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Abstract—There has been a growing interest in exploiting contextual information in addition to local features to detect and localize

multiple object categories in an image. A context model can rule out some unlikely combinations or locations of objects and guide

detectors to produce a semantically coherent interpretation of a scene. However, the performance benefit of context models has been

limited because most of the previous methods were tested on data sets with only a few object categories, in which most images contain

one or two object categories. In this paper, we introduce a new data set with images that contain many instances of different object

categories, and propose an efficient model that captures the contextual information among more than a hundred object categories

using a tree structure. Our model incorporates global image features, dependencies between object categories, and outputs of local

detectors into one probabilistic framework. We demonstrate that our context model improves object recognition performance and

provides a coherent interpretation of a scene, which enables a reliable image querying system by multiple object categories. In

addition, our model can be applied to scene understanding tasks that local detectors alone cannot solve, such as detecting objects out

of context or querying for the most typical and the least typical scenes in a data set.

Index Terms—Object recognition, scene analysis, Markov random fields, structural models, image databases.

Ç

1 INTRODUCTION

IN this work, we use a probabilistic model to capture
contextual information of a scene and apply it to object

recognition and scene understanding problems. Standard
single-object detectors [3], [8] focus on locally identifying a
particular object category. In order to detect multiple object
categories in an image, we need to run a separate detector
for each object category at every spatial location and scale.
Since each detector works independently from others, the
outcome of these detectors may be semantically incorrect.
In order to improve the accuracy of object recognition, we
can exploit contextual information such as global features
of an image (e.g., it is a street scene) and dependencies
among object categories (e.g., a road and cars co-occur
often) in addition to local features. An example is
illustrated in Fig. 1b in which detector outputs for 107 object
categories are shown. With so many categories, many false
alarms appear on the image, providing an incoherent scene
interpretation. The six most confident detections for the
detector outputs, shown in Fig. 1c, are a mixture of indoor
and outdoor objects, while the outcome of our context

model, shown in Fig. 1d, puts a lower probability for indoor
objects like a desk and a floor.

Even if we have perfect local detectors that correctly
identify all object instances in an image, some tasks in scene
understanding require an explicit context model and cannot
be solved with local detectors alone. One example is finding
unexpected objects that are out of their normal context,
which requires modeling expected scene configurations.
Fig. 1e shows an image in which an object is out of context.
These scenes attract a human’s attention since they don’t
occur often in daily settings. Understanding how objects
relate to each other is important to answer queries such as
find some funny pictures or which objects most typically co-occur
with a car?

Object dependencies in a typical scene can be represented
parsimoniously in a hierarchy. For example, it is important
to model that outdoor objects (e.g., sky, mountain) and
indoor objects (e.g., desk, bed) typically do not co-occur in a
scene. However, rather than encoding this negative relation-
ship for all possible pairs of outdoor and indoor objects, it is
more efficient to use a tree model in which all outdoor
objects are in one subtree, all indoor objects are in another
subtree, and the two trees are connected by an edge with a
strong negative weight. Similarly, in order to capture the
contextual information that kitchen-related objects such as a
sink, a refrigerator, and a microwave co-occur often, all
kitchen-related objects can be placed in one subtree with
strong positive edge weights.

Motivated by such inherent structure among object
categories, we model object co-occurrences and spatial
relationships using a tree-structured graphical model. We
show that even though no explicit hierarchy is imposed
during the learning procedure (unlike in [4], [20]), a tree
structure learned from a set of fully labeled images
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organizes objects in a natural hierarchy. Enforcing tree-
structured dependencies among objects allows us to learn
our model for more than a hundred object categories and
apply it to images efficiently. We combine this prior model
of object relationships with local detector outputs and
global image features to detect and localize all instances of
multiple object categories in an image.

An important application of object recognition is image
interpretation such as querying for images that contain
certain object categories. We demonstrate that our context
model performs significantly better in querying images
with multiple object categories than using only local
detectors. We also present the performance of our context
model on finding objects/images out of context.

Contextual information is most beneficial when many
different object categories are present simultaneously in an
image. Current studies that incorporate contextual infor-
mation for object recognition have been evaluated on
standard data sets such as PASCAL 07 [7]. However, those
data sets were originally designed to evaluate single-object
detectors, and most of the images have no co-occurring
instances. We introduce a new data set, SUN 09, with more
than 200 object categories in a wide range of scene
categories. Each image contains instances of multiple object
categories with a wide range of difficulties due to

variations in shape, sizes, and frequencies. As shown in
Sections 2 and 6, SUN 09 contains richer contextual
information and is more suitable to train and evaluate
context models than PASCAL 07.

1.1 Related Work

A simple form of contextual information is a co-occurrence
frequency of a pair of objects. Rabinovich et al. [24] use local
detectors to first assign an object label to each image
segment, and then adjusts these labels using a conditional
random field (CRF). This approach is extended in [10] and
[11] to encode spatial relationships between a pair of
objects. In [10], spatial relationships are quantized to four
prototypical relationships—above, below, inside, and
around, whereas in [11], a nonparametric map of spatial
priors is learned for each pair of objects. Torralba et al. [27]
combine boosting and CRFs to first detect easy objects (e.g.,
a monitor) and pass the contextual information to detect
other more difficult objects (e.g., a keyboard). Tu [29] uses
both image patches and their probability maps estimated
from classifiers to learn a contextual model, and iteratively
refines the classification results by propagating the con-
textual information. Desai et al. [5] combine individual
classifiers by using spatial interactions between object
detections in a discriminative manner.

Contextual information may be obtained from coarser,
global features as well. Torralba [28] demonstrates that a
global image feature called “gist” can predict the presence
or absence of objects and their locations without running
an object detector. This is extended in [21] to combine
patch-based local features and the gist feature. Heitz and
Koller [13] combine a sliding window method and
unsupervised image region clustering to leverage “stuff”
such as the sea, the sky, or a road to improve object
detection. A cascaded classification model in [14] links
scene categorization, multiclass image segmentation, object
detection, and 3D reconstruction.

Hierarchical models can be used to incorporate both
local and global image features. He et al. [12] use multiscale
conditional random fields to combine local classifiers with
regional and global features. Sudderth et al. [26] model the
hierarchy of scenes, objects, and parts using hierarchical
Dirichlet processes, which encourage scenes to share
objects, objects to share parts, and parts to share features.
Parikh and Chen [22] learn a hierarchy of objects in an
unsupervised manner, under the assumption that each
object appears exactly once in all images. Hierarchical
models are also common within grammar models for scenes
[16], [23], which have been shown to be very flexible to
represent complex relationships. Bayesian hierarchical
models also provide a powerful mechanism to build
generative scene models [18].

In this work, we use a tree-structure graphical model to
capture dependencies among object categories. A fully
connected model as in [24] is computationally expensive
for modeling relationships among many object categories
and may overfit with limited number of samples. In the
scene-object model [21], objects are assumed to be indepen-
dent conditioned on the scene type, which may not capture
direct dependencies among objects. A tree-structured model
provides a richer representation of object dependencies
while maintaining a number of connections (i.e., parameters)

2 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. X, XXXXXXX 2012

Fig. 1. Detecting objects in and out of context. (a) Input image. (b)
Output of 107 class detectors. (c) Six most confident detections using
the detector scores. (d) Six most confident detections using our context
model. (e) Input image. (f) Most unexpected object in the image.



that grows linearly with the number of object categories. In
addition, it allows efficient integration of different sources of
contextual information, which results in improved object
detection performances [6]. Note that the tree-structure of
our model is learned from the co-occurrence statistics of
object categories, and is different from the semantic
hierarchies used in [4], [20].

The rest of the paper is organized as follows: In Section 2,
we introduce the new SUN 09 data set and compare its
statistics with PASCAL 07. In Section 3, we describe our
context model that incorporates global image features,
object dependencies, and local detector outputs in one
probabilistic framework. We use tree-structured dependen-
cies among objects, a framework that admits efficient
learning and inference algorithms, described in Sections 4
and 5. We evaluate object recognition and scene under-
standing performances of our context model in Section 6,
and conclude the paper in Section 7.

2 THE SUN 09 DATA SET

We introduce a new data set (SUN 09) suitable for
leveraging contextual information. The data set contains
12,000 annotated images covering a large number of indoor
and outdoor scenes with more than 200 object categories
and 152,000 annotated object instances. The images were
collected from multiple sources (Google, Flickr, Altavista,
LabelMe), and any closeup of an object or images with
white backgrounds were removed to keep only images
corresponding to scenes in the collection. The annotation
procedure was carried out by a single annotator over one
year using LabelMe [25]. The labeled images were carefully
verified for consistency and synonymous labels were
consolidated. The resulting annotations have a higher
quality than that by LabelMe or Amazon Mechanical Turk.
Therefore, this data set can be used both for training and
performance evaluation.

Fig. 2 shows statistics of our data set and compares
them with PASCAL 07 [7]. The PASCAL data set provides
an excellent framework for evaluating object detection
algorithms. However, this data set, as shown in Fig. 2, is
not suitable to test context-based object recognition algo-
rithms. The PASCAL data set contains 20 object classes, but
more than 50 percent of the images contain only a single
object class. MSRC [30] provides more co-occurring objects,
but it only contains 23 object classes. The cascaded
classification models (DS1) data set [14] is designed for
evaluating scene understanding methods, but it has only
14 object classes in outdoor scenes.

Contextual information is most useful when many object
categories are present simultaneously in an image, with
some object instances that are easy to detect (i.e., large
objects) and some instances that are hard to detect (i.e.,
small objects). The average PASCAL bounding box occupies
20 percent of the image. On the other hand, in our data set,
the average object size is 5 percent of the image size, and a
typical image contains seven different object categories.
Figs. 2c and 2d show typical images from each data set.

3 TREE-BASED CONTEXT MODEL

In Section 3.1, we describe a prior model that captures co-
occurrence statistics and spatial relationships among objects,

and in Section 3.2, we explain how global image features and
local detector outputs can be integrated as measurements.

3.1 Prior Model

Each object category in our prior model is associated with a
binary variable, representing whether the object is present
or not in the image, and a Gaussian variable, representing
its location.

3.1.1 Co-occurrences Prior

A simple yet effective contextual information is the co-
occurrence of object pairs. We encode the co-occurrence
statistics using a binary tree model. Each node bi in a tree
represents whether the corresponding object i is present or
not in an image. The joint probability of all binary variables
are factored according to the tree structure

pðbÞ ¼ pðbrootÞ
Y
i

pðbijbpaðiÞÞ; ð1Þ

where paðiÞ is the parent of node i. Throughout the paper,
we use a subscript i to denote a variable (or a vector)
corresponding to object i, and a symbol without a subscript
denotes a collection of all corresponding variables: b � fbig.
A parent-child pair may have either a positive relationship
(e.g., a floor and a wall co-occur often) or a negative
relationship (e.g., a floor seldom appears with the sky).

3.1.2 Spatial Prior

Spatial location representation. Objects often appear at
specific relative positions to one another. For example, a
computer screen typically appears above a keyboard and a
mouse. We capture such spatial relationships by adding
location variables to the tree model. Instead of using the
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Fig. 2. Comparison of PASCAL 07 and SUN 09. (a) Histogram of the
number of object categories in each image. (b) Distribution of train and
test samples per object category. (c) Examples of PASCAL images. A
typical PASCAL image contains two instances of a single object
category, and an object occupies 20 percent of the image. (d) Examples
of SUN images. A typical SUN image has seven object categories (with
around 14 annotated object instances) with a wide range of sizes
(average 5 percent).



segmentation of an object, we use a bounding box, which is
the minimum enclosing box for all the points in the
segmentation, to represent the location of an object instance.
Let ‘x, ‘y be the horizontal and vertical coordinates of the
center of the bounding box, respectively, and ‘w, ‘h be the
width and height of the box, respectively. We assume that
the image height is normalized to one and that ‘x ¼ 0; ‘y ¼ 0
is the center of the image. The expected distance between
centers of objects depends on the size of the objects—if a
keyboard and a mouse are small, the distance between the
centers should be small as well. The constellation model [9]
achieves scale invariance by transforming the position
information to a scale invariant space. Hoiem et al. [15]
relate scale changes to an explicit 3D information. We take
the approach in [15] and apply the following coordinate
transformations to represent object locations in the
3D-world coordinates:1

Lx ¼
‘x
‘h
Hi; Ly ¼

‘y
‘h
Hi; Lz ¼

1

‘h
Hi; ð2Þ

where Lz is the distance between the observer and the
object, andHi is the physical height of an object i. The height
of each object category could be inferred from the annotated
data using the algorithm in [17], but instead, we manually
encode real-object sizes (e.g., person ¼ 1:7 m, car ¼ 1:5 m).

Prior on spatial locations. The horizontal relative
locations of objects vary considerably from one image to
another due to different viewpoints, and it has been shown
that horizontal locations generally have weak contextual
information [28]. Thus, we ignore Lx and only consider Ly
and Lz to capture vertical location and scale relationships.
We assume that Lys and Lzs are independent, i.e., the
vertical location of an object is independent of its distances
from the image plane. While we model Lys as jointly
Gaussian, we model Lzs using log-normal distributions
since they are always positive and are more heavily
distributed around small values. We redefine a location
variable for object category i as Li ¼ ðLy; logLzÞ and assume
that Lis are jointly Gaussian. For simplicity, we model
spatial relationships among object categories, not between
individual instances, so if there are multiple instances of
object category i in an image, Li represents the median
location of all instances.

We assume that when conditioned on the presence
variable b, the dependency structure of the Lis has the same
tree structure as the binary tree:

pðLjbÞ ¼ pðLrootjbrootÞ
Y
i

pðLijLpaðiÞ; bi; bpaðiÞÞ; ð3Þ

where each edge potential pðLijLpaðiÞ; bi; bpaðiÞÞ encodes the
distribution of a child location conditioned on its parent
location and the presence/absence of both child and parent
objects.

Fig. 3 shows the graphical model relating the presence
variables bis and the location variables Lis. Combining (1)
and (3), the joint distribution of all binary and Gaussian
variables can be represented as follows:

pðb; LÞ ¼ pðbÞpðLjbÞ ¼ pðbrootÞpðLrootjbrootÞ
�
Y
i

pðbijbpaðiÞÞpðLijLpaðiÞ; bi; bpaðiÞÞ: ð4Þ

3.2 Measurement Model

3.2.1 Incorporating Global Image Features

The gist descriptor [28] is a low-dimensional representation
of an image, capturing coarse texture and spatial layout of a
scene. We introduce the gist as a measurement for each
presence variable bi to incorporate global image features
into our model. This allows the context model to implicitly
infer a scene category, which is particularly helpful in
predicting whether indoor objects or outdoor objects should
be present in the image.

3.2.2 Integrating Local Detector Outputs

In order to detect and localize object instances in an
image, we first apply off-the-shelf single-object detectors
and obtain a set of candidate windows for each object
category. Let i denote an object category and k index
candidate windows generated by baseline detectors. Each
detector output provides a score sik and a bounding box,
to which we apply the coordinate transformation in (2) to
get the location variable Wik ¼ ðLy; logLzÞ. We assign a
binary variable cik to each window to represent whether it
is a correct detection (cik ¼ 1) or a false positive (cik ¼ 0).
Fig. 3 shows the measurement model for object i to
integrate gist and baseline detector outputs into our prior
model, where we used plate notations to represent
Ki different candidate windows.

If a candidate window is a correct detection of object i
(cik ¼ 1), then its location Wik is a Gaussian vector with
mean Li, the location of object i, and if the window is a false
positive (cik ¼ 0), Wik is independent of Li and has a
uniform distribution.

4 LEARNING

4.1 Learning Object Dependency Structure

We learn the dependency structure among objects from a
set of fully labeled images. The Chow-Liu algorithm [2] is a
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Fig. 3. Graphical model representations for parts of our context model.
All nodes are observed during training, and only the shaded nodes are
observed during testing. (Left) Prior model relating object presence
variables bis and location variables Lis. (Right) Measurement model for
object i. The gist descriptor g represents global image features, and
local detector provides candidate window locations Wik and scores sik.
The binary variable cik indicates whether the window is a correct
detection or not.

1. In order to simplify the coordinate transformations, we make the
following assumptions: 1) The image plane is perpendicular to the ground
plane, 2) the distance from the observer to the image plane is 1, and 3) all
objects have fixed aspect ratios. While these assumptions are unrealistic for
recovering the actual 3D-world coordinates, our goal here is to capture
relative vertical locations (see the next paragraph) of object categories, so it
is not required to get precise coordinate values.



simple and efficient way to learn a tree model that
maximizes the likelihood of the data: The algorithm first
computes empirical mutual information of all pairs of
variables using their sample values. Then, it finds the
maximum weight spanning tree with edge weights equal to
the mutual information between the variables connected by
the edge. We learn the tree structure using the samples of
bis in a set of labeled images. Even with more than
100 objects and thousands of training images, a tree model
can be learned in a few seconds in Matlab.

Fig. 6 shows a tree structure learned from the SUN 09
data set. Since the output of the Chow-Liu algorithm is an
undirected tree, we have selected sky to be the root of the
tree to obtain a directed tree structure.2 Note that we do not
use any information regarding the inherent hierarchical
structure among object categories during the learning
procedure; the Chow-Liu algorithm is simply selecting
strong pairwise dependencies. However, the learned tree
structure organizes objects in a natural hierarchy. For
example, a subtree rooted at building has many objects
that appear in street scenes, and the subtree rooted at sink
contains objects that commonly appear in a kitchen. Thus,
many nonleaf nodes act as if they are representing coarser
scale meta-objects or scene categories. In other words, the
learned tree structure captures the inherent hierarchy
among objects and scenes, resulting in better object
recognition and scene understanding performances as
demonstrated in Section 6.

4.2 Learning Model Parameters

We use the ground-truth labels of training images to learn
parameters for the prior model. pðbijbpaðiÞÞ can be learned
simply by counting the co-occurrences of parent-child
object pairs. For each parent-child object pair, we use three
different Gaussian distributions for pðLijLpaðiÞ; bi; bpaðiÞÞ:
When both objects are present (bi ¼ 1; bpaðiÞ ¼ 1), the loca-
tion of the child object Li depends on its parent location
LpaðiÞ. When the object is present but its parent object is not
(bi ¼ 1; bpaðiÞ ¼ 0), then Li is independent of LpaðiÞ. When an
object is not present (bi ¼ 0), we assume that Li is
independent of all other object locations and that its mean
is equal to the average location object i across all images.

In the measurement model, pðgjbiÞ can be trained using
the gist descriptors computed from each training image.
Since the gist is a vector, to avoid overfitting, we use logistic
regression to fit pðbijgÞ for each object category [21], from
which we estimate pðgjbiÞ indirectly using pðgjbiÞ ¼
pðbijgÞpðgÞ=pðbiÞ.

In order to learn the rest of the parameters in the
measurement model, we run local detectors for each object
category in the training images. The local detector scores
are sorted so that sik is the kth highest score for category i,
and pðcikjsikÞ is trained using logistic regression, from
which we can compute the likelihoods pðsikjcikÞ ¼
pðcikjsikÞpðsikÞ=pðcikÞ. The probability of correct detection
pðcikjbiÞ is trained using the ground-truth labels and correct
detections in the training set.

5 USING THE MODEL: ALTERNATING INFERENCE ON

TREES

Given the gist g, candidate window locations W � fWikg
and their scores s � fsikg, we infer the presence of objects
b � fbig, correct detections c � fcikg, and the expected
locations of all objects L � fLig by solving the following
optimization problem:

b̂; ĉ; L̂ ¼ arg max
b;c;L

pðb; c; Ljg;W; sÞ: ð5Þ

Exact inference is complicated since there are both binary
and Gaussian variables in the model, so we leverage the tree
structures embedded in the model for efficient inference.
Specifically, conditioned on b and c, the location variables L
form a Gaussian tree. On the other hand, conditioned on L,
the presence variables b and the detector variables c
together form a binary tree. For each of these trees, efficient
inference algorithms are available [1], so we infer b, c, and L
in an alternating manner.

In the first iteration, we ignore the location informationW
and compute the MAP estimates of b and c conditioned
only on the gist of the image g and the candidate windows
scores of detector outputs s: b̂; ĉ ¼ argmaxb;cpðb; cjs; gÞ.
Conditioned on these estimates, we infer the expected
locations of objects L̂ ¼ argmaxLpðLjb̂; ĉ;W Þ using the
Gaussian tree. Then, conditioned on the estimates of
locations L̂, we reestimate the presence and detector
variables:

b̂; ĉ ¼ argmax
b;c

pðb; cjs; g; L̂;WÞ

¼ argmax
b;c

pðb; cjs; gÞpðL̂;W jb; cÞ;

inferring on a binary tree with node and edge potentials
modified by the likelihoods pðL̂;W jb; cÞ. In this step, we
encourage pairs of objects or windows in likely spatial
arrangements to be present in the image. In our experi-
ments, we use three iterations alternating between inference
in the binary tree and inference in the Gaussian tree.

In the final step, the marginal probability of each
presence variable pðbi ¼ 1js; g; L̂;WÞ is computed for
presence prediction and the marginal probability of each
detector variable pðcik ¼ 1js; g; L̂;W Þ is computed for object
localization. We do not apply a nonmaximum suppression
[3] as a postprocessing step, so it is possible that multiple
detections of the same object instance reinforce each other
through the co-occurrence tree. To avoid this problem,
when computing pðcik ¼ 1js; g; L̂;WÞ for each detector
variable, we cancel out the effect of other detections of
the same object. This involves a simple modification of the
message from each bi to cik,

3 which does not increase the
computational complexity of inference. Our inference
procedure is efficient even for models with hundreds of
objects categories and thousands of candidate windows.
For the SUN 09 data set, it takes about 0.5 seconds in
Matlab to produce estimates from one image (given the
local detector outputs).
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2. For our location model, the selection of the root node affects the joint
probability distribution since the location of a child object is defined relative
to its parent object. A rule of thumb for choosing the root node is selecting
an object that is large and appears often.

3. For example, when computing the message from bi to ci1, the messages
from ci2; . . . ; ciK are set to 1.



6 RESULTS

In this section, we apply the tree-based context model
(TreeContext) to object localization (i.e., detecting the
correct bounding box), presence predication (i.e., is the
object present in the scene?), image query by object
categories, and estimation of out-of-context objects.

We use the discriminative part-based models described
in [8] as the baseline local detectors, and apply logistic
regression to normalize scores across different categories.
We also show the performance of the context rescoring
method introduced in [8], denoted here as SVM-Context,
which trains an SVM for each object category to incorporate
contextual information. For each candidate window, a
feature vector consists of the score and location of the
window, and the maximum scores of all object categories in
the image, so for M object categories, it requires M different
SVMs with an ðMþ 5Þ-dimensional feature vector for each
candidate window.

For presence prediction, the most confident detection for
each object category is used for the baseline detector. For
SVM-context, we extended the approach in [8] by training
an SVM for predicting presence of each object category
using the maximum scores of all other object categories as
feature vectors (which performed much better than simply
selecting the most confident detection using the SVMs
trained for localization).

6.1 Recognition Performance on PASCAL 07

We train the context model for PASCAL 07 using 5,011
images in the training and the validation sets. Fig. 4 shows
the dependency structure of 20 object categories learned
from the training set. Table 1 provides the average
precision (AP)4 for object localization. Note that the best
achievable performance of any context model is limited by
the baseline detectors since context models are only used to
enhance the scores of the bounding boxes proposed by the
baseline detectors. We compare the performance of the
tree-based context model with other state-of-the-art meth-
ods that also incorporate contextual information [5], [8]. All
context models perform better than the baseline detectors,
but the performance differences of these methods are
relatively small. As discussed in Section 2, the PASCAL 07
data set contains very little contextual information and the
performance benefit of incorporating contextual informa-
tion is small for most of the object categories. We show in
the next section that when many object categories are

present simultaneously in an image and when some of
them cannot be detected well using only local information,
contextual information is crucial in object recognition, and
that our tree-based context model does improve the
performance significantly in the new data set SUN 09.

Fig. 5a shows the object localization performances based
on images. We look at the N most confident detections in
each image and check whether they are all correct. The
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Fig. 4. Object dependency structure learned from PASCAL 07. Red
edges correspond to negative correlations between categories. The
thickness of each edge represents the strength of the link.

TABLE 1
Average Precision for Localization

Baseline: baseline detectors without context [8]; TreeContext: our
context model; SVM-Context: context rescoring method from [8]; Desai
et al.: results from [5] (the baseline in [5] is the same as our baseline, but
performances slightly differ); Bound: Maximal AP that can be achieved
by any context model given the baseline detector outputs.

4. Precision ¼ 100�Number of correct detections/Number of detections
estimated as correct by the model; Recall ¼ 100 �Number of correct
detections/Number of ground-truth object instances; average precision
can be computed by varying thresholds. The AP ranges from 0 to 100, and a
higher AP indicates better performance.

Fig. 5. Object localization and presence prediction performances on
PASCAL 07 and SUN 09. (a), (c) Percentage of images in which the top
N most confident detections are all correct. The numbers on top of the
bars indicate the number of images that contain at least N ground-truth
object instances. (b), (d) Percentage of images in which the top N most
confident object presence predictions are all correct. The numbers on
top of the bars indicate the number of images that contain at least N
different ground-truth object categories.



numbers on top of the bars indicate the number of images
that contain at least N ground-truth object instances. Fig. 5b
shows the performances in presence predication. We
compute the probability of each object category being
present in the image, and check whether the top N object
categories are all correct. Predicting which objects are
present in an image is crucial in understanding its content
(e.g., whether it is an indoor or outdoor scene) and can be
applied to query images by objects as shown in Section 6.3.1.
The numbers on top of the bars indicate the number of
images that contain at least N different ground-truth object
categories. Note that the number of images drops signifi-
cantly as N gets larger since most images in PASCAL
contain only one or two object categories.

6.2 Recognition Performance on SUN 09

We divide the SUN 09 data set into the training and the test
set so that each set has the same number of images per
scene category. The training set has 4,367 images and the
test set has 4,317 images. In order to have enough training
samples for the baseline detectors [8], we annotated an
additional set of 26,000 images using Amazon Mechanical
Turk. This set consists of images with a single annotated
object, and it was used only for training the baseline
detectors and not for learning the context model.

The SUN 09 data set contains over 200 object categories,
but the baseline detectors for some objects have poor quality
even with additional set of annotations. Since the context
model takes baseline detector outputs as measurements and
computes the probability of correct detection for each
candidate window, it cannot detect an object instance if
there is no candidate window produced by the baseline
detector. Thus, we remove object categories for which the
baseline detector failed to produce at least four correct
candidate windows in the entire training set,5 and use the
remaining 107 object categories. These categories span from
regions (e.g., road, sky, building) to well-defined objects
(e.g., car, sofa, refrigerator, sink, bowl, bed) and highly
deformable objects (e.g., river, towel, curtain). The distribu-
tion of objects in the test set follows a power law (the number
of instances for object k is roughly 1=k) as shown in Fig. 2.

6.2.1 Context Learned from the Training Set

Fig. 6 shows the dependency structure relating the 107
objects. A notable difference from the tree learned from
PASCAL 07 (Fig. 4) is that the proportion of positive
correlations is larger. In the tree learned from PASCAL 07,

10 out of 19 edges and 4 out of the top 10 strongest edges
have negative relationships. In contrast, 25 out of 106 edges
and 7 out of 53 (� 13 percent) strongest edges in the SUN 09
tree model have negative relationships. In PASCAL 07,
most objects are related by repulsion because most images
contain only few categories. In SUN 09, there are many
more opportunities to learn positive correlations between
objects. Some examples of strong positive relationships are
pðwall present j floor presentÞ ¼ 0:94 and pðcar not present j
road not presentÞ ¼ 0:98. From the learned tree structure,
we can see that some objects take the role of dividing the
tree according to the scene category as described in
Section 4. For instance, floor separates indoor and
outdoor objects.

Given an image and ground-truth object labels, we can
quantify how the labels fit well into our context model by
computing the log likelihood of the given labels and their
bounding box locations. Fig. 7 shows images in the test set
with the highest log likelihood (most typical scenes) and the
lowest log likelihood (most unusual scenes). Only objects
that are outlined are included in the 107 object categories,
and all other objects are ignored. The three most common
scenes among the entire test set consist only of floors and
walls. The least common scenes have unlikely combinations
of labels (e.g., the first image has a label “platform,” which
appears in train platform scenes in many of the training
images, the second image has a floor, the sea, the sky, and a
table all in the same scene, and the last image shows a scene
inside a closet). Fig. 7 also shows the most and least
common scenes that include grass, a desk, and the sea,
respectively. Images with the high likelihood have common
object configurations and locations, while images with the
low likelihood score have uncommon objects (headstones)
or unlikely combinations (sea and table, car and floor).

6.2.2 Object Recognition Performance

Figs. 5c and 5d show localization and presence prediction
results on SUN 09. We see bigger improvements from
incorporating contextual information than on the PAS-
CAL 07 data set for both localization and presence
prediction. Note that the tree-based context model
improves the presence prediction results significantly:
As shown in Fig. 5d, among the 3,757 images that contain
at least three different object categories, the three most
confident objects are all correct in 38 percent of images
(and only 15 percent without context). Fig. 8 shows the
improvement in average precision for each object category
sorted by the AP improvement over the baseline. Due to
the large number of objects in our database, there are

CHOI ET AL.: A TREE-BASED CONTEXT MODEL FOR OBJECT RECOGNITION 7

Fig. 6. Object dependency structure learned from SUN 09. Red edges denote negative correlation between categories. The thickness of each edge
represents the strength of the link.

5. Some examples of such categories are attic, candle, chimney, and
snow.



many objects that benefit in different degrees from
context. Six objects with the largest improvement with
TreeContext for object localization are floor (þ11:7 over
the baseline), refrigerator (þ11:0), bed (þ8:0), seats(þ7:3),
road (þ6:9), and chandelier (þ6:7).

Table 2 shows the mean APs averaged across all object

categories for both localization and presence prediction. To

investigate the contribution of each component, we show

the mean APs using some parts of the context model as well
as the full context model integrating the co-occurrence tree,
the location model, and the gist descriptors. Note that using
many sources of contextual information results in increased
performances and that the global contextual information
(i.e., gist) contributes significantly both in localization and
presence prediction.

Fig. 9 shows example images with object localization
results. For each image, only the six most confident
detections are shown. Note that the tree-based context model
generally enforces stronger contextual coherency than SVM-
Context, which may result in improvement (e.g., removing a
truck in a kitchen scene) or may lead to incorrect detections
(e.g., hallucinating a truck because of a strong detection of a
road in the second image).

6.3 Scene Understanding Performance on SUN 09

The SUN 09 data set contains a wide range of scene
categories and is suitable for evaluating scene under-
standing performances. In this section, we show the results
of applying our context model for querying images that are
most likely to contain certain object categories, and
detecting objects in unusual settings.

6.3.1 Querying Images with Multiple Object Categories

A reliable object recognition system enables querying
images using objects (e.g., Search images with a sofa and a
table), rather than relying on captions to guess the content of
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Fig. 7. The most typical scenes and the least typical scenes in the SUN 09 test set estimated using the context model. The first row shows
scenes selected from all images, and the remaining rows show scenes that contain grass, desk, and sea, respectively. Only the outlined objects
(ground-truth labels) are used to evaluate the likelihood score (e.g., an iceberg is ignored since it is not among the 107 object categories
recognized by the model).

Fig. 8. Improvement of the context models over the baseline detectors.
Object categories are sorted by the improvement in AP.



an image. Our context model performs significantly better
than the baseline detectors in predicting whether an object
is present or not, as shown in Figs. 5 and 8. Moreover, since
the tree-based context model use the detector outputs of all
objects as well as the gist descriptor to implicitly infer the
scene, it is more reliable in predicting the presence of
multiple object categories.

Fig. 10 shows precision-recall curves for image query
results using different sets of object categories. We
approximated the joint probability of all objects in the set
simultaneously present in the image as the product of each
object present in the image,6 and classified a query result as
correct only when the image contains all objects in the
query set. The tree-based context model shows a clear

advantage over the baseline detectors, and in four of the
five query sets, performs better than SVM-Context as well.
Fig. 11 shows examples of top queries. Note that even when
the query result of TreeContext is incorrect, the content of
the image strongly resembles that of a correct query result.
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Fig. 9. Examples of scenes showing the six most confident detections using each method.

TABLE 2
Mean AP (Averaged across All Object Categories)

for Localization and Presence Prediction on SUN 09

Baseline: baseline detectors without contextual information [8]; Tree-
Context: our context model. We show the results using parts of the
context model; SVM-Context: Context rescoring method [8].

6. If the objects in the query set are neighbors in the tree (e.g., bookcase
and books), we can compute the joint probability without much additional
computation for our context model, but for three or more objects that are far
apart in the tree, computing the joint probability can be computationally
expensive, even for a tree model. For simplicity, we approximate the joint
probability as products of marginal probabilities.
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Fig. 10. Precision-recall curves for querying images with a set of object categories.

Fig. 11. Examples of the top seven images retrieved by the baseline detectors [8], context rescoring method with SVMs [8], and our tree-based
context model. Correctly retrieved images (images in which all the objects in the query set are present) are shown in blue boxes and incorrect images
are shown in red boxes.



For example, the sixth and the seventh retrieved images for
{microwave, refrigerator} using TreeContext are incorrect
since they do not contain microwaves, but they are both
kitchen scenes, which are semantically much closer to the
correctly retrieved images than the results obtained using
the baseline detectors or SVM-Context.

6.3.2 Finding Objects Out of Context

Fig. 12 shows some images with one or more objects in an
unusual setting such as a wrong scale, position, or scene.
We have a collection of 26 such images with one or more
objects that are out of their normal context. Even if we have
perfect local detectors (i.e., ground-truth labels), we still
need to use contextual information of a scene to detect
whether images or objects are unusual. In this section, we
use a variation of our tree-based context model to detect
objects out of context from each image.

Using ground-truth labels. We first consider the problem

of classifying out-of-context objects when the ground-truth

object labels and their segmentations are available. Fig. 13

shows a modified version of our original prior model (see

Fig. 3) in which we added a set of binary variables his to

indicate whether to use the object dependency or not for

object i. For example, pðb3; L3jb1; L1; h3 ¼ 1Þ is defined to

have the same probability as in the original prior model, but

pðb3; L3jb1; L1; h3 ¼ 0Þ is equal to pðb3; L3Þ regardless of the

values of b1 and L1, thus removing the dependencies

between objects 1 and 3.

Conditioned on the ground-truth labels (b and L), the
context variables his are independent of each other. In
addition, from the tree structure, hi only depends on bi, Li,
bpaðiÞ, and LpaðiÞ, where paðiÞ is the parent of i. Thus, if we
assume that pðhi ¼ 0Þ ¼ 0:5 for all i,

pðhi ¼ 0jb; LÞ ¼ pðhi ¼ 0jbi; bpaðiÞ; Li; LpaðiÞÞ

¼ 1

1þ Cðbi; bpaðiÞ; Li; LpaðiÞÞ
;

ð6Þ

where

Cðbi; bpaðiÞ; Li; LpaðiÞÞ

�
pðbijbpaðiÞ; hi ¼ 1ÞpðLijLpaðiÞ; bi; bpaðiÞ; hi ¼ 1Þ
pðbijbpaðiÞ; hi ¼ 0ÞpðLijLpaðiÞ; bi; bpaðiÞ; hi ¼ 0Þ

ð7Þ

is the context score of object i. The context score measures the
likelihood of the labels under the context model relative to
an independent model in which all object categories are
independent of each other. We can classify an object with
the lowest context score (i.e., highest pðhi ¼ 0jb; LÞ) as the
most unexpected object in the image.

Fig. 14a shows the number of images in the 26-image
collection in which at least one out-of-context object was
included in the N most unexpected objects estimated by the
context score (i.e., N objects with the lowest context score).
In 19 out of 26 images, an object with the lowest context
score is the correct out-of-context object, which is clearly
better than a random guess (assigning random context
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Fig. 12. Six examples of objects out of context (unusual pose, scale, co-
occurrence, or position). The highlighted segments show the objects
selected by our context model as the most unexpected object category
in each image (using ground-truth labels). In the first four images, out-of-
context objects are correctly identified, and in the last two images, other
objects are selected.

Fig. 13. A modified context model with new binary variables his to detect
objects out of context. If h3 ¼ 0, then ðb3; L3Þ become independent of
ðb1; L1Þ.

Fig. 14. The number of images in which at least one out-of-context
object is included in the set of N most unexpected objects estimated by
our context model. (a) Using ground-truth labels and segmentations.
(b) Using local detector outputs.



scores to the objects present in the image). The highlighted
segments in Fig. 12 show objects with the lowest context
score, which are correct for the first four images and
incorrect for the two bottom images. For the bottom left
image, the location of the car is not normal, but since the
bounding boxes of the car and the road are relatively close
to each other, the relative location is not penalized enough
in the context score. In the bottom right image, the sand and
the sea are out of context, but since quite a few images in the
training set have buildings on the beach or cars next to the
sea, the unusual combination of objects in the image is not
detected by the context model.

Using detector outputs. Using local detector outputs to

detect objects out of context is a much more challenging

task. Objects that are not in their normal settings generally

have different appearances or viewpoints from typical

training examples, making local detectors perform poorly.

Even if a local detector confidently detects an out-of-context

object and the context score of the object is low, it is not

clear whether the object is present but out of context or the

object is not present and the local detector is incorrect.
Given the set of measurements in an image (gist g, local

detector scores s, and bounding boxes W ), we would like to
estimate the probability of object i favoring it being
independent of its parent object:

pðhi ¼ 0jg;W; sÞ ¼
X
bi;bpaðiÞ

Z
pðhi ¼ 0jbi; bpaðiÞ; Li; LpaðiÞÞ

� pðbi; bpaðiÞ; Li; LpaðiÞjg;W; sÞdLidLpaðiÞ:
ð8Þ

In order to simplify the integral, we approximate the joint

probability pðbi; bpaðiÞ; Li; LpaðiÞjg;W; sÞ by assuming that i

and paðiÞ are independent and approximating the Gaussian

distribution pðLijbi ¼ 1; g;Wi; siÞ as a delta function at the

mean L̂i. Then,

pðhi ¼ 0jg;W; sÞ �
X
bi;bpaðiÞ

1

1þ Cðbi; bpaðiÞ; L̂i; L̂paðiÞÞ

� pðbijg;Wi; si; ÞpðbpaðiÞjg;WpaðiÞ; spaðiÞÞ;
ð9Þ

where the context score Cðbi; bpaðiÞ; Li; LpaðiÞÞ is defined in

(7). In other words, we estimate the label and the location of

each object assuming that all objects are independent of

each other, and then compute the context score to see

whether the resulting configuration fits well with the

context model. Note that with the ground-truth labels, we

can treat pðbijg;Wi; si; Þ and pðbpaðiÞjg; wpaðiÞ; spaðiÞÞ as delta

functions and the above equation reduces to (6).
Fig. 14b shows the result of using local detector outputs

to classify objects out of context in each image. Since we do

not know the actual objects present in the image, the set of

candidates for out-of-context objects is much larger than

using the ground-truth labels, so a random guess is incorrect

most of the time. In 10 out of 26 images, at least one out-of-

context object is correctly identified when we consider two

objects with the lowest weighted context score in (9).

7 DISCUSSION

We develop an efficient framework to exploit contextual
information in object recognition and scene understanding
problems by modeling object dependencies, global image
features, and local detector outputs using a tree-based
graphical model. Our context model enables a parsimo-
nious modeling of object dependencies, and can easily scale
to capture the dependencies of over 100 object categories.
The SUN 09 data set presented in this paper has richer
contextual information than PASCAL 07, and is more
suitable for training and evaluating context models. We
demonstrate that our context model learned from SUN 09
significantly improves the accuracy of object recognition
and image query results, and can be applied to find objects
out of context. The SUN 09 data set and the Matlab
implementation of our algorithm can be downloaded from
http://people.csail.mit.edu/myungjin/HContext.html.

We conclude by discussing some possible extensions of
the work presented in this paper. Our location model
captures spatial relationships of object categories using
Gaussian distributions. While this greatly reduces computa-
tional complexity, it does not capture some physical relation-
ships such as a car is supported by a road. In addition, the
location model can be improved by encoding different types
of interactions or poses among object instances (e.g., person 1
is riding a horse and person 2 is standing next to it), or spatial
relationships based on different viewpoints [19].

The tree structure shown in Fig. 6 captures the inherent
hierarchy among object categories. For example, most of
the objects that commonly appear in a kitchen are
descendants of the node sink, and all the vehicles are
descendants of road. This suggests that a more intuitive
structure for object dependencies could be a hierarchy
including some metaobjects (such as a desk area) or scenes
(kitchen or street) as nodes at coarser scales. Learning a full
hierarchical tree structure with such additional nodes may
discover important relationships among objects, metaob-
jects, and scenes, which is an interesting direction for
further research.
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