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ABSTRACT
We propose a class of multiscale graphical models and algo-

rithms to estimate means and approximate error variances of

large-scale Gaussian processes efficiently. Based on emerging

techniques for inference on Gaussian graphical models with

cycles, we extend traditional multiscale tree models to pyra-

midal graphs, which incorporate both inter- and intra- scale

interactions. In the spirit of multipole algorithms, we develop

efficient inference methods in which variables far-apart com-

municate through coarser resolutions and nearby variables in-

teract at finer resolutions. In addition, we propose methods to

update the estimates rapidly when measurements are added or

new knowledge of a local region is provided.

Index Terms— graphical models, Gauss-Markov random

fields, multiresolution, multiscale, large-scale estimation prob-

lems

1. INTRODUCTION

The multiscale, or multiresolution modeling framework [1]

has attracted much attention in the signal and image process-

ing community for its rich modeling power as well as com-

putational efficiency. Traditional multiscale models use tree-

structured graphs (Figure 1 (bottom left)), which provide ex-

tremely powerful and efficient algorithms, but have limited

modeling power that may lead to blocky artifacts. Other ap-

proaches, motivated by multigrid methods, use multiple-scale

algorithms for computational efficiency but do not have con-

sistent stochastic structures between different scales. These

limitations have been recognized by a number of researchers,

who consider models that incorporate both intra- and inter-

scale interactions [1], [2]. However, due to the resulting model

complexity, they either allow only a limited extension of mul-

tiscale trees or use computationally expensive methods such

as simulated annealing to get solutions.

In recent years, there have been significant advances in

understanding and developing efficient inference algorithms
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for a larger class of Gaussian graphical models [3], [4]. Thanks

to these emerging techniques, it is no longer required to limit

the graph structure to trees in order to obtain tractable infer-

ence algorithms. This paper presents a pyramidal graph in

which consistent statistical links exist between neighbors at

each scale as well as between adjacent scales. We develop

highly efficient algorithms motivated by multipole methods
[5] to compute the optimal estimates as well as uncertain-

ties of the estimates given noisy measurements at some of the

nodes. In addition, using the consistent graphical structure of

our model, the estimates can be updated rapidly when mea-

surements are added or new knowledge of a local region (for

example, existence of discontinuities in the field) is provided.

The problem of fitting the model to best explain the given data

is also addressed and simulation results are presented.

2. GAUSS-MARKOV RANDOM FIELDS

A Gaussian random process x can be represented by a graph

G consisting of nodes V and edges E . Each node s is asso-

ciated with a random variable1 xs, and edges connecting the

nodes capture the statistical dependencies among the random

variables. The pdf of a Gaussian process x, parameterized

by its mean μ and covariance matrix P , can be equivalently

represented in information form J = P−1, and h = P−1μ.

The inverse covariance matrix J is sparse with respect to G: a

nonzero off-diagonal element in matrix J indicates the pres-

ence of an edge linking the corresponding nodes.

Consider a sparse noisy observation vector y = Cx + v,

where v ∼ N (0, R) is a Gaussian white noise process. The

conditional distribution of x is p(x|y) ∝ exp(− 1
2xT Jx +

xT h), where J = Jprior + CT R−1C and h = hprior +
CT y. The optimal estimates and error covariance matrix can,

in principle, be computed as

x̂ = arg max p(x|y) = E[x|y] = J−1h (1)

P̂ = E[(x − x̂)(x − x̂)T |y] = J−1. (2)

1All analysis in the paper can be easily extended to the case when xs is a

random vector.
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Fig. 1. (top) A pyramidal graphical model for two-

dimensional processes, and its decomposition into (bottom

left) a quadtree and (bottom right) nearest-neighbor grids.

2.1. Inference using tractable subgraphs

For problems with a large number of variables, the matrix in-

version in (1) and (2) becomes intractable. Tree-structured

graphs provide efficient linear complexity algorithms to com-

pute both conditional means and error variances [1], but have

limited modeling capabilities. For inference on graphs with

cycles, embedded subgraph algorithms [3] utilize tractable

subgraphs such as trees or subgraphs consisting of a small

number of variables at each iteration to solve (1). For walk-
summable models [3], it can be proven that the iterations con-

verge for any sequence of subgraphs as long as each edge and

node is updated infinitely often. This allows us to choose sub-

graphs adaptively for each iteration to reduce estimation error

quickly as possible.

The Lagrangian Relaxation (LR) method [4] decomposes

an intractable graph explicitly into tractable subgraphs and

uses the estimates in each subgraph to perform approximate

inference for the entire graph. At each iteration, nodes and

edges shared by a set of subgraphs exchange potentials to

match marginal statistics. For the Gaussian case, this algo-

rithm converges to the true conditional means and gives upper

bounds on the variances.

3. PYRAMIDAL GRAPHS

The convergence rate of iterative inference algorithms can be

significantly improved by introducing auxiliary variables that

represent the field of interest at coarser resolutions. Although

the pyramidal graph we are proposing here can easily incor-

porate data or user objectives at multiple resolutions, we focus

on the case that the coarser scales are merely acting to help

inference at the finest scale. Let’s assume that the field of in-

terest is two-dimensional and originally can be described at a

single resolution. We construct a pyramidal graphical model

shown in Figure 1 (top) by placing the original field at the

bottom of the hierarchy and introducing hidden variables at

coarser scales. Unlike multigrid methods and the models con-

sidered in [2], the measurements are not replicated at coarser

scales. We denote the coarsest scale in our pyramidal graph

as Scale 1 and the finest scale as Scale M.

Suppose that the field we are estimating is smooth overall,

with the possible exception of a few discontinuities. The thin-
membrane model penalizes the differences between the neigh-

boring nodes: p(x) ∝ exp(−α
∑

i∈V

∑
j∈N (i)(xi − xj)2),

where N (xi) is the set of neighboring nodes of i, and α is a

parameter that controls the strength of constraints. We extend

this thin-membrane model to define prior in the pyramidal

graph, which consists of two components: Jprior = Jt + Js.

The quadtree structure in Figure 1 (bottom left) is represented

by Jt, which imposes the constraint that each parent node has

a value close to its children. Js corresponds to the nearest

neighbor grid model for each scale as shown in the bottom

right plot and imposes smoothness within each scale. With-

out loss of generally, we assume that hprior = 0. As long as

all parameters are nonnegative, it can be easily shown that the

pyramidal graph is walk-summable.

The resulting marginal covariance at the finest scale has

long-range correlations compared to its monoscale counter-

part thanks to coarser scale variables. However, the condi-

tional correlation of one scale, conditioned on adjacent scales,

decays fast since long-range correlations are captured by coarser

scale nodes [6]. This indicates that far-field effects can be well

approximated at coarser scales, and each fine scale can only

compute interactions among nearby nodes. A similar approx-

imation technique is used in multipole methods [5].

4. MULTIPOLE-MOTIVATED INFERENCE
ALGORITHMS

4.1. Computation of estimates and re-estimates

The optimal estimates on the pyramidal graph can be com-

puted iteratively using a tractable subgraph at each iteration.

We first develop a simple algorithm in which the order of in-

ference steps follows the spirit of multipole algorithms, and

then extend the idea to a more sophisticated algorithm that

selects subgraphs adaptively.

The multipole-motivated inference algorithm starts by get-

ting rough estimates at all nodes in the pyramidal graph using

only the Jt component in our prior model:

x̂(0) = (Jt + CT R−1C)−1h.

When the coarsest scale of the pyramidal graph has multiple

nodes, the Js component at the coarsest scale is also included

in this initial step to get globally consistent estimates2. Then,

2The number of variables at the coarsest scale is significantly smaller than

that of the finest scale, so we assume that exact inference within the coarsest

scale is tractable.
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we alternate between the in-scale inference step (equivalent

to a coarse-to-fine sweep) and the tree inference step (a fine-

to-coarse sweep) until convergence. Let x̄(n) and x̂(n) denote

the estimates computed at the nth in-scale and tree iteration,

respectively. We use the notation J[i,j] to represent the sub-

matrix of J corresponding to scale i and scale j, and xm to

represent the subvector of x corresponding to scale m.

In the in-scale inference step, we decompose (1) by scale:

J[m,m]x̂m = hm − J[m,m−1]x̂m−1 − J[m,m+1]x̂m+1. Then,

starting from the coarsest scale (m = 1) and proceeding down-

ward, the nodes at scale m are updated using the just-computed

estimates at its coarser neighbor, m−1, and the previous tree-

inference estimates at the next finer scale, m+1. Exact infer-

ence is not tractable for scales with a large number of nodes,

so J[m,m] is again decomposed into Ja, which corresponds to

a tractable subgraph embedded in the grid model at scale m,

and Ka = J[m,m]−Ja. Then, this inference step is equivalent

to computing the following equation:

x̄(n)
m = J−1

a (hm − Kax̂(n−1)
m

−J[m,m−1]x̄
(n)
m−1 − J[m,m+1]x̂

(n−1)
m+1 )

Utilizing the multipole idea, we choose Ja to be diag(J[m,m]),
a diagonal matrix with entries taken from J[m,m], which cor-

responds to a fully disconnected graph at each scale. Then,

this step is essentially applying a single Gauss-Jacobi itera-

tion within each scale.

In the tree inference step, the quadtree(s) connecting dif-

ferent scales3 is used as a tractable subgraph. Although it is

sufficient for this step to pass messages upward, to facilitate

convergence analysis in terms of embedded subgraph algo-

rithms, we pass messages both upward and downward to per-

form exact inference on the quadtree(s). Let Jn be defined

as the associated J matrix corresponding to the quadtree(s):

Jn = Jt + diag(Js) + CT R−1C. Then, the tree inference

step using the quadtree structure can be represented as

x̂(n+1) = J−1
n (h − Knx̄(n))

where Kn = J − Jn.

Instead of using the fixed subgraphs as described above,

the adaptive Embedded Tree (ET) algorithm [3] can also be

applied to each iteration step. For the tree-inference step, a

spanning tree of the pyramidal graph is selected to minimize

the residual h−Jx̂(n), and similarly for the in-scale inference

step, a spanning tree in each grid model can be adaptively

chosen. It has been observed that alternating the adaptive in-

scale and tree inference steps results in much faster conver-

gence than applying the adaptive ET algorithm to the pyrami-

dal graph without any guidance of its hierarchical structure.

Note that from the walk-summability of the pyramidal graph,

3Note that when the coarsest scale have multiple nodes, the quadtree

structure is a set of disjoint quadtrees, each of which has a root node at the

coarsest scale.

both non-adaptive and adaptive iterations are guaranteed to

converge [3].

Assume that we already have solved an estimation prob-

lem based on a large number of measurements, and then wish

to modify the estimates to account for new local information.

We refer this problem as re-estimation, which can arise in two

possible scenarios. The first case is when a new set of mea-

surements are introduced in a local region. The second case

is modifying the prior model locally to weaken the smooth-

ness constraints across surface discontinuities so that high-

frequency components can be recovered. For either case, the

re-estimation problem can be posed as the following: given

the estimates x̂ = J−1h, compute the updated estimates x̃ =
(J + ΔJ)−1(h + Δh), where ΔJ and Δh have nonzero ele-

ments only in a localized area.

The re-estimation problem can be solved iteratively by up-

dating a subset of variables at each iteration. Let S denote the

region at the finest scale in which changes have been made,

i.e. in which either ΔJ or Δh is nonzero. Also, let TS denote

the set of (disjoint) quadtrees, each of which is rooted at a sin-

gle node at the coarsest scale and has non-empty intersection

with the nodes in S. Our algorithm alternates between tree in-

ference iterations on TS and the adaptive block Gauss-Seidel
iterations [3] in order to choose a subset of variables to be

updated. The latter steps provide rapid estimate adjustments,

primarily at finer scales and in the vicinity of S, while the tree

inference steps propagate these estimates more broadly across

the field.

4.2. Computation of variances

The diagonal elements of the error covariance matrix P corre-

spond to the uncertainties in the estimates at each node. Note

that by decomposing the pyramidal graph into the quadtree(s)

and separated vertical and horizontal chains within each scale,

the LR method [4] can be applied to compute not only the op-

timal estimates but also upper bounds on error variances.

Alternatively, we may use the fact that error variances

conditioned on adjacent scales decay fast and thus can be ef-

ficiently computed using the low-rank approximation algo-
rithm [7]. In [6], we derive a set of equations for approximate

variances which can be iterated using coarse-to-fine sweeps.

Let Vm be the set of nodes at scale m, and let p̄ij be the vari-

ance between i ∈ Vm and j ∈ Vm conditioned on the adjacent

scales. Then, the approximate variance of i computed at the

nth iteration is given by

σ
(n)
i = p̄ii +

∑

j,k∈(N (i)∪{i})∩Vm

p̄ij · p̄ik · (Q̃(n)
m )jk (3)

where Q̃
(n)
m is defined as

Q̃(n)
m = J[m,m−1]Σ

(n)
[m−1]J[m−1,m]+J[m,m+1]Σ

(n−1)
[m+1]J[m+1,m]

Σ(n)
[m] is a diagonal matrix with each element corresponding
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Fig. 2. The convergence of RMS errors in surface estima-

tion. The horizontal axes are in units of equivalent monoscale

iterations. (top) Non-adaptive iterations. (bottom) Adaptive

iterations.

to approximate variances of variables at scale m computed at

the nth coarse-to-fine sweep.

It can be proven that the approximate variances in (3) pro-

vide lower bounds on the true error variances [6]. The lower

bounds closely approximate the true values as long as the

conditional correlations decay fast. However, for some mod-

els with sparse measurements, even conditional correlations

may have relatively slow decay. An alternative that provides

accurate variances even in such cases is the wavelet-based
low-rank approach [7]. The structure of the pyramidal graph

allows efficient and simple implementation of the wavelet-

based algorithm.

4.3. Parameter estimation

In order to fit our pyramidal graph to best explain the given

data, parameters can also be estimated from the measure-

ments. Here, we consider estimating two parameters: ϕ that

controls the strength of the smoothness constraints and γ, the

reciprocal of the measurement noise variance. Let JP the

prior matrix Jprior with a unit parameter value, then J =
ϕJP + γCT C. The tractable methods for the computation

of estimates and variances allow us to derive an efficient EM

algorithm to estimate the parameters.

In the E-step, the expected values of potential functions

are evaluated using the conditional means x̂(n−1) and error

variances P̂ (n−1) computed from the parameters estimated at

iteration (n − 1):

η1 = tr(JP P̂ (n−1)) + (x̂(n−1))T JP x̂(n−1)

η2 = ‖ y − Cx̂(n−1) ‖2 +tr(CP̂ (n−1)CT )
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Fig. 3. A cross section of approximate variances computed

by (top) the LR method and the coarse-to-fine low-rank algo-

rithm, (bottom) the wavelet-based low-rank algorithm.

Due to the sparsity of JP and C, we only need the variances of

individual nodes and covariances between the pairs of neigh-

boring nodes to compute both values [4].

The M-step, leads to the following simple expressions for

the next parameter estimates:

ϕ(n) =
N

η1
γ(n) =

Nmeas

η2

where N and Nmeas are the number of nodes and measure-

ments, respectively.

5. SIMULATION RESULTS

We test our multipole algorithm on a synthetic surface of

size 64 × 64 variables in which noisy (σ2 = 1) measure-

ments are available only at randomly chosen 10% of the vari-

ables. Figure 2 shows the convergence of RMS errors for

the non-adaptive (top) and adaptive (bottom) algorithms on

the pyramidal graph, together with the corresponding multi-

grid and monoscale algorithms. The multigrid algorithm uses

the estimates at coarser versions of the problem to guide in-

ference at finer scales, and the monoscale algorithm applies

Gauss-Jacobi (non-adaptive) or adaptive iterations directly on

a single-scale thin-membrane model. The monoscale algo-

rithm converges much slowly than the pyramidal graph which

achieves performance comparable to multigrid methods af-

ter a few iterations. Note that due to the lack of consistent

stochastic structure, it is not straightforward to estimate error

variances or to solve the re-estimation problem using multi-

grid methods.

Figure 3 (top) shows one cross section of the bounds on

variances of the synthetic surface. The upper bounds show

estimates computed by the LR method, and lower bounds are
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Fig. 4. Re-estimation applied to the problem of updating es-

timates to incorporate a new set of measurements in a local

region. (top left) Estimates before adding measurements. (top

right) Re-estimates. (bottom) A cross section of re-estimates.

computed by applying 5 coarse-to-fine sweeps of the low-

rank approximation method. The upper bounds obtained by

the LR method are rather loose, but they follow the shape

of the true variances, and note that the bounds are obtained

while computing the optimal estimates without any additional

cost. Figure 3 (bottom) shows the variances estimated by the

wavelet-based low-rank methods. It can be observed that the

estimates are close to the true variances.

Next, we apply the re-estimation algorithm to a real prob-

lem: estimating the top surface of a large salt deposit located

below the sea floor of Gulf of Mexico. The measurements,

provided by Shell International Exploration, Inc., consist of

377, 384 picks by analysts interpreted from seismic data. Af-

ter estimating the surface heights using a pyramidal graph

with four scales, we introduce 100 new measurements in a

small region. Figure 4 (top right) shows the re-estimates of

the local region after 10 iterations of the re-estimation algo-

rithm, which shows more detailed surface delineations com-

pared to the estimates before adding the measurements (top

left). The bottom plot shows one cross section of the re-

estimates. To compare the performance, the figure also shows

the updated estimates using a naive method: after modify-

ing J and h to model the new measurements, we simply per-

form inference on the entire pyramid. Using this naive imple-

mentation, 3 million nodes are updated at each iteration. The

re-estimation algorithm updates less than 1000 nodes at each

iteration, yet after 10 iterations, they converge to the same

result.

Lastly, Figure 5 shows the estimation results of ϕ using 5
sets of measurements generated from different sizes of pyra-

midal graphs. As the number of nodes grows larger, the esti-

mate of ϕ converges to the correct value.
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Fig. 5. Parameter ϕ estimated from 5 sets of measurements

generated by the pyramidal graph. The x-axis show the num-

ber of nodes at the finest scale of the pyramidal graph.

6. CONCLUSION

In this paper, we have introduced a class of multiscale Gaus-

sian graphical models defined on pyramidal lattices, and de-

veloped efficient algorithms for inference problems. Our al-

gorithms take advantage of the fact that long-range correla-

tions are well approximated at coarser scales, and alternates

global propagation of information using an embedded span-

ning tree of the pyramidal graph and local computations within

each scale. The hierarchical structure of our model also leads

to efficient methods to modify an estimated field when local

changes are made to the prior model or to the available data.
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