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Abstract—We present a versatile framework for tractable com-
putation of approximate variances in large-scale Gaussian Markov
random field estimation problems. In addition to its efficiency and
simplicity, it also provides accuracy guarantees. Our approach re-
lies on the construction of a certain low-rank aliasing matrix with
respect to the Markov graph of the model. We first construct this
matrix for single-scale models with short-range correlations and
then introduce spliced wavelets and propose a construction for the
long-range correlation case, and also for multiscale models. We
describe the accuracy guarantees that the approach provides and
apply the method to a large interpolation problem from oceanog-
raphy with sparse, irregular, and noisy measurements, and to a
gravity inversion problem.

Index Terms—Approximate variances, Gaussian Markov
random fields, multiscale models, wavelets.

I. INTRODUCTION

M ARKOV random fields (MRFs) [1]–[3] are statistical
models defined on undirected graphs, where the nodes

in the graph correspond to random variables and the edges en-
code conditional independence relations between pairs of vari-
ables. The Markov property of an MRF generalizes the well-
known property for Markov processes on a chain, stating that
the past and the future are conditionally independent given the
present. In MRFs on general graphs, if a set of nodes separates
the graph into two disconnected components, then these two
components are conditionally independent given the separator.
Gauss–Markov random fields (GMRF) are MRFs where the
variables are jointly Gaussian. The Markov graph of a GMRF is
dictated by the sparsity structure of the inverse of the covariance
matrix.

We address estimation in large-scale GMRFs, which arise
in a wide variety of applications including computer vision,
sensor networks, geostatistics, and oceanography [1], [3],
[4]. Assuming that the prior and the observation model are
fully specified, this involves computing the estimates and the
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variances of the hidden variables (note that we are computing
these quantities from the model—we are not estimating them
from samples). A prototypical application is interpolation
from sparse, irregular, noisy measurements [4]. As GMRFs
are a subclass of jointly Gaussian models, both the estimates
(means) and the variances can be obtained via matrix inversion.
However, for large-scale problems—arising, for example, in
oceanography and seismic imaging with two-dimensional
(2-D) or three-dimensional (3-D) fields with millions of vari-
ables—exact matrix inversion becomes intractable. Owing to
the sparsity of the graph, approximate means can be computed
with linear complexity in the number of nodes using iterative
solvers such as preconditioned conjugate gradients or multigrid
[5], [6]. However, such methods do not provide the variances.
The aim of this paper is to develop approaches to find accu-
rate approximate variances—in essence, this is a problem of
approximating the diagonal of the inverse of a sparse positive
definite matrix.

Variances are a crucial component of estimation, giving the
reliability information for the means. They are also useful in
other respects: regions of the field where residuals exceed error
variances may be used to detect and correct model-mismatch
(for example, when smoothness models are applied to fields that
contain abrupt edges). Also, as inference is an essential com-
ponent of learning a model (for both parameter and structure
estimation), accurate variance computation is needed when de-
signing and fitting models to data. Another use of variances is
to assist in selecting the location of new measurements to max-
imally reduce uncertainty.

Exact variances can be computed in tree-structured models
using belief propagation [7] (which, in trees, corresponds to
sparse Gaussian elimination) with linear complexity in the
number of nodes. For general models, junction-tree exten-
sions of belief propagation reduce the complexity of exact
inference from cubic in the number of variables to cubic in
the “tree-width” of the graph [2]. For square and cubic lattice
models with nodes, this leads to complexity and

, respectively, which, despite being a great improve-
ment from brute-force matrix inversion, is still not scalable
for large models.1 In addition, junction-tree algorithms are
quite involved to implement. Approximate methods such as
loopy belief propagation (LBP) [8] have linear complexity per
iteration but are not guaranteed to converge, and convergence

1A recent method, recursive cavity modeling (RCM) [4], provides tractable
computation of approximate variances using a combination of junction-tree
ideas with recursive model-thinning. The method in this paper, however,
provides analytical guarantees of accuracy, which have not been established for
RCM, and is also much simpler in terms of implementation.
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may be slow for large problems. Even in case of convergence,
LBP may produce rather poor variance approximations.

We propose a simple framework for variance approxima-
tions that provides theoretical guarantees of accuracy. In our
approach, we use a low-rank aliasing matrix to compute an
approximation to the inverse . By designing this
matrix, such that only the weakly correlated terms are aliased,
we are able to give provably accurate variance approximations.
We propose a few different constructions for the low-rank ma-
trix. We start with a design for single-scale models with short
correlation length and then extend it to single-scale models with
long correlation length using a wavelet-based aliasing matrix
construction. GMRFs with slow correlation decay, e.g., frac-
tional Gaussian noise, are often better modeled using multiple
scales. Thus we also extend our wavelet-based construction to
multiscale models, in essence making both the modeling and
the processing multiscale. This paper builds upon our earlier
short conference publications [9], [10].

In Section II, we discuss estimation with GMRF models and
also mention multiscale modeling. We introduce our low-rank
variance approximation approach, apply it to short-correlation
models, and establish accuracy guarantees in Section III. We
then describe the spliced-wavelet extension for models with
long correlations length in Section IV, also extending the ac-
curacy guarantees. In Section IV-C, we apply the construction
to multiscale models. We describe efficient ways of solving
the linear system arising in our approach in Appendix B. In
Section V, we test our approach with experiments, including
estimation problems from oceanography and gravity inversion.

II. GMRF MODELS

A GMRF model is based on a jointly Gaussian density with
certain conditional independence relations, which are summa-
rized by an undirected graph . Here is a set of
vertices (also called nodes), and is a set of edges (un-
ordered pairs of vertices). It is convenient to specify a GMRF
model in information form

(1)

The matrix is called the information matrix and is symmetric
positive definite and sparse so as to respect the graph

: if , then . We call the potential vector.
These quantities are directly related to the usual parameteriza-
tion of Gaussian densities in terms of the mean and
the covariance matrix

and (2)

Sparsity of is the link between the graph structure and the
conditional independence (Markov) properties of the GMRF:

implies that is independent of given the other
variables. For , we define to be the vector
corresponding to the variables in , and we use to denote
the complement of . Let denote the
neighbors of in the graph. Then the Markov property can be
stated as

(3)

1) Examples: Consider an estimation problem with a thin-
membrane prior, commonly used for data interpolation

(4)

This prior enforces leveled fields, i.e., it favors that neighbors
should have similar values. Note that without any observations,
this prior is degenerate (nonintegrable), as any constant field

has the same probability. This degeneracy disappears once
observations are added (or with small regularization ),
which we assume throughout this paper. The matrix can be
readily deduced from (4): for with ,

for , and . Here is the degree of
node , . Another common prior in image processing
is the thin-plate prior

(5)

The thin-plate prior enforces that each node is close to the av-
erage of its neighbors2 and penalizes curvature.

We can easily incorporate local observations , with
Gaussian . Assume that is independent of and
other for : . The posterior is
now , which is a GMRF that is Markov
on the same graph ( s are observed and do not change, so we
do not add new nodes). Adding local observations modifies the
diagonal of and the potential vector .

For a concrete example, consider the linear Gaussian
problem, with observations , where is zero mean
with covariance and independent noise is zero mean
and with diagonal covariance . Then the Bayes least squares
estimate and the error variance are given by

(6)

If is a sparse GMRF prior on and are local

observations, then has the same
sparsity as , with only the diagonal terms being modified.
Now and are the information parameters
specifying the conditional model given the observations.

Given a model in information form specified by , it is of
interest to compute the (conditional) means and the variances

for all . As we have discussed in Section I for large-scale
GMRFs, exact computation of using matrix inversion is in-
tractable. In Section III, we describe our approach.

A. Multiscale GMRF Models

Single-scale models with only local interactions, such as
thin membrane and thin plate models, have limitations on
the kind of fields they represent. In particular, the tails of the

2A thin plate model on a square grid has a more dense Markov graph: neigh-
bors up to two steps away are connected by an edge.
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(a) (b) (c)

Fig. 1. (a) Single-scale model. (b) Tree-structured multiscale model. (c) Loopy
multiscale model on a pyramidal graph.

correlation for such models fall off exponentially fast, so to
represent long-range correlations with slower decay, other
models are needed. One can certainly accomplish this by using
far denser single-scale graphs, with long-range interactions,
but this defeats the sparsity needed for efficient algorithms. An
alternative is to make use of multiscale models, which represent
the phenomenon of interest at multiple scales or resolutions.
Coarser scales correspond to local aggregates of finer scales:
coarse-scale variables capture summaries of local regions at
the finer scale. The multiple scales may represent physically
meaningful quantities with measurements acquired at dif-
ferent scales. Alternatively, coarser scales may be artificially
introduced hidden variables without measurements, which
facilitate more efficient estimation. The scales may be disjoint,
with estimates in coarser scales used to simplify estimation
in the finer scales [5], [11], or they may be linked together
into a coherent statistical model, with either deterministic or
stochastic interactions between scales [12]–[14]. A significant
effort has been devoted to the development of extremely ef-
ficient tree-structured [see Fig. 1(b)] multiscale models [12].
The main drawback of tree-structured models is that certain
neighbors in the fine-scale model may become quite distant in
the tree-structured model, which leads to blocky artifacts in the
estimates. To avoid these artifacts, multiscale models that allow
loops also received attention, e.g., [13] and [14]. We consider
a class of multiscale models on pyramidal graphs with loops
described in [13] and [15]. The different scales in this model
constitute a coherent statistical model with nondeterministic
interscale interactions.

The Markov graph for the model is illustrated in Fig. 1(c).
We show each scale to be one-dimensional, but they can also
be two- and three-dimensional. The model has a pyramidal
structure including interactions within the scale and between
neighboring scales. The model has many small loops, so exact
methods for tree-structured graphs do not apply, but the model
is much richer representationally than tree-structured ones.
The motivation for this multiscale model is to represent or
approximate a single-scale model with slow correlation decay.
The correlations in the single-scale model get distributed
among scales in the multiscale model, and the long correlations
are mostly accounted for through coarse-scale interactions.
Conditioned on the coarse-scale variables, the conditional
correlations among the fine-scale variables are more local. We
leave the question of learning such pyramidal models to [13]
and describe an extension of our low-rank variance approx-
imation to find variances when such a model is specified in
Section IV-C.

III. LOW-RANK VARIANCE APPROXIMATION

Finding the means of a GMRF corresponds to solving the
linear equations . For sparse graphs, a variety of effi-
cient, iterative algorithms exist for solving such equations with
total complexity that grows roughly linearly with the number
of nodes in the graph (see Appendix B for details) [6]. However,
except for models on trees, such linear complexity is not readily
available for the computation of the covariance matrix. One way
in which one might imagine performing this computation is to
embed it in a set of linear equation solvers. Let be
the th standard basis vector; then the th column of can be
obtained by solving . To get all columns of , this
would have to be done times, once at each node in the graph:

with complexity . This is still
intractable for large-scale models. Note that the full matrix
has elements, so quadratic complexity is a lower bound to
compute all of .

However, in many cases, we are most interested only in
the diagonal elements of (i.e., the individual vari-
ances),3 and this raises the question as to whether we can
compute or approximate these elements with procedures with
only linear complexity. Of course the direct computation
diag diag is costly. Instead we propose to design
a low-rank matrix , with and , and
use it instead of . The system can be solved
with complexity in two steps: first we solve
using iterative solvers. Then, we postmultiply by , i.e.,

(which requires operations, as we only
need the diagonal).

To get accurate variance approximations, must be designed
appropriately, taking the graph and the correlation structure of
the model into consideration. Let all rows of have unit norm

. Consider the diagonal of

(7)

To force to be accurate approximations of the variances
we need the aliased terms to be nearly zero for all
pairs of nodes. We analyze two different cases. For models with
short-range correlations decays fast and is nearly zero for
most pairs, so we only have to take care of the nearby nodes.
In the long-range correlation case, we use a wavelet decompo-
sition to decompose the correlation across several scales, thus
producing several problems with short correlation length. More-
over, by adding randomness to the choice of (and perhaps
computing approximations with several such random choices),
we can obtain unbiased approximations of the true covariances.
We describe the short-range correlation construction next, and
a wavelet-based extension for models with long correlations in
Section IV.

A. Constructing for Models With Short Correlation

The key idea here is that to make small, we need
either or to be small. Suppose that decays fast with

3It is also possible to use our approach to find accurate approximations of
the elements of the covariance which correspond to nearby nodes. For sparse
models, there are O(N) such elements.
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Fig. 2. An illustration of the low-rank matrix construction for a 1-D chain.
(a) Single spike v results in (b) fast-decaying response J v . Next, in (c) we
add together several well-separated spikes, z = v , and in (d) show the
resulting response J z, which at the peaks is close to the correct variances
P (dashed). Next, we introduce random sign-flips � . In (e), we plot B =

� v . In (f), we show the response R = J B .

Fig. 3. Local 2� 2 regions for square lattice. Colors: fA; . . . ;Hg with first
four colors in shaded blocks and last four colors in transparent blocks. The
blocks appear in a checkerboard pattern.

distance from node to . Then, for nodes that are far apart in
the graph (farther than the correlation length4) the correlation

and the corresponding error-terms in (7) are negligible. For
pairs of nodes and that are nearby, we have to design such
that and are orthogonal: this is a problem of designing an
overcomplete basis that is nearly orthogonal with
respect to a graph . We describe such a construction for chains
and rectangular lattices, and suggest an approach for arbitrary
sparse graphs.

4We define the correlation length to be a distance in the graph beyond which
the correlation coefficient between any two nodes becomes negligible (smaller
than some specified threshold). For models with exponential decay, this is con-
sistent with the conventional definition but also applies to models with other
modes of correlation decay.

(a) (b)

Fig. 4. (a) Identity and (b) locally orthogonal B matrix formed by adding cer-
tain columns of I together and changing signs randomly.

For the sake of clarity, we start with a simple 1-D chain ex-
ample.5 We assume that the correlation between nodes decays
rapidly with distance (e.g., in many models correlation decays
exponentially with distance between and :

with ). Consider Fig. 2(a) and (b). We
plot the th standard basis vector with in (a) and the
th column of , the solution to the system in

(b). There is a spike of at , a fast decaying response
for near , and most of other entries are nearly zero. Now let

, where all indexes’ s are mutually
well separated. In Fig. 2(c) and (d), we show and the solution

to . We also show (dashed). At each , we have a
spike and a fast-decaying response. This operation can be seen
as a convolution of a spike-train with a time-varying kernel. If
the spikes are well- separated, then the interference from other
spikes is small and for each . This is the basic
idea behind the construction of our matrix for the short-range
correlation case.

Now to find such groups of well-separated nodes, we partition
the nodes into classes, which we call colors, such that nodes
of the same color are a distance apart. For chains, this can
be done simply by periodically cycling through the colors.
We will have a column of for each color . We assign

independent identically distributed (i.i.d.)
random signs for each node of color , and for
other nodes. An illustration appears in Fig. 2(e) (and Fig. 4). We
assign random signs to entries of in order to have destructive
interference between the error terms, and we later show that it
leads to unbiased variance approximations. In Fig. 2(e), we plot
a column of , and in (f) . Next we apply ,
thus selecting the entries for nodes of color . After repeating
these steps for all the colors and adding them together, we get
our approximation .

For rectangular-grid models, the idea is very similar. We par-
tition the nodes into several color classes such that nodes of the
same color have a certain minimum distance between them. One

5Here we consider a chain in a generalized sense, meaning that the nodes have
an inherent 1-D ordering but the Markov graph does not have to be a chain and
may have links a few steps away in the ordering.
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such construction with eight colors appears in Fig. 3. By off-set-
ting the blocks in a checkerboard pattern, the minimum distance
can be increased to twice the dimension of each square. The rest
of the procedure is the same as in the 1-D case: we assign
to be 1 randomly (i.i.d. flips of a fair coin) for each node of
color and solve for all .

For chains and lattices, the nodes are easy to color by in-
spection. For arbitrary sparse graphs, we suggest to use ap-
proximate graph-coloring to define . To get a minimum dis-
tance , one could augment the graph by connecting nodes up
to steps away and solve the graph-coloring problem on it (as-
signing colors such that nodes of the same color do not share
an edge). Finding an optimal coloring is very hard, but approx-
imate solutions (allowing for some violations, and using more
than the minimum number of colors) can be approached using
spectral methods [16] or the max-product form of belief propa-
gation. Upon defining the colors, we can follow the same steps
as we have described for chains and grids.

Next we analyze the diagonal elements of and show that
they are unbiased and that the errors can be made arbitrarily
small by increasing the minimum separation.

B. Properties of the Approximation

Our construction of can be viewed as aliasing of the
columns of the standard basis : groups of columns that corre-
spond to nodes of the same color are added together. We refer
to this process as splicing, see Fig. 4 for illustration. It can
be represented as . Here the th column contains
nonzero entries only for nodes of color . The exact covariance

is the solution to linear system . We approximate it
by solving , i.e., , and
the error is

(8)

The matrix serves the role of a signed adjacency ma-
trix, showing which pairs of columns of are aliased together.
Let be the set of nodes of the same color as ; then

if
otherwise.

(9)

We are interested in the diagonal entries of :

(10)

The term is a signed indicator of the components aliased
to , i.e., if , and zero
otherwise.

1) Unbiased: The approximations are unbiased. The ex-
pectation of over is . We have

,as and are inde-

pendent and zero mean. Hence . We stress that
unbiasedness involves averaging over choices of . However, if

the variance of is small, then even one sample provides ac-
curate approximations .6

2) Variance of the Approximations: Suppose that the corre-
lations fall off exponentially with the distance be-
tween and , i.e., , with . This
is true for a wide class of models including Markov models
on bipartite graphs. Now,

. We have

(11)

In the second line, we use the fact that and that
if , and zero otherwise.

In a 2-D lattice model with our construction, the number of
nodes of a given color that are 2 steps away is 8 (all the
distances between nodes of the same color are integer multiples
of 2 ). Using the exponential decay bound, for nodes with

, . Hence

(12)

We have used the following series:
. Thus, .

Since , we can choose large enough such that the
variance of the approximation is below any desired threshold.
In practice, should be chosen to be comparable to the
correlation length of the model.

Now let us repeat the analysis for 2-D lattices with a slower,
power-law rate of decay, i.e., , where .
Then the sum in (12) changes to

(13)

If , then the sum converges (and is equal to
(2 1), the Riemann zeta function), and the errors can be

made arbitrarily small by increasing . However, if , then
for any , the sum diverges.7 In Section IV, we show that the
wavelet-based construction can dramatically reduce the errors
for such power-law decay and can go beyond these limitations.

We can also bound the absolute error itself (rather than its
variance): . For example, with exponen-
tial decay of , we have . The
stochastic bound in (12) is tighter, but it requires taking expec-
tation over the random signs .

6If the correlation decay is not known, then repeated trials over � can also
provide empirical variances of the approximation.

7Here we are focusing on 2-D models. More generally, the required p depends
on the dimension of the lattice. In d dimensions, there are O(n ) aliased
terms at distance n, and the sum in (13) becomes / n . Thus, we
need p > d=2 for convergence.
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IV. CONSTRUCTING WAVELET-BASED FOR MODELS WITH

LONG CORRELATION

In our construction of matrix in the last section, we set
the separation length between nodes of the same color to be
comparable to the correlation length in the model. When the
correlation length is short, the approach is very efficient. How-
ever, when the correlation length is long, the approach is no
longer attractive: making the separation length long will make
the computational complexity high. Alternatively, if we vio-
late the correlation length and use a short separation, then the
method still gives unbiased variance approximations, but the
variance of these variance approximations becomes very high
(see examples in Section V).

To address long-range correlations, we propose using
wavelets to decompose the aliasing matrix across several
scales, so that the correlation length in each scale is short.
Note that in this section, the GMRF model has just one scale.
Multiple scales come from the wavelet decomposition. In
Section IV-C, we apply the method to a multiscale model,
where the GMRF has hidden variables representing coarser
scales and allows sparse representation of processes with slow
correlation falloff.

We start with one-dimensional wavelets in continuous time
to simplify discussion and analysis. A wavelet decomposition
is specified by a scaling function and a wavelet function

, which generate a family of dilations and translations [17]

(14)

For a fixed scale , the set generates the approxima-
tion space . These spaces are nested ,
with higher corresponding to coarser scales. The span of the
wavelets at a given scale gives the detail space

(we use to denote the orthogonal com-
plement of in ). We can decompose the fine scale
over scales

(15)

We focus on orthogonal8 wavelet families with compact support,
where is orthogonal to all other translations and dilations
of and to scaling functions at scale and coarser.

To deal with discrete-time signals, we make the standard as-
sumption that discrete samples are the scaling coefficients

of a continuous wavelet transform of some smooth
function at scale [17]. Let without loss of gen-
erality. Now, a discrete wavelet basis for the space is con-
structed by collecting the scaling functions at the coarsest scale
and the wavelet functions at all finer scales as columns of a ma-
trix . Let and contain the scaling and wavelet func-
tions, respectively, at scale . In general, we do not need to go
all the way to the coarsest scale . Stopping the

8One could also use biorthogonal wavelets [17] in our approach: instead of
having an orthogonal wavelet basis W , we would have an analysis basis W
and a synthesis basis W , such that W W = I .

(a) (b)

Fig. 5. (a) A discrete wavelet basis, with columns corresponding to wavelets at
different scales and translations, and (b) B matrix obtained by aliasing certain
columns ofW within each scale. In the wavelet basisW , the number of columns
doubles with each finer scale, but in B it stays constant.

decomposition earlier with also provides an or-
thogonal basis for the space . Our orthogonal basis is9

(16)

An illustration of a Haar wavelet basis for is given
in Fig. 5(a). Columns (wavelets) are grouped by scale, and
horizontal axis corresponds to translation. At scale , we have

possible translations, and hence that many columns
in .

A. Wavelet-Based Construction of

There is now a well-established literature [18]–[21] de-
scribing that, for many classes of random processes, their
wavelet coefficients have faster decaying correlation than the
original process itself. In our approach, we do not transform
the random process—instead, we consider solutions to

( is a column of ) and show that exhibits
fast decay (we also say correlation decay), which will allow
compression of and computational efficiency. Roughly
speaking, we create a scale-dependent , with a construc-
tion similar to Section III at each scale. We now present our
wavelet-based construction and then analyze it.

In the original single-scale construction, we find an approx-
imation to by solving instead of .
The matrix is an aliased version of , with . For
the multiscale construction, we start by expressing the exact co-
variance as the solution to the system . We
approximate it by applying the aliasing operation at each scale

(note, we do not alias wavelets across scales). We
call this aliasing operation wavelet splicing. The th column of

contains and corresponds to the th wavelet at scale
. We group these coefficients, and hence, the columns, into

groups (colors) such that any two coefficients of the same color
are well separated with respect to the correlation length at scale

(i.e., correlation length for at scale ). Each column of

9Ideally one would use boundary wavelets at the edges of the signal [17]. We
do not pursue this: we use N < log (N) and assume that the support of the
wavelets at the coarsest scaleN is small compared to the size of the field, and
hence edge-effects have negligible impact in our approach.
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contains nonzero entries only for nodes of a particular color.
Similar to Section III, we set , for , and
zero otherwise. The signs are equiprobable and i.i.d. Com-
bining all the scales together, this gives

(17)

where , ,
and . We illustrate matrices
and in Fig. 5(a) and (b) respectively. The rest of the procedure
follows that for the short correlation length: we solve for the
diagonal of using , as described in Section III.

In the wavelet decomposition, the majority of the coefficients
are at fine scales. In the next section, we describe that for well-
behaved GMRFs, decays faster at finer scales.10 While at
the finer scales in there are more coefficients (and columns),
they can be aliased together more aggressively; see Fig. 5(b).
We show that under certain assumptions, the correlation length
can be assumed to decrease twofold with each finer scale, so the
resulting number of columns of stays the same for all scales.
In this manner, the number of columns of is in-
stead of for the wavelet basis , giving significant compu-
tational savings in our approach.

1) Construction of for 2-D: We use the separable wavelet
construction, which takes products of 1-D functions to create a
family of two-dimensional triplets [17]11

(18)

Stacking as columns of a matrix creates an orthog-
onal basis for two-dimensional fields. To produce the cor-
responding aliasing matrix as in (17), we first create one-di-
mensional spliced matrices and con-
taining linear combinations of wavelet and scaling functions at
each scale. Then we create triplets using columns of and
in the same manner as in (18).

B. Error Analysis

In Section III-A, we analyzed the errors in the single scale
construction . When the separation between
nodes of the same color is smaller than the correlation length,
the errors are significant (see Fig. 6). We will now justify why
the wavelet construction can dramatically reduce the errors for
models with long-range correlations.

The variance approximation in the wavelet-based construc-
tion of is . The aliasing
matrix is block diagonal with a block for each scale. Let

. Its th column is the response

10We measure distance and separation relative to scale: separation of K at
scale s corresponds to separation of K2 at scale 1.

11This is different from taking outer products between each pair of columns
of W in (16). That would also give an orthogonal basis but has the undesirable
effect of mixing wavelets from different scales.

Fig. 6. Errors with the aliased standard basis: the error is obtained by an inner
product between P and � (both signals are a function of j). Here i = 50.
We set all the signs � = 1 for simplicity.

Fig. 7. R and W for l 2 C(k)nk. (Top) Scale 6. (Bottom) Scale 5. Regions
where R and W overlap contribute to the errors in P̂ for i in the support of
W . The original P is shown in Fig. 6.

of the linear system to the wavelet . An illustra-
tion appears in Fig. 7. We show the response for a
wavelet at two different scales and . We also
show the wavelets that are aliased to with dashed lines. It
is clear that decays much faster than in Fig. 6. We discuss
this decay in more detail later in this section. The regions where

and overlap contribute to the errors in for falling in
the support of . The error is

(19)
We have only if and the
wavelets and are aliased together. In particular, if and

belong to different scales, then . Now the
errors in variances are

(20)

We will analyze in Proposition 1 and show that the
interference of and decays fast with separation. We will
show that for large fields, as , the error is stable (i.e.,
bounded), the approximation can be made accurate to any de-
sired level by controlling aliasing and that the multiscale con-
struction is much more accurate than the single-scale one for
GMRFs that have substantial energy over multiple scales.
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We can also bound (and hence the -norm of
diag , )

(21)

The tighter stochastic bound on in (24) involves ex-
pectation over , so these bounds are not redundant.

1) Correlation Decay: We now analyze the decay of .
Note that, while our analysis is similar in spirit to other work
involving wavelets and covariance matrices, our objectives and
indeed our analysis differ in significant ways. In particular,
conventional analysis focuses on the covariance matrix of the
wavelet coefficients, i.e., . In contrast, our
analysis is based on viewing the rows of as deterministic
signals and considering their transforms—i.e., on the matrix

. That said, we will comment on possible ties to more
conventional wavelet analysis at the end of this section.

We first recall some relevant facts from wavelet analysis
[17]. Suppose a continuous-time function is -Lips-
chitz12 (this is related to how many times is continu-
ously differentiable). Also suppose that the wavelet family

has vanishing moments,13 with . Then
the wavelet coefficients satisfy

. If , then the magnitude of
the wavelet coefficients in smooth regions drops fast for each
finer scale.

However, this fast decay does not happen near a point of sin-
gularity of , say, . Suppose that the wavelet at scale 1 has
support . At a coarser scale , the support is 2 . To avoid
the point of singularity, the wavelet at scale has to be outside
the interval 2 , which gets twice as wide with each
coarser scale. This set over all scales is called the “cone of in-
fluence,” and it contains unusually high values of wavelet co-
efficients, a region of disturbance caused by the singular point
[17].

For our analysis, we view as samples of a continuous-time
function and assume that the correlation function may have
a singularity at , and that it is smooth otherwise. Consider
scale , . The th row of contains the scale-
wavelet coefficients of the th row of . The singularity of at

will produce a disturbance region with high wavelet coef-
ficients near that value of for which peaks at row . Recall
that the rows of are indexed by nodes, and the columns cor-
respond to wavelet coefficients. The disturbance region at node

in will be roughly 2 rows wide, and columns wide
(since wavelet coefficients involve downsampling by 2 ). When
columns of are aliased together, we have to make sure that
the cones of influence do not overlap. The region of disturbance

12A function is pointwise �-Lipschitz [17] at t if there exists  > 0 and
a polynomial p of degree m = b�c such that 8 t 2 , jf(t) � p (t)j �
jt� t j , (� > 0). It is uniformly Lipschitz over an interval if it is pointwise
Lipschitz with  not dependent on t.

13A wavelet with n vanishing moments is orthogonal to polynomials of de-
gree n� 1, i.e., t  (t)dt = 0 for 0 � k < n.

is twice as narrow (in terms of the number of rows) at each finer
scale, so roughly twice as many wavelets can be aliased with
each finer scale.

As an illustration, consider Fig. 7. The region of disturbance
of near can be seen in Fig. 7 for scales 6 and
5. The original is shown in Fig. 6 and has a singularity at

. It is evident that by going to a finer scale, from
to , decays faster, and more columns of can be
aliased without sacrificing the accuracy.

2) Properties of the Wavelet-Based Approximation : In the
single-scale case, we showed that is unbiased and bounded the
variance of the errors. We extend these results to our wavelet-
based approximation. The total error is equal to

(22)

3) Unbiased: Let be the set of columns that get
merged with column . Then taking an expectation over ,

. The error terms cancel out because for
. Thus, the approximation is unbiased.

4) Variance of the Approximations: We now obtain a bound
based on the expression in (20). Since is unbiased, we have

. Using (20), it follows:

(23)

The terms and are uncorrelated
unless or ,
so this expectation reduces to

. Also,
the second term is zero, as we require that the supports of the
aliased terms and do not overlap, i.e.,
for . Hence

(24)

To bound this sum, we consider a model with exponential and
power-law decay of correlations and assume that the wavelet
has vanishing moments. Also, we do not use
scales in the decomposition but rather set , where

is the correlation length of the model. Once the size of the field
exceeds , there is no advantage in including coarser scales that
contain negligible energy.

Proposition 1 (Bounded Errors): Suppose for a 1-D GMRF,
or . Then, as the size of the field

tends to infinity, the errors in (24) stay bounded, provided that
the number of vanishing moments of the wavelet function sat-
isfies . Also, by increasing the separation length, i.e., the
distance between nearmost aliased terms, the errors can be made
arbitrarily small.

We establish this stability property in Appendix A. We avoid
the issue of boundary effects as we fix the number of scales of
the wavelet decomposition when the field size tends to infinity.
In the Appendix, we show that the errors in the wavelet-based
construction can be much smaller than in the single-scale one
if the GMRF has power distributed over multiple scales. For
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higher dimensional lattices with power-law rate of decay, the
required number of vanishing moments also has to satisfy

, where is the dimension.
5) Alternative Variance Analysis: We also consider another

line of analysis that makes ties to covariances of wavelet coef-
ficients (rather than ). It is im-
portant to emphasize that this analysis is approximate and does
not lead to bounds. Consider , and decompose it by scale.
We have

(25)

Then, via the same analysis as in Section III-B, we have

(26)
Putting all the scales together,

. This equality holds
since the signs at different scales are independent. Now,
assuming that the errors at different nodes are only weakly
correlated, which we justify with experiments in Section V,
we have

. We obtain an estimate of the
variance of our approximation that explains how the errors
are decomposed across scale. The accuracy of this approach
relies on more detailed knowledge of the structure of the
covariance than the bound we have presented earlier. That
said, since the statistics of wavelet coefficients of various
random processes have been analyzed in prior work [18]–[21],
there are certainly classes of processes in which this alternate
variance approximation can be quite accurate. Moreover, taking
advantage of such additional knowledge of covariance structure
may suggest alternative bases to , and in turn to , that are
adapted to the process structure and yield tighter bounds.14

C. Multiscale Models for Processes With Long-Range
Correlations

In our analysis, the errors in variance approximations mainly
depend on the covariance structure of , and the information
matrix does not play a direct role. However, plays a cru-
cial role during estimation—the model has to be Markov with
respect to a sparse graph to be able to store it efficiently, and to
solve the linear system efficiently. Some processes with
slow correlation falloff do not have a sparse information matrix
in a one-scale representation, so they do not fit well into our ap-
proach. However, slow correlation falloff can be modeled using
sparse multiscale representations with hidden variables, as we
discussed in Section II. A pyramidal model with a stochastic
relationship between scales was proposed in [13] and [15]. We

14For example, one could use partial wavelet decompositions that stop at in-
termediate scales, and more generally wavelet packets [17] adapted to the sta-
tistics of wavelet coefficients at different scales.

consider the problem of finding approximate variances in such
a model.

A representative structure for the model is illustrated in
Fig. 1(c). The variables in the bottom (fine) scale correspond
to some physical phenomenon that is being modeled. The
variables at coarser scales represent aggregates over local
regions. They may or may not be of interest in the estimation,
but they serve to induce a sparse graph structure (once they are
integrated out, the fine-scale model in general has a complete,
nonsparse, information matrix). Aggregation can mean that the
coarser scale variable represents an average, or some weighted
combination of the variables in the finer scale over a small
region. However, the relationship across scale is nondetermin-
istic, allowing for uncertainty. The graph is sparse but has many
loops.

The structure of the information matrix is such that variables
in one scale are only connected to nearby scales. Hence the
matrix for a multiscale model with four scales has the following
chain structure (with scale 1 being the finest and 4 the coarsest):

(27)

Suppose that we are mainly interested in computing the
variances of the variables at the finest scale (the other ones
are auxiliary), i.e., in the block of corresponding to
scale 1. Hence in our approach, we only need to approximate

and not the full matrix. We use the

matrix , with zero for all coarser scales.15 Here

is a spliced wavelet basis corresponding to variables at scale 1
(the same construction as in Section IV).

Our error analysis takes into account only the covariance
structure of the fine scale variables . Hence, it
is oblivious to the hidden variables representation and only
depends on the properties of the marginal covariance block .
Experimental results with this multiscale model for processes
with long-range correlations are presented in Section V.

V. COMPUTATIONAL EXPERIMENTS

Our first experiment involves a 1-D thin-membrane model
with length , with nearest neighbor connections. Noisy
observations are added at a few randomly selected nodes. This
model has a short correlation length; see Fig. 8(top). We apply
the single-scale low-rank method from Section III-A and plot
the errors in variances (absolute error in percent, averaged over
all nodes) versus the separation length in Fig. 8(bottom). The
errors decay fast with separation length, in line with our analysis
in Section III-B.

Next we consider a 1-D thin-membrane model with connec-
tions from each node to nodes up to four steps away. The ma-
trix is close to singular, and the correlation length in the model
is long, see Fig. 9(top). We illustrate the results using both the

15Alternatively, if the variances at coarser scales are of interest, we use the
matrix blockdiag(B ;B ;B ;B ), where B is a spliced wavelet basis corre-
sponding to scale i. The errors are decoupled: errors from B at scale i are not
propagated to other scales.
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Fig. 8. (Top) Correlation P from the center node. (Bottom) Errors in vari-
ances (mean absolute error, in percent) versus separation length l.

Fig. 9. One-dimensional example with long-correlation. (Top) Correlation P

from the center node. (Center) True variance, and low-rank approximate vari-
ance using one scale. (Bottom) True variance, and low-rank wavelet-based ap-
proximate variance.

single-scale (middle) and the wavelet-based (bottom) low-rank
methods. We use for the single-scale approach, which
is too small compared to the correlation length. While the ap-
proximation is unbiased, its high variance makes it practically
useless. For the wavelet-based case, using a smaller matrix
with , constructed by splicing a Coifman wavelet basis
(Coiflet basis) [22], we are able to find very accurate variance
approximations as seen in Fig. 9(bottom).

Next we apply the approach to a 2-D thin-membrane model
of size 256 256, with correlation length about 100 pixels, and
with sparse noisy measurements taken at randomly selected
locations. The underlying true field is flat. We use separable
Coifman wavelets, and the resulting sparse matrix has size
65 536 304. This is a very significant reduction in the number
of columns, compared to . The results appear in Fig. 10: the
errors (bottom left) are small compared to the variances (top).
Our approximate solution is a close match to the exact solution,
which can still be computed for models of this size. The 2-D
autocorrelation of the errors appears in Fig. 10 (bottom right):
the errors are weakly correlated, supporting our alternative
error analysis based on in Section IV-B. Next, we apply

Fig. 10. Two-dimensional thin-membrane example. (Top) approximate vari-
ances, (bottom left) errors, and (bottom right) 2-D autocorrelation of errors. The
approximations are accurate (errors are much smaller than the variances), and
the errors are weakly correlated.

our low-rank variance approximation method to ocean surface
height data collected along the tracks of Jason-1 satellite16

over the Pacific Ocean region. The data are sparse and highly
irregular. We use the thin-plate model for the data. The mea-
surements in general fall between the grid points, and they are
modeled as bilinear interpolation of the nearest
four nodes in the grid ( has four nonzero entries) with added
white Gaussian noise . The posterior information
matrix combines the thin-plate prior with the measurements

. It is sparse because the measurements
only induce local connections within each cell in the grid.

The size of the field is 1024 1024, i.e., over a million vari-
ables. Computing the variance in a model of this size is beyond
what is practical with exact methods on a single workstation. We
use our approximate variance calculation method. The correla-
tion length is moderate, so using just two wavelet scales suffices,
and the matrix has only 448 columns. The resulting approxi-
mate variances using a version of the embedded trees (ET) itera-
tive solver (described in Appendix B) appear in Fig. 11. The re-
gions over land are ignored (in black). The variances are lowest
near the measurements (along the tracks), as expected.

Next, we consider a gravity inversion problem, where one is
interested in estimating the underground geological structure of
a 3-D volume based on gravity measurements on its surface. For
simplicity, we consider a 2-D version of this problem. We divide
the 2-D subsurface region into small blocks and model the mass

in the blocks as a thin-plate GMRF. The gravity measurements
on the surface come from a discretization of Newton’s law

16This altimetry dataset is available from the Jet Propulsion Laboratory:
http://www.jpl.nasa.gov. It is over a ten-day period beginning December 1,
2004. The data are normalized to remove seasonal spatially varying average
sea levels.
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Fig. 11. Approximate uncertainty (millimeters) of Pacific Ocean surface height
based on measurements along satellite tracks, 1024� 1024 grid.

(a) (b)

Fig. 12. Gravity inversion example: (a) exact variances and (b) accurate ap-
proximate variances using the wavelet-based low-rank approach. The variances
increase with depth.

of universal gravitation. They are linear in the unknowns but
nonlocal—they couple all the nodes in the GMRF

(28)

Here is the two-component (horizontal and vertical) gravity
measurement at point on the surface and is the unknown
mass at the th subsurface node; see Fig. 12(a). Also, is the
gravitational constant, and are, respectively, the distance
and the unit vector from the location of the th node to th mea-
surement point, and is Gaussian noise with diagonal covari-
ance . Combining the linear measurement model
with the thin-plate prior for the unknown field , the poste-
rior variance that we would like to approximate is

(29)

Note that this problem does not simply correspond to a sparse
matrix : in addition to the sparse component , there is also a
low-rank nonsparse component due to the nonlocal
measurements. However, using a version of block Gauss–Seidel
(see Appendix B), we still obtain fast solution of the resulting
linear system. We consider a square region with 64 64 nodes,

Fig. 13. Multiscale example: (a) conditional and (b) marginal correlation at the
fine scale. (c) Approximate variances using the low-rank approach: spliced stan-
dard basis. (d) Accurate approximate variances using the wavelet-based low-
rank approach.

with gravity measurements at 64 locations at the top.17 We plot
the true variances and those obtained using a wavelet-based low-
rank approach with four scales and 206 columns of (instead
of 4096). Despite the long-range correlation induced by the ob-
servation model, and the addition of the nonsparse
term, the method still gives accurate variances, as we show in
Fig. 12.

Finally, we apply our reduced-rank approach to a multiscale
model on a pyramidal graph, as described in Section II-A. The
model has 256 variables in the finest scale and five coarser
levels, with the number of variables decreasing twofold for
each coarser level. The total number of variables is 496. In
Fig. 13(a), we show the fast-decaying conditional correlation at
the fine scale (conditioned on the coarser scales) and in (b) the
slow-decaying marginal correlation at the fine scale. The fast
decay of conditional correlations allows efficient solutions of
the linear systems in our approach. However, the errors in our
low-rank variance approximations depend on the long-range
marginal correlations, requiring the use of the wavelet-based
approach. In Fig. 13, we show the results of computing ap-
proximate variance using the single-scale approach in (c) and
the wavelet-based approach in (d). The sizes of the resulting
aliasing matrices are 496 32 and 496 28, respectively.
It can be seen that the single-scale approach is inadequate,
while the wavelet-based yields very accurate variances, even
though it uses an aliasing matrix with fewer columns. This is
as expected—the model has a long marginal correlation length
at the fine scale, which only the wavelet-based approach is able
to handle.

VI. CONCLUSION

We have presented a simple computationally efficient scheme
to compute accurate variance approximations in large-scale
GMRF models. The scheme involves designing a low-rank
aliasing matrix that is used during matrix inversion. By a

17We assume that the density is approximately known outside the square re-
gion (this is not required, but it simplifies the problem).
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judicious choice of the aliasing matrix, the errors in the approx-
imation can be made unbiased and with small variances. We
have designed aliasing matrices for both the short-range and
smooth long-range correlation cases and applied them to single
and multiscale GMRF models.

There are many interesting directions for further research:
using wavelet packets to better adapt to the statistics of
the GMRF; using diffusion wavelets [23] to extend the
wavelet-based construction of to arbitrary (nonregular)
graphs; and interpreting our approach in the walk-sum frame-
work for Gaussian inference [8]. In addition, for multiscale
GMRF models, we are interested to find ways to design a
low-rank aliasing matrix that exploits the short correlation
length of the conditional model within each scale, rather than
using wavelet-based constructions.

APPENDIX A
STABILITY OF ERRORS IN WAVELET BASED APPROXIMATION

We provide the analysis for Proposition 1. Recall the expres-
sion for that we obtained in (24) and decompose it ac-
cording to scale

(30)

Since has compact support, is nonzero only for some
constant (independent of and ) number of wavelets at each
scale that contain in the support. Let be an upper bound
on this constant. Also, at scale is bounded by since

, and . Thus we have

(31)

Here is the index that achieves the maximum sum over at
scale . We bound the other terms in the sum over by this
maximum, giving a factor of in front.

First, suppose that we are dealing with a one-dimensional
GMRF and that outside the region of disturbance, decays ex-
ponentially with , i.e., , . Then the
response also decays exponentially with the same decay
rate outside the region of disturbance ,
where corresponds to the peak of . This happens be-
cause exponentials are eigenfunctions of linear time-invariant
filters. However, the constant decreases rapidly with each
finer scale. If our wavelet has vanishing moments, then

for that belongs to scale ,
. Recall that is the number of scales

we use in the wavelet basis, which depends on the correlation
length of the process: we set .

We can write , where we define
, with

indexing the aliased terms, and we use to denote the separa-
tion length at scale . Consider how depends on . The
separation length in our construction is , where

is the separation at the finest scale. The number of aliased
terms doubles with each finer scale, and the distance between
them decreases by a factor of two. For one-dimensional signals,

this (unscaled) error roughly doubles with each finer scale:
satisfies .

Hence . Note that the term is
equal to the error in the original (wavelet-less) construction with
separation distance . Putting all the pieces together, the total
error in (31) is bounded by

(32)

In the last line, if the number of vanishing moments satisfies
, then the sum for any .

That means that the total error is bounded by a constant mul-
tiple of . Since , this is roughly

. As we mentioned, roughly corresponds to
the error in the standard basis construction (without wavelets).
From Section III, we know that (1) is bounded so the errors in
wavelet-based construction are also bounded, and it can be seen
that using wavelets, we get a much smaller error. We also know
that by controlling , the error (1) can be made arbitrarily
small. Hence, the same is true for the error in the wavelet-based
construction.

Now let us consider power-law decay of correlations (again
outside of the disturbance region) , with

. In contrast to the exponential decay, the power-law
decay changes when wavelets are applied. A wavelet with
vanishing moments acts as local smoothing followed by th
order differentiation [17], so if decays as , then

decays as . This means that the tails of
decay faster than the tails of . We define

. The bound for in terms of
changes ;
hence . Putting everything to-
gether, the error in (31) is bounded by

(33)

In the last line, if , then the sum
and the total error is bounded

by a constant multiple of , or roughly
. If , then the sum is dominated

by the largest term ,
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and the total error is a constant multiple of
,

or roughly . In either case, the total error is
bounded by a small multiple of . For the power-law
decay, is in fact smaller than the error using the standard
basis, as using wavelets we change the power of decay from
to . Hence roughly corresponds to the error in the
single-scale construction with replaced by . Using our
results for the standard basis in Section III, we can conclude
that the total errors are bounded and can be made arbitrarily
small by controlling .

Also note that wavelet-based construction is especially ad-
vantageous in lattices of higher dimension (with dimensions):
there, the convergence of (1) requires .7 fHow-
ever, with the wavelet construction, we only need

. This means that for the case where the errors in the stan-
dard-basis construction diverge, we can still make them con-
verge using wavelets with sufficient number of vanishing mo-
ments.

APPENDIX B
EFFICIENT SOLUTION OF LINEAR SYSTEMS

In our approach, we compute the variances by solving a small
number of linear systems , all sharing the
same matrix . Whenever a fast solver for is available, the
overall variance approximation scheme is also fast.

Iterative approaches such as Richardson iterations and con-
jugate gradient methods are very appropriate for our approach,
as multiplication by a sparse is very efficient, so the cost per
iteration is low. The number of iterations can be controlled by
using a good preconditioner for , one that is easy to evaluate
and serves as an approximation of .

An efficient set of preconditioners based on embedded trees
has been developed in [24] for the lattice GMRF model. The
idea is that for models with a tree-structured graph , solving
the system (i.e., applying to a vector) is highly ef-
ficient—it can be done in operations. Hence, for general
graphs , [24] uses spanning trees with preconditioner

. We use a similar strategy based on block Gauss–Seidel
iterations that uses thin induced subgraphs as blocks. We parti-
tion the lattice into narrow overlapping horizontal and vertical
strips. Estimation in the strip (conditioned on other variables
being fixed) can be done efficiently with the cost linear in the
length and cubic in the width of the strip. By iterating over the
strips, convergence to the correct means is guaranteed.18 We use
this approach in the experiments in Section V. The same ap-
proach applies to gravity inversion with sparse plus low-rank
structure when small blocks are used instead of strips.

There are several directions for designing potentially even
more efficient preconditioners. Recently, [25] proposed an
adaptive scheme based on ET that picks the spanning trees
adaptively to have the most impact in reducing the error. This
should be beneficial within the context of block Gauss–Seidel
as well. Also, for single-scale models with long-range corre-
lations, using multiscale solvers such as [5] can dramatically

18We note that, in general, the convergence of ET iterations is not guaranteed.
By also requiring the subtrees to be induced, we force ET to be equivalent to
Gauss–Seidel, guaranteeing its convergence.

improve convergence. Alternatively, when the MRF model
itself has multiple scales (as in Section IV-C), then estimation
approaches in [13] and [15] can be used. There the model is
decomposed into a tractable tree-structured component and
disjoint horizontal components (one for each scale), which,
conditioned on the coarser scale variables, have short condi-
tional correlations and are also tractable. By iterating between
these tractable subproblems, estimation in the whole multiscale
model can be done efficiently.
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