONS

In this paper, we proposed algorithms to learn a latent tree

model from the information distances of observed variables.

Our first algorithm, recursive grouping, identifies sibling and

parent-child relationships and introduces hidden nodes recur-

sively. Our second algorithm, CLGrouping, first learns the

Chow-Liu tree among observed variables and then applies

latent-tree-learning subroutines such as recursive grouping or

neighbor joining locally to each internal node in the Chow-

Liu tree and its neighbors. These algorithms are structurally

consistent (and risk consistent as well for Gaussian distribu-

tions), and have sample complexity logarithmic in the number
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Fig. 4. Performance of RG, NJ, CLRG, and CLNJ for the latent trees shown in Figure 3.

of observed variables. The MATLAB implementation of our

algorithms can be downloaded from the project webpage

http://people.csail.mit.edu/myungjin/latentTree.html.
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