

Consistent and Efficient Reconstruction of Latent Tree Models

Myung Jin Choi

Joint work with Vincent Tan, Anima Anandkumar, and Alan S. Willsky

> Laboratory for Information and Decision Systems Massachusetts Institute of Technology

> > September 29, 2010

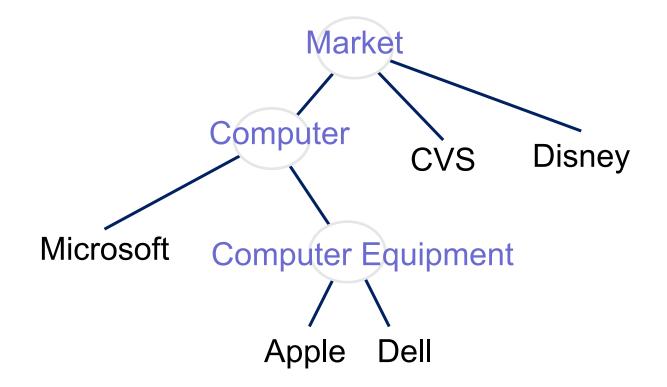
Latent Tree Graphical Models

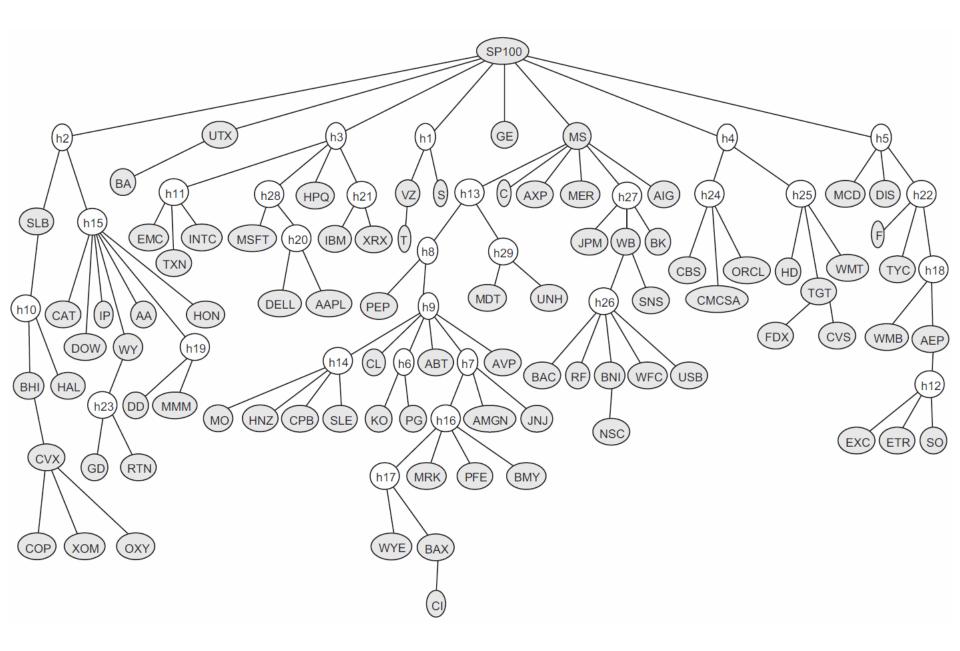
CVS Disney

Microsoft

Apple Dell

Latent Tree Graphical Models

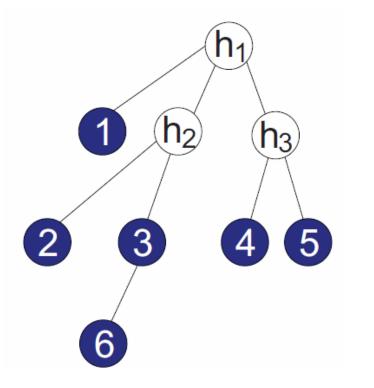




Outline

- Reconstruction of a latent tree
- Algorithm 1: Recursive Grouping
- Algorithm 2: CLGrouping
- Experimental results

Reconstruction of a Latent Tree

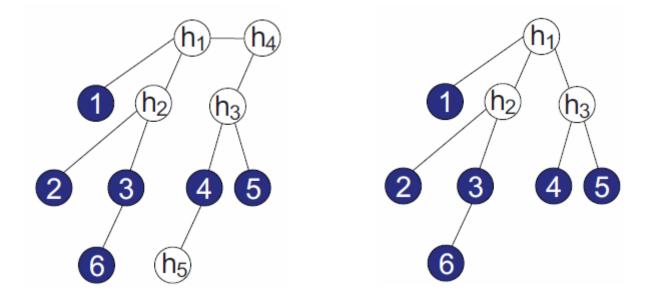


- Gaussian model:
 each node a scalar
 Gaussian variable
- Discrete model:

each node – a discrete variable with K states

Reconstruct a latent tree using samples of the observed nodes.

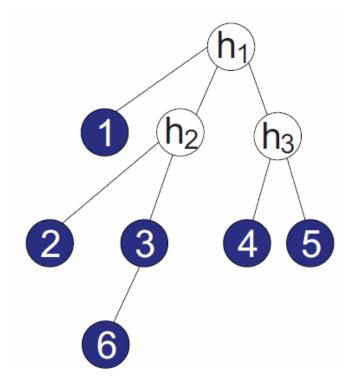
Minimal Latent Trees (Pearl, 1988)



Conditions for Minimal Latent Trees

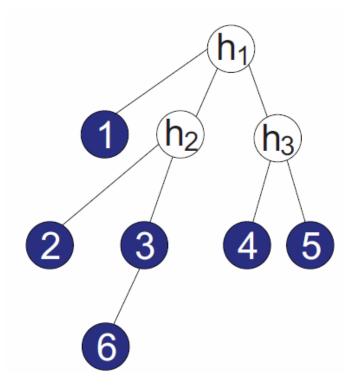
- Each hidden node should have at least three neighbors.
- Any two variables are neither perfectly dependent nor independent.

Desired Properties for Algorithms



- 1. Consistent for minimal latent trees
 - ⇒ Correct recovery given exact distributions.
- 2. Computationally efficient
- 3. Low sample complexity
- 4. Good empirical performance

Desired Properties for Algorithms

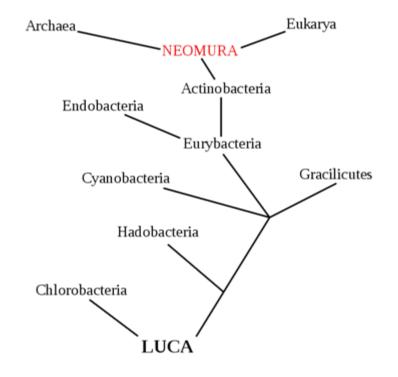


- 1. Consistent for minimal latent trees
 - ⇒ Correct recovery given exact distributions.
- 2. Computationally efficient
- 3. Low sample complexity
- 4. Good empirical performance

Related Work

- EM-based approaches
 - ZhangKocka04, HarmelingWilliams10, ElidanFriedman05
 - No consistency guarantees
 - Computationally expensive

- Phylogenetic trees
 - Neighbor-joining (NJ) method (SaitouNei87)



Information Distance

Gaussian distributions

 $d_{ij} := -\log |\rho_{ij}|$

$$\rho_{ij} := \frac{\operatorname{Cov}(X_i, X_j)}{\sqrt{\operatorname{Var}(X_i)\operatorname{Var}(X_j)}}$$

Information Distance

Gaussian distributions

 $d_{ij} := -\log |\rho_{ij}|$

$$\rho_{ij} := \frac{\operatorname{Cov}(X_i, X_j)}{\sqrt{\operatorname{Var}(X_i)\operatorname{Var}(X_j)}}$$

• Discrete distributions $d_{ij} := -\log \frac{|\det \mathbf{J}^{ij}|}{\sqrt{\det \mathbf{M}^i \det \mathbf{M}^j}}$

 \mathbf{J}^{ij} Joint probability matrix \mathbf{M}^i Marginal probability matrix

ex)
$$\mathbf{J}^{ij} = \begin{pmatrix} p(x_i = 0, x_j = 0) & p(x_i = 0, x_j = 1) \\ p(x_i = 1, x_j = 0) & p(x_i = 1, x_j = 1) \end{pmatrix}$$

 $\mathbf{M}^i = \begin{pmatrix} p(x_i = 0) & 0 \\ 0 & p(x_i = 1) \end{pmatrix}$

Information Distance

 $d_{ij} := -\log |\rho_{ij}|$

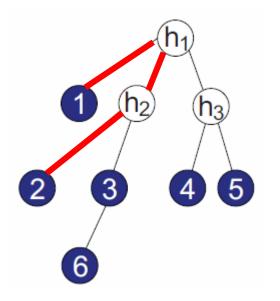
$$\rho_{ij} := \frac{\operatorname{Cov}(X_i, X_j)}{\sqrt{\operatorname{Var}(X_i)\operatorname{Var}(X_j)}}$$

 $d_{ij} := -\log \frac{|\det \mathbf{J}^{ij}|}{\sqrt{\det \mathbf{M}^i \det \mathbf{M}^j}}$ \mathbf{J}^{ij} Joint probability matrix \mathbf{M}^i Marginal probability matrix

- Algorithms use information distances of observed variables.
- Assume first that the exact information distances are given.

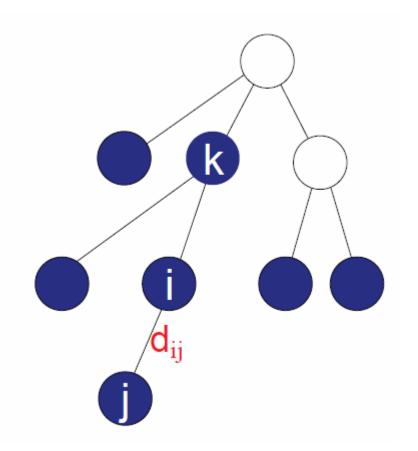
Additivity of Information Distances on Trees

$$d_{k,l} = \sum_{(i,j)\in \text{Path}((k,l);E_p)} d_{i,j}$$



$$d_{12} = d_{1h_1} + d_{h_1h_2} + d_{2h_2}$$

Testing Node Relationships



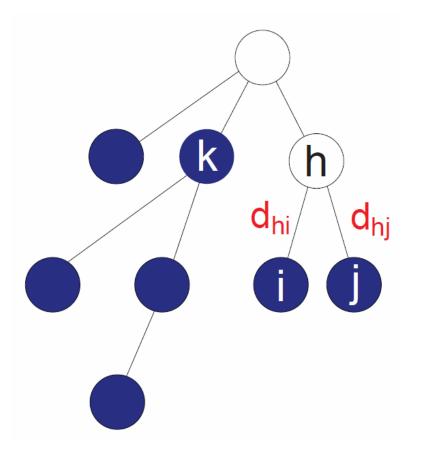
Node j – a leaf node Node i – parent of j

$$\Leftrightarrow d_{jk} - d_{ik} = d_{ij}$$

for all $k \neq i, j$.

Can identify (parent, leaf child) pair

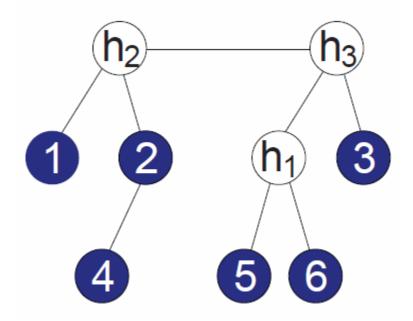
Testing Node Relationships



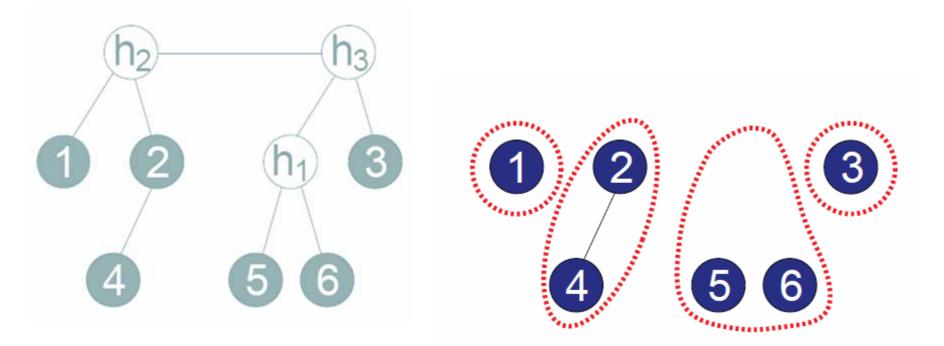
Node i and j – leaf nodes and share the same parent (sibling nodes)

$$\Leftrightarrow d_{jk} - d_{ik}$$
$$= d_{hj} - d_{hi}$$
for all k ≠ i, j.

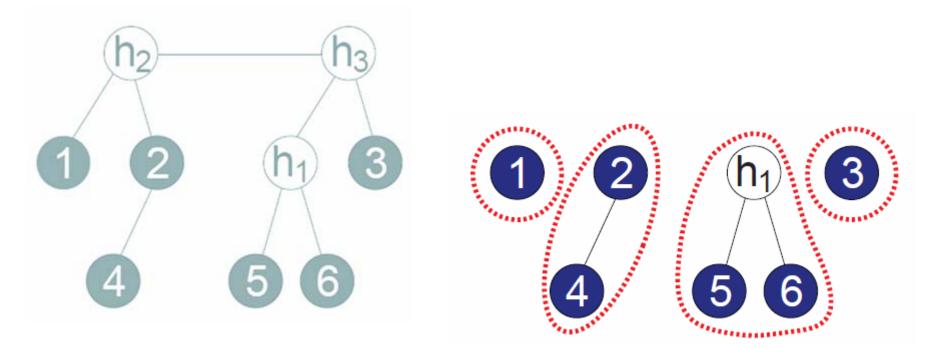
Can identify leaf-sibling pairs.



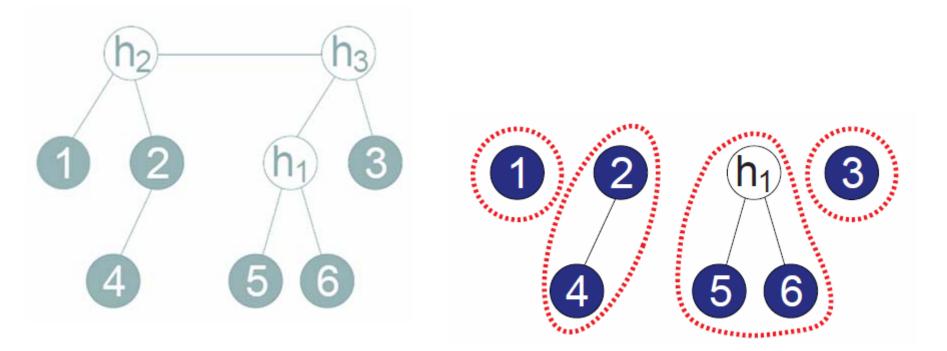
Step 1. Compute $d_{jk} - d_{ik}$ for all observed nodes (i, j, k).



Step 2. Identify (parent, leaf child) or (leaf siblings) pairs.

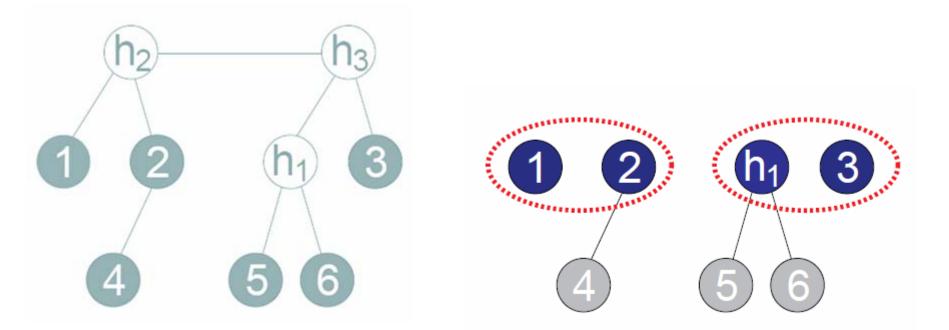


Step 3. Introduce a hidden parent node for each sibling group without a parent.

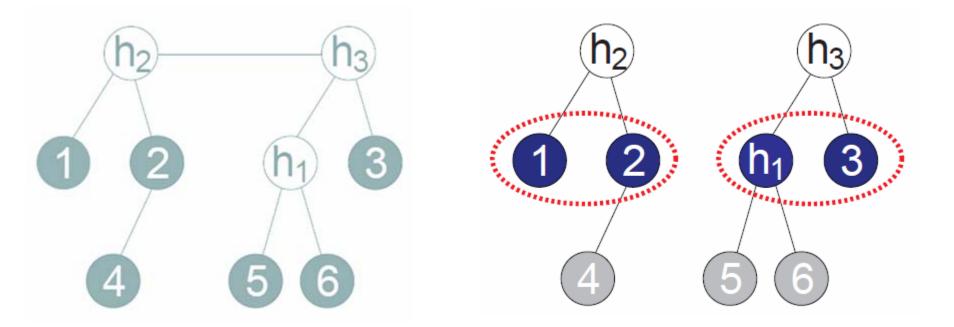


Step 4. Compute the information distance for new hidden nodes.

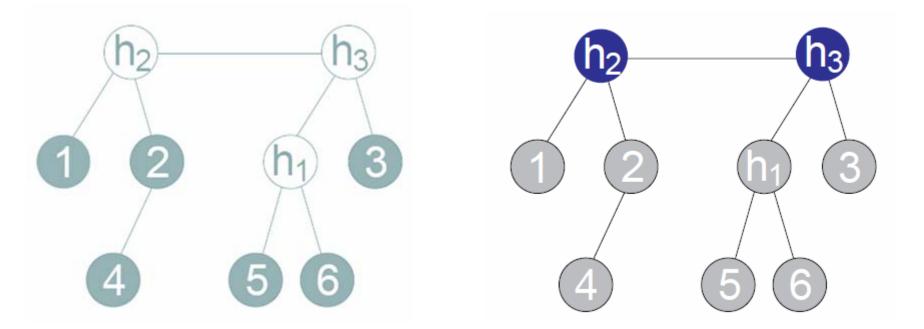
e.g.)
$$d_{5h_1} = \frac{1}{2}(d_{56} + d_{53} - d_{63})$$



Step 5. Remove the identified child nodes and repeat Steps 2-4.



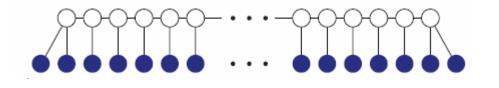
Step 5. Remove the identified child nodes and repeat Steps 2-4.



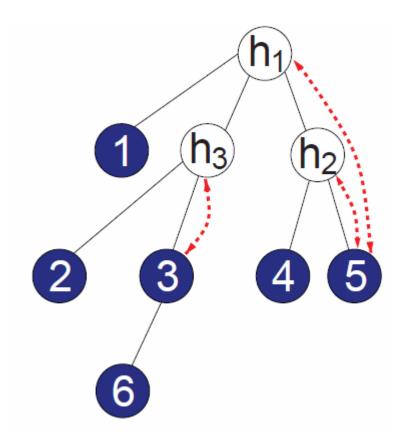
Step 5. Remove the identified child nodes and repeat Steps 2-4.

- Identifies a group of family nodes at each step.
- Introduces hidden nodes recursively.
- Correctly recovers all minimal latent trees.

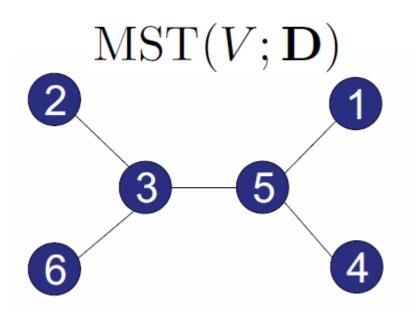
• Computational complexity O(diam(T) m³).



Worst case O(m⁴)



Chow-Liu Tree

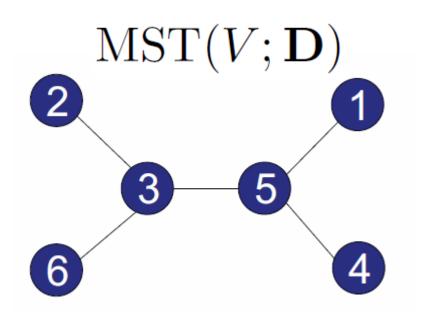


Minimum spanning tree of V using D as edge weights

V = set of observed nodes

D = information distances

Chow-Liu Tree



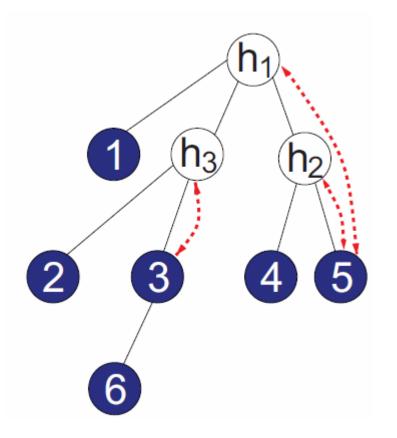
Minimum spanning tree of V using D as edge weights

V = set of observed nodes

D = information distances

- Computational complexity O(m² log m)
- For Gaussian models, MST(V; D) = Chow-Liu tree (minimizes KL-divergence to the distribution given by D).

Surrogate Node

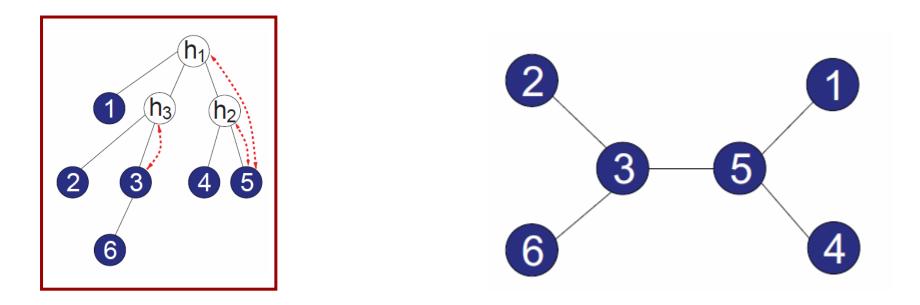


V = set of observed nodes

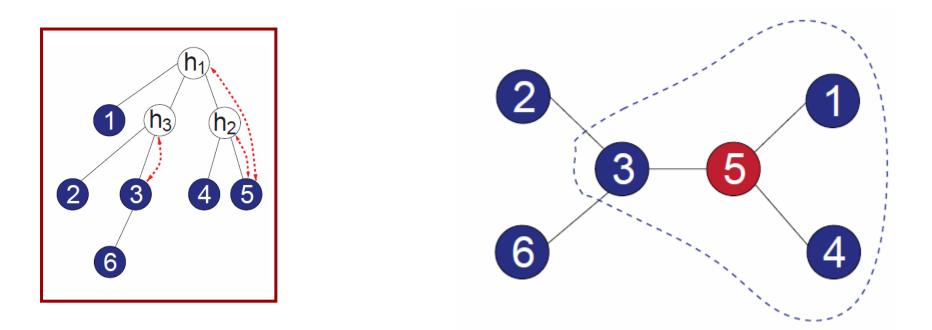
Surrogate node of i

 $Sg(i) := \operatorname*{argmin}_{j \in V} d_{ij}$

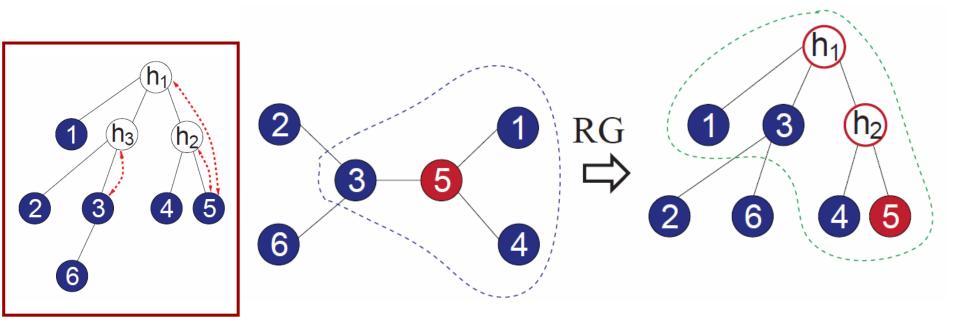
Property of the Chow-Liu Tree $(i,j) \in E_p \Rightarrow (\operatorname{Sg}(i),\operatorname{Sg}(j)) \in \operatorname{MST}(V;\mathbf{d})$ N₃



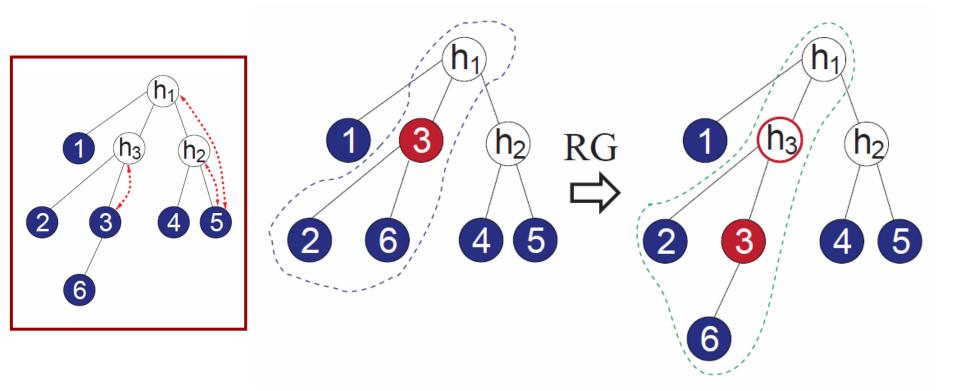
Step 1. Using information distances of observed nodes, construct the Chow-Liu tree, MST(V; D). Identify the set of internal nodes {3, 5}.



Step 2. Select an internal node and its neighbors, and apply the recursive-grouping (RG) algorithm.



Step 3. Replace the output of RG with the sub-tree spanning the neighborhood.



Repeat Steps 2-3 until all internal nodes are operated on.

CLGrouping

- Step 1: Constructs the Chow-Liu tree, MST(V; D).
- Step 2: For each internal node and its neighbors, applies latent-tree-learning subroutines (RG or NJ).
- Correctly recovers all minimal latent trees.
- Computational complexity

 $O(m^2 \log m + (\#internal nodes) (maximum degree)^3).$

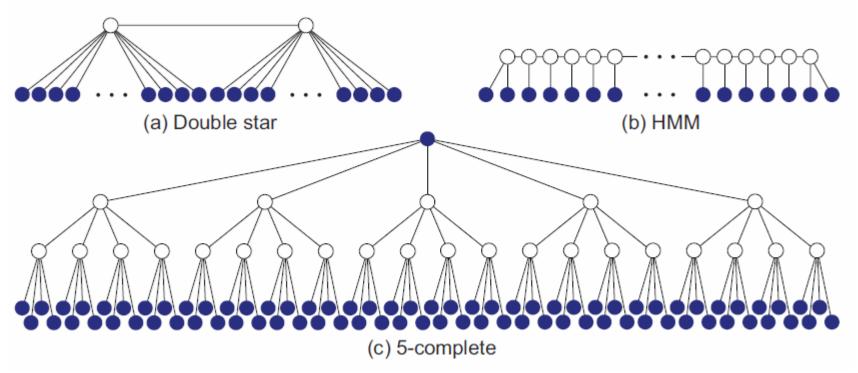
Sample-based Algorithms

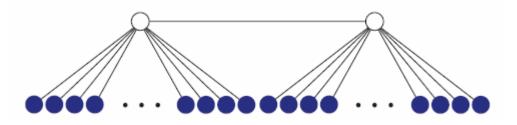
- Compute the ML estimates of information distances.
- Relaxed constraints for testing node relationships.

- Consistent.
- More details in the paper

Experimental Results

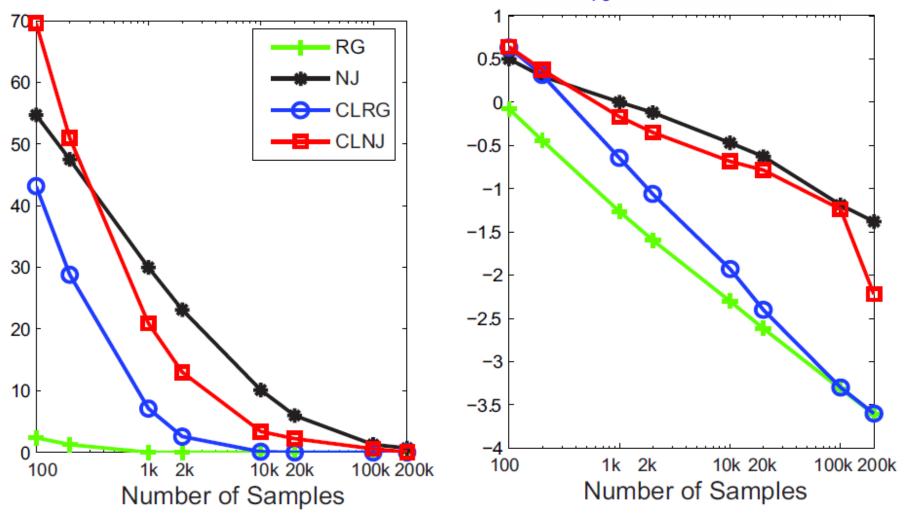
- Simulations using Synthetic Datasets
 - Compares RG, NJ, CLRG, and CLNJ.
 - Robinson-Foulds Metric and KL-divergence.

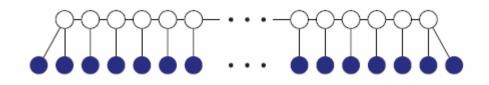


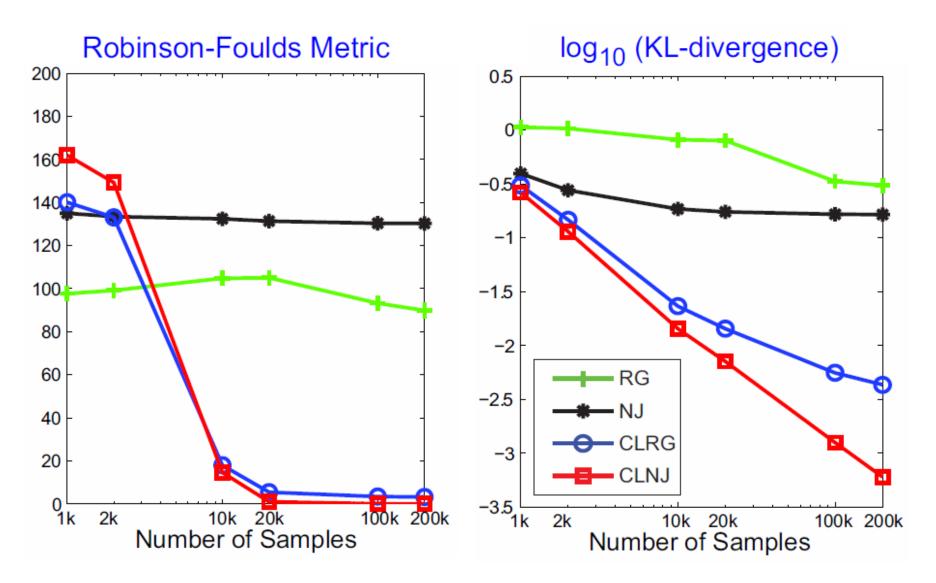


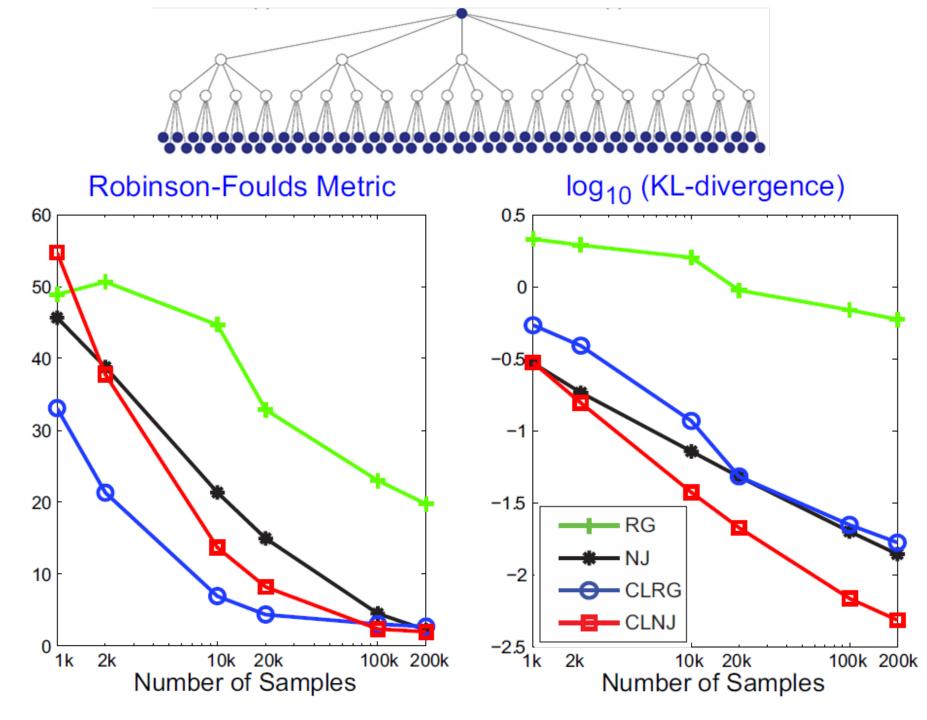
Robinson-Foulds Metric

log₁₀ (KL-divergence)









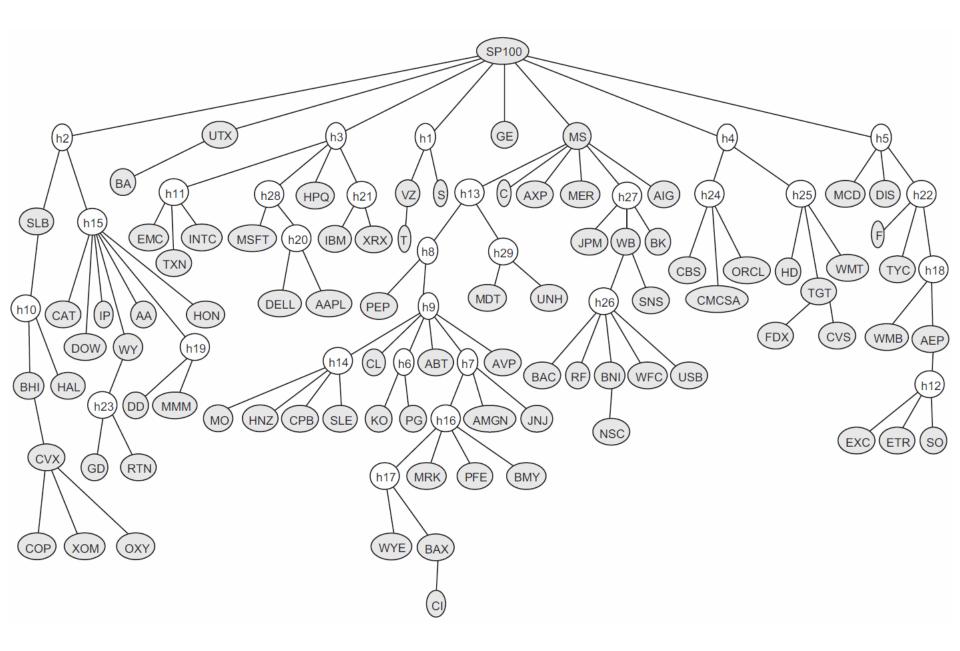
Performance Comparisons

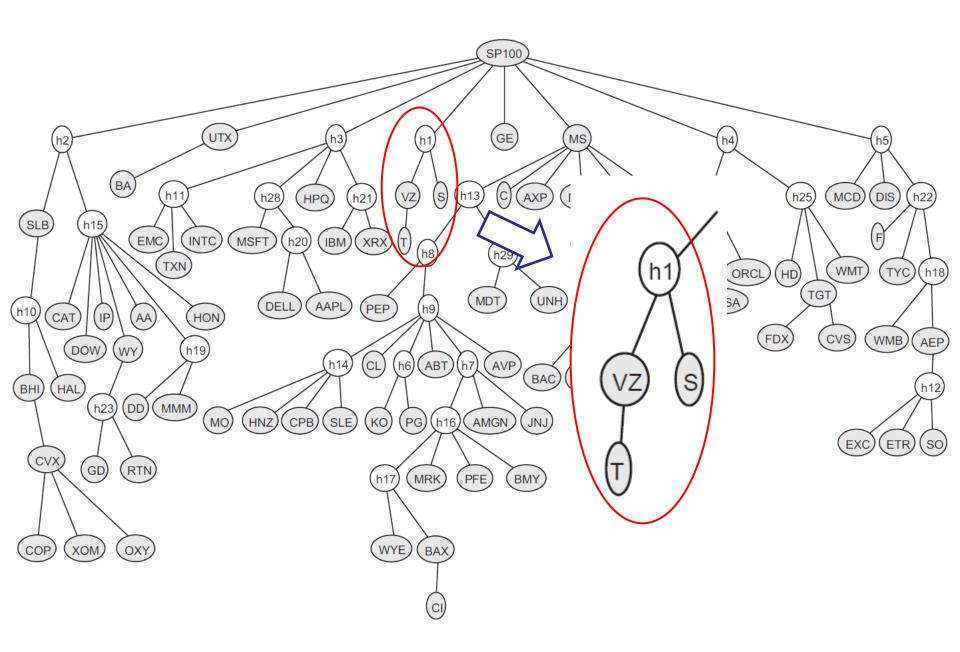
- For a double star, RG is clearly the best.
- NJ is poor in recovering HMM.
- CLGrouping performs well in all three structures.

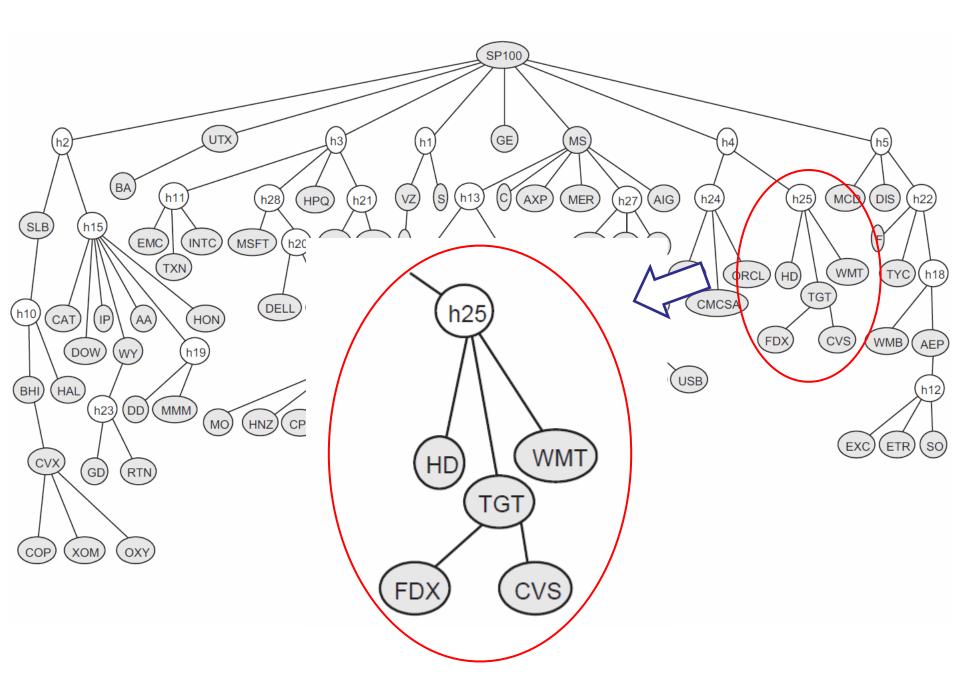
• Average running time for CLGrouping < 1 second.

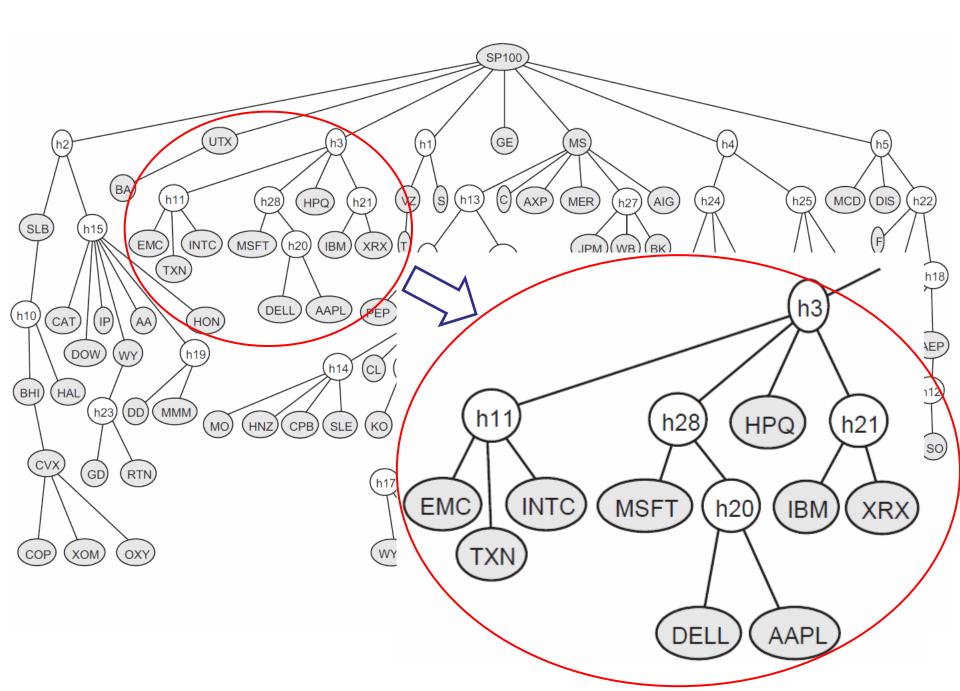
Monthly Stock Returns

- Monthly returns of 84 companies in S&P 100.
- Samples from 1990 to 2007.
- Latent tree learned using CLNJ.



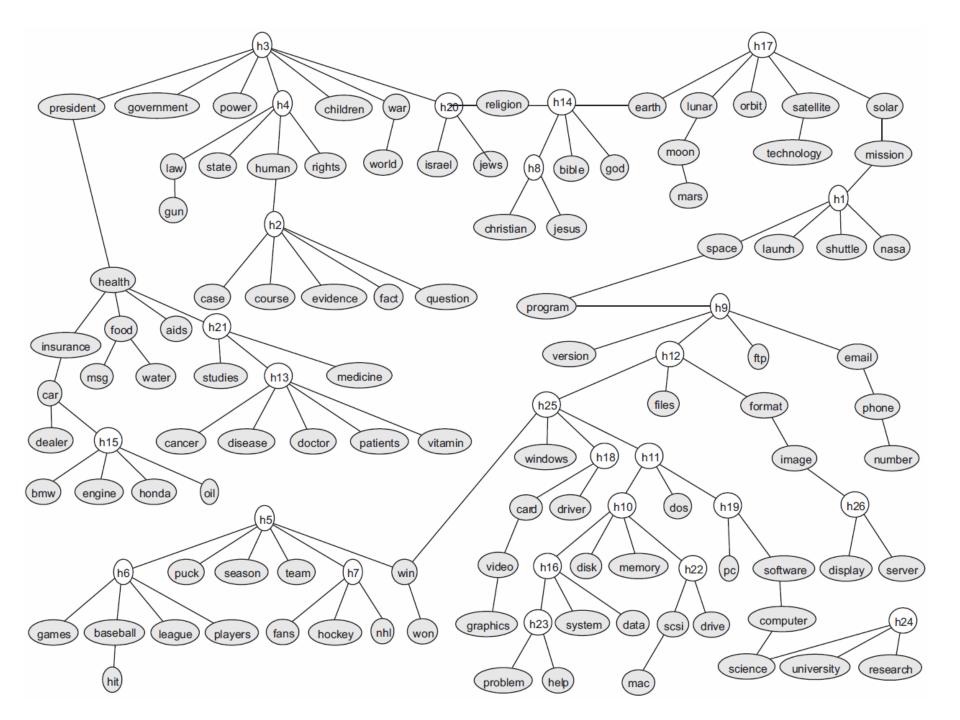


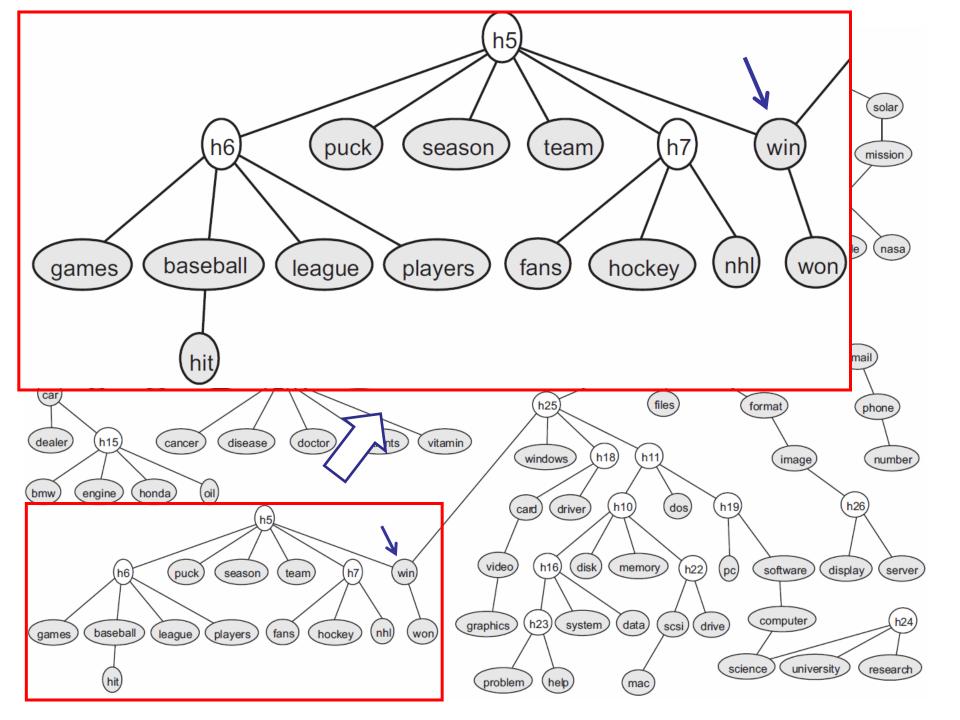


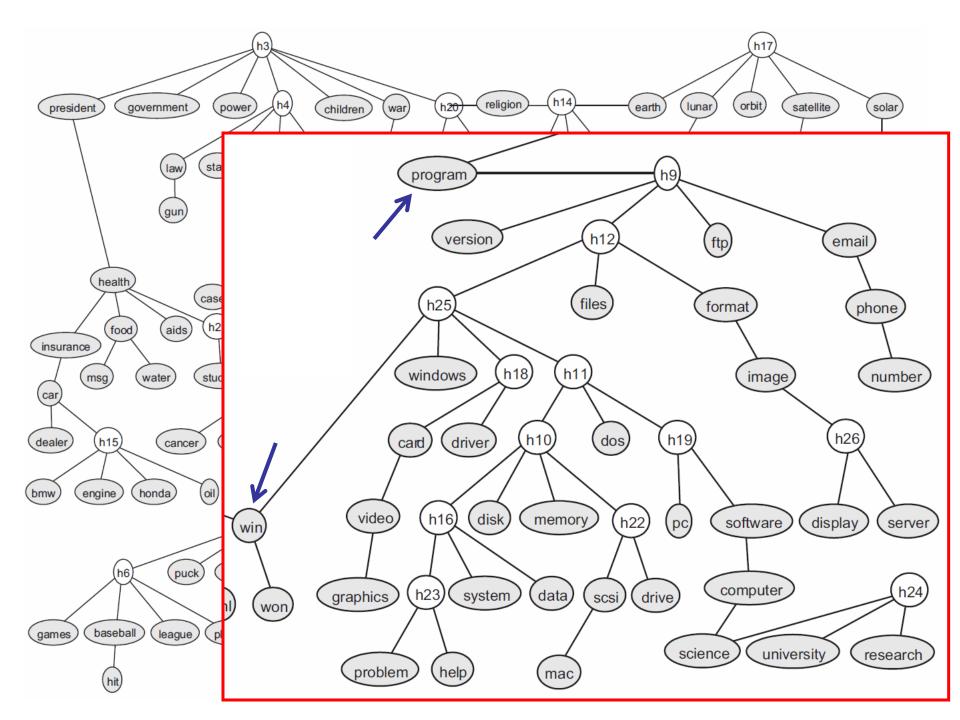


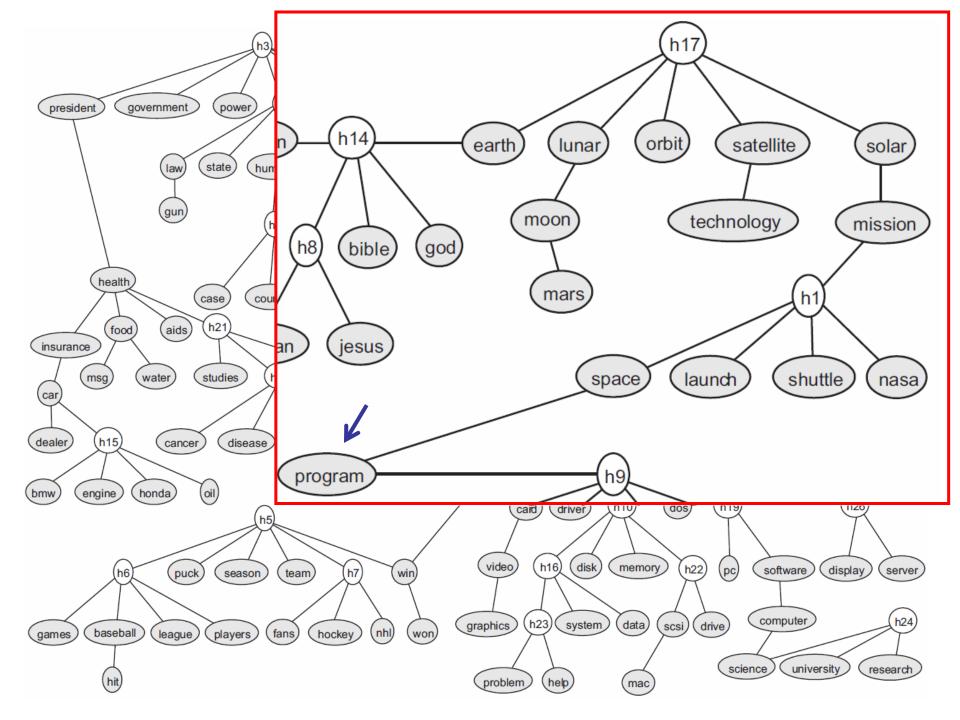
20 Newsgroups with 100 Words

- 16,242 binary samples of 100 words
- Latent tree learned using regCLRG.









Contributions

- Recursive-grouping
 - Identifies families and introduces hidden nodes recursively.
- CLGrouping
 - First learns the Chow-Liu tree
 - Then applies latent-tree-learning subroutines locally.

Contributions

- Recursive-grouping
- CLGrouping
- Consistent.
- CLGrouping superior experimental results in both accuracy and computational efficiency.
- Longer version of the paper and MATLAB implementation available at the project webpage. http://people.csail.mit.edu/myungjin/latentTree.html