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ABSTRACT

Discriminative language models using n-gram features have
been shown to be effective in reducing speech recognition
word error rates (WER). In this paper we describe a method
for incorporating discourse-level triggers and topic designa-
tions into a discriminative language model. Triggers are fea-
tures identifying re-occurrence of words within a conversa-
tion. Topics represent clusters of related conversations. We
introduce triggers that are specific to particular unigrams and
bigrams, as well as “back off” trigger features that allow gen-
eralizations to be made across different unigrams. Topic-
related features include unigram counts and features counting
the number of topic related words in a sentence. We train our
model using a new loss-sensitive variant of the perceptron al-
gorithm that makes effective use of information from multiple
hypotheses in an n-best list. We train and test on the Switch-
board data set and show a 0.7 absolute reduction in WER over
a baseline discriminative model which uses n-gram features
alone, and a 1.7 absolute reduction in WER over the baseline
recognizer.

Index Terms— Perceptrons, Speech recognition, Natural
languages

1. INTRODUCTION

Previous work on discriminative language modeling [1] has
considered models where the optimal stringw∗ for a given
acoustic inputa is defined as follows:

w∗ = arg max
w

(β log Pl(w) + log Pa(a|w) + 〈ᾱ, Φ(a,w)〉)

In this approach, a standard language model,Pl, and an acous-
tic model, Pa, are used alongside a linear correction term
〈Φ(a,w), ᾱ〉.1 Φ(a,w) is a feature-vector representationof
the pair(a,w), andᾱ is a parameter vector of the same di-
mensionality asΦ(a,w). The parameters̄α are estimated us-
ing discriminative methods (e.g. the perceptron algorithm).
Improvements in word error rate (WER) have been observed

1β is a positive constant that determines the relative weight of the lan-
guage and acoustic models. We use〈x, y〉 to denote the inner product of two
vectorsx andy.

by incorporating both n-gram and syntactic features within
Φ(a,w) [1, 2].

In this paper we consider three extensions to the discrim-
inative language modeling approach. Our first contribution
is to describe a method for includingtrigger features[3, 4]
within the definition ofΦ(a,w). Trigger features are de-
signed to model the fact that content words are more likely to
be used repeatedly within a single conversation than to occur
evenly spread throughout all speech. For example the word
“Uzbekistan” may occur very rarely, but within the context
of a conversation where it has already occurred, the likeli-
hood of seeing “Uzbekistan” again increases dramatically. To
capture this phenomenon in our model, a trigger feature can
be defined that indicates the number of times in a conversa-
tion that “Uzbekistan” is seen preceded by a previous instance
of “Uzbekistan”. In addition to lexically-specific trigger fea-
tures, we also introducebackofftrigger features where content
words are placed into different equivalence classes based on
their TF-IDF scores [5]. The use of lexicalized trigger fea-
tures within a generative language model, i.e., a model that
attempts to estimatePl(w), is described in [3, 4]. However,
our use of trigger features in a discriminative language model
is arguably simpler and more direct—in particular, the param-
eter estimation method is more closely related to optimizing
WER.

Additionally, we perform clustering to assign topics to
each conversation which we then use to design new features
for the discriminative model. The clustering method we use
is hierarchical, clustering in a top-down fashion [6]. We add
features for every unigram conditioned on a specific topic des-
ignation. We also include features indicating the number of
topic words present in a given sentence, where a topic word
is a word that occurs much more frequently in a given clus-
ter than in the corpus as whole [7]. These features are intro-
duced for several different levels of the topic hierarchy, from
very general to very specific topic designations. Some pre-
vious approaches which utilize topic information to improve
speech recognition performance include the design of maxi-
mum entropy models which use manually assigned topic la-
bels to achieve a significant decrease in WER [7]. In [8] latent



semantic analysis is used to create a language model that dis-
plays lower perplexity on a large-vocabulary speech recog-
nition task compared with an n-gram only language model.
In another approach, language models are trained for sepa-
rate topics, and at recognition time mixtures of these models
are used along with caching to yield a significant reduction
in perplexity [9]. Again our work differs from these previous
approaches in the design of some of our features and because
the discriminative model attempts to more directly optimize
WER.

Our third contribution is to introduce a new loss-sensitive
variant of the perceptron algorithm for the estimation ofᾱ.
This perceptron is similar in form to that proposed by [10]
for multiclass classification, however it explicitly models the
loss of selecting different hypotheses, and also takes into ac-
count the fact that multiple hypotheses may be considered op-
timal. In contrast to the work in [1], this perceptron algorithm
makes updates based on averaging the contribution from a
larger number of hypotheses, potentially making much bet-
ter use of the information in the hypothesis set.

We tested our model on the Switchboard corpus using the
recognizer of [11] and the discriminative language model of
[1] as baselines. Our model demonstrates a 0.7 absolute re-
duction in WER over the model in [1], and a 1.7 absolute
reduction in WER over the baseline recognizer of [11].

2. FEATURES

In this section, we describe how to extend the discriminative
model described above in order to include trigger and topic
features. We will use the following definitions:

• a1 . . .an represents a sequence of acoustic inputs con-
stituting a single conversation.

• GEN(ai) denotes the set ofn-best hypotheses produced
by the baseline recognizer for the acoustic inputai.

• vi designates the transcription ofai we use to construct
histories for identifying triggering events.

• hi = {v1, . . . ,vi−1} is the history ofai.

• Φ(ai,w,hi) is a feature-vector representation. We as-
sume that the score assigned by the generative model
is the first feature in this vector (i.e.,Φ1(a,w,h) =
log Pa(a|w) + βPl(w)).

• The resulting decoding model is:

w∗
i = arg max

w
〈ᾱ, Φ(ai,w,hi)〉

For trainingᾱ, we assume that the baseline speech rec-
ognizer can be used to generate ann-best list of candidate
hypotheses for any acoustic input. During training,vi is the
least errorful hypothesis in GEN(ai). During decoding,vi

is the best scoring hypothesis under the generative model for
eachai. We also experimented with definingvi to be the hy-
potheses selected while decoding, but this gave neglible dif-
ferences in performance.

The baseline discriminative model and our new model
both include the following features. The first feature is the
score assigned by the recognizer as described above. The re-
maining features include unigram, bigram, and trigram fea-
tures. As one example, a trigram feature would be

Φ2(a,w,h) = # of timesthe dog barkedappears inw

Similar features are defined for all unigrams, bigrams, and
trigrams seen in the n-best lists of the training data.

2.1. Trigger Features

We augment the baseline model with trigger features designed
to capture information about the re-occurrence of words. These
features operate at the discourse level in that they depend
upon the words of the current candidate hypothesis as well
as all other words that have occurred in previous utterances in
the conversation. Theunigram triggerfeatures, created for all
unigrams seen in the training data, are of the following form.

Φ3(a,w,h) =
1 iff: (a) Uzbekistanis seen inw at least
twice; or (b) Uzbekistanis seen inw once
and is seen at least once in the historyh
0 otherwise

In addition to unigram features, we includebigram trigger
features. For example, we might have a feature that is similar
to Φ3 above, but tests for the bigramSan Francisco. Features
of this form are created for all bigrams seen in training data.

Since the above features are lexicalized—i.e., there is a
separate feature for each distinct unigram or bigram—some
may be very sparse within our training set. To counteract this
shortcoming we introduce a set ofbackoff triggerfeatures.
Each wordw in the vocabulary is assigned to one of eleven
binsbased on its TF-IDF score [5]. The TF-IDF score is de-
fined as follows for any wordw and conversationd, wherew
is seen ind:

score(w, d) = (1 + log(tfwd))(log
n

dfw
)

Heredfw is the number of conversations in which the word
w occurs,n is the total number of conversations in training
data, andtfwd is the number of times wordw occurs in con-
versationd. The score for a wordw, which we will denote as
score(w), is the average ofscore(w, d) over all conversations
d that containw. The functionscore(w) attempts to measure
the degree to which the wordw is a content word (and thus
is likely to be a good trigger feature). We calculated TF-IDF



Bin Word Sample
bin0 a, with, go
bin1 down, rough, previous
bin2 proportion, casual, fascinated
bin3 junkie, michigan, orchid
bin4 chagrin, docile, uniforms
bin5 editorial, entrapment, salvation
bin6 moderating, coronary, lures
bin7 sonogram, pastrami, twix
bin8 plentiful, infusion, smidgen
bin9 theorists, viscous, sitar
bin10 unethical, bisque, backswing

Table 1. A selection of a few words from each “backoff”
trigger bin.
??

scores for each word seen in the training data, using the 4,800
transcribed conversation sides in the Switchboard training set
as documents.2

Words are then placed into bins according to their score.
Words withscore(w) less than 1.0 are assigned tobin0. All
remaining words are sorted by increasing score and divided
into ten equal-sized bins. A few randomly chosen words from
each bin are shown in Table??. In practicebin0 consists of
roughly the hundred most common words in speech (e.g.a,
with, go, etc.). Since these words are so frequent, we antici-
pate that their trigger features will behave differently from the
other words in the vocabulary. We create the other ten bins in
this graded manner because we anticipate that different con-
tent levels will result in different trigger behavior.

One feature for each bin is then added to the model. Sup-
poseΦw for any wordw in the vocabulary is a trigger feature
for that word (for example,ΦUzbekistan would be defined as
in the example above). For eachbinb, for b = 0 . . . 10, we
define a feature as follows:

Φb(a,w,h) =
∑

v∈binb

Φv(a,w,h)

The featureΦb counts the number of triggering events involv-
ing the words inbinb. These features allow the model to learn
a general preference for triggering events involving each of
the 11 bins.

2.2. Topic Modeling

We include topic information in the discriminative language
model by classifying each conversation into a topic cluster
and then introducing topic conditional features into the model.
Like trigger features, topic features are designed to capture

2Note that we used the reference transcriptions for calculating TF-IDF
scores, as opposed to the outputs from the baseline recognizer.

long distance relationships among words. By grouping to-
gether conversations of the same topic, we hope to learn how
to adjust our language model to adapt to specific topics ver-
sus the whole corpus. For instance in a conversation about
politics, words like “government” and “party” might be more
prevalent than in the general case.

2.2.1. Learning Topic Assignments

We learn topic assignments of the training data by performing
unsupervised hierarchical clustering. To perform the cluster-
ing, we represent each conversation using a TF-IDF vector
[5]. To be precise, each conversationdi is represented as a
vectorvi, wherewj is a word in the vocabularyV of sizeV .
The functionscore is the same TF-IDF function described
previously.

vi = [score(w1, di), score(w2, di), ..., score(wV , di)]

We utilize a method known as bisecting k-means [6] to
obtain a hierarchical clustering of the training conversations.
The algorithm is a top-down clustering algorithm the operates
as follows:

1. given vectorsv1, ..., vn and integerK whereK is the de-
sired depth of the clustering hierarchy

2. randomly select two vectors as initial means, and run k-
means until convergence to obtain the initial two clusters

3. for k = 2 to K, split each cluster by randomly selecting
two vectors in the cluster as initial means, and run k-means
until convergence

This method of clustering partitions the training first into
two clusters, then four clusters, then eight clusters, etc. In
order to ensure that we don’t have very small clusters, we
do not bisect clusters containing fewer than 25 conversations.
We can qualitatively test the effectiveness of the clustering by
looking at the topic words associated with each cluster. The
formal concept of a topic word that we use here was intro-
duced by [7]. A topic wordw of a clustert is a word whose
relative frequency in a clusterft(w) is greater than its rela-
tive frequency througout the entire corpusf(w). We identify
topic words using the following topic word score.

ft(w) log
ft(w)
f(w)

Table 2 contains the twenty topic words with the highest
topic word score from eight randomly chosen clusters after
eight iterations of bisecting k-means. We can see from the
topic words that the clustering algorithm seems to be learn-
ing clusters with a single coherent topic, such as space explo-
ration in Cluster 193.



Cluster 193 Cluster 399 Cluster 141 Cluster 396
space drug fishing gun
station drugs fish guns
gravity testing boat control

program tested caught waiting
technology test trout period
economy privacy bass rifles
shuttle positive catch weapons

research random lakes hunting
circular invasion water handguns
stations tests bottom automatic
produce company coast ban
limited alcohol catfish shot

techniques prescription ocean shotgun
funding negative salmon criminals
effects employees fisher purposes

mcdonald drivers fished legitimate
effective invaded river handgun
apollo airline lake law

weightlessness false fresh semiautomatic
exploration drink halibut crime
Cluster 406 Cluster 260 Cluster 307 Cluster 184

school daughter paint dinner
schools children painting food
parents mom color cheese
teach beach painted party

children trip room barbecue
education fish wallpaper cook

grade oldest latex gourmet
public youngest walls cooking

teachers girl trim turkey
child family white mayonnaise

teacher vacation bathroom hors
private coast dark d’oeuvres
learning girls ceiling chicken
system indian molding sauce

kid places paints serve
kindergarten mother built recipe

plano bus hallway salad
discipline english remodeled meals
teaching boy finish eat

elementary golf clean ham

Table 2. Top twenty topic words of eight randomly chosen
clusters after eight round of bisecting k-means clustering.

2.2.2. Assigning Topics to Test Conversations

In order to assign a new conversationdtest a topic, we first
need to compute it’s TF-IDF vector representation.

vtest(d) = [scoretest(w1, dtest), ..., scoretest(w|V |, dtest)]

scoretest(w, d) = (1 + log(tfwd))(log
ntrain

df train
w

)

Heredf train
w is the number of training conversations in

which the wordw occurs,ntrain is the size of the training

set, andtfwd is the number of times wordw occurs in conver-
sationd. The TF-IDF vector representation of a test sample
is computed using the training sample as the corpus for cal-
culating the IDF portion of the score.

Once we havevtest(dtest), we simply assigndtest the
topic of the cluster whose mean is closest tovtest(dtest). We
can learn a topic assignment ofdtest at each level of the clus-
ter hierarchy, which we can use to attain either coarse or re-
fined topic features.

2.2.3. Topic Features

We create the following features for each utterance hypothesis
in a conversation assigned to a clusterk

• unigram features conditioned on topic designation

• three features, one indicating whether zero topic words,
one topic word, or two or more topic words are present
in a sentence conditioned on topic designation

These features are created for each topic in the hierarchy,
so if there are eight hierarchical clusterings, features for each
level are created for each utterance hypothesis. Note that at
each levelk of the hierarchy,10000n(k) topic words are chosen for
each cluster, assumingn(k) is the number of clusters at level
k.

3. TRAINING: PERCEPTRON

Figure 1 show the loss-sensitive perceptron algorithm we use
for training ᾱ. This perceptron is similar in form to the per-
ceptrons proposed by [10] for multiclass classification and by
[12] for reranking. The perceptron is loss-sensitive in two
ways. First, the perceptron enforces a margin that scales lin-
early with increases in loss. Second, the perceptron recog-
nizes that there may be multiple hypotheses with minimal loss
that should all be considered optimal.

In a given n-best list, GEN(ai), there may be one or more
optimal hypotheses. For example, the correct transcription
may not be present in the list, but there may be several hy-
potheses each with only one error, while all the other hypothe-
ses have two or more errors. We denote the set of lowest error
hypotheses of GEN(ai) by Gi. In terms of performance, all
members ofGi are considered optimal choices by the dis-
criminative model.

Let Bi = GEN(ai) − Gi, i.e. the set of all non-optimal
hypotheses in GEN(ai). Each hypothesis inBi will display
different numbers and types of errors. The following loss
function is used to indicate the badness of each member of
Bi:

∆i(b) = edits(b)− edits(g) whereg is any member ofGi

This loss function is simply the additional number of errors
introduced by a hypothesis over the number of errors present



in an optimal hypothesis. Note that all members ofGi have a
loss of 0, while all members ofBi have a loss of 1 or greater.

We define a margin that scales asλ∆i(b) whereλ ≥ 0
is a parameter we select. Scaling the margin with the loss
was originally proposed by [13], who give statistical bounds
justifying this. Intuitively, the idea is to ensure that hypothe-
ses with a large number of errors are more strongly separated
from the members ofGi. In the experiments presented in this
paperλ is always set to1.0. We define the two setsCi ⊆ Gi

andEi ⊆ Bi in Figure 1 which consist of optimal and non-
optimal hypotheses, respectively, that violate the scaled mar-
gin. We then construct two new vectors

∑
c∈Ci

τ(c)Φi(c)
and

∑
e∈Ei

τ(e)Φi(e), which are used to train the perceptron
in the usual way. The values ofτ must meet the constraints
described in Figure 1. The first four constraints insure that
the weights used to create the representative samples are all
non-negative and sum to 1. The final constraint insures that
the newly constructed average samples still violate the margin
constraint in an averaged sense.

Note that the training examples used as input to the al-
gorithm are constructed in the following way.a1 . . .am is a
sequence of acoustic representations formed by concatenat-
ing all conversations in the training data. The historieshi

are constructed as follows. We takew∗
i to be the member

of Gi that is scored highest by the generative model. We
define the history,hi, for utteranceai to be the sequence
w∗

i−l,w
∗
i−l+1, . . . ,w

∗
i−1 wherel is the number of previous

utterances which belong in the current conversation.
There are many methods for selecting the values ofτ . In

this paper we consider the following simple definition:

∀c ∈ Ci,τ(c) =
1
|Ci|

∀e ∈ Ei,τ(e) =
∑
c∈Ci

vc(e)
|Ci|vtotal

c

vc(e) =
{

1 if 〈ᾱ(Φi(c)− Φi(e))〉 < λ∆i(e)
0 otherwise

vtotal
c =

∑
e∈Ei

vc(e)

Essentially all the hypotheses inCi receive an equal positive
weight. The weights of the hypotheses inEi are assigned
based on the valuesvc(e). If vc(e) is 1 for many correct hy-
pothesesc, τ(e) will be relatively high.

The more standard perceptron used in the baseline model
can be thought of as a special case of this perceptron in which
λ = 0 and theτ values are assigned as follows. We designate
somec′ ∈ Gi as the single best hypothesis (for the baseline,
the hypothesis inGi with the best recognizer score). We up-
date only ifc′ ∈ Ci. We setτ(c′) = 1 andτ(e) = 1 where
e is the member ofEi for which 〈ᾱ, (Φi(c′) − Φi(e))〉 is the
lowest. All otherτ values are set to0.

Input: An integerT specifying the number of training
iterations. A sequence of inputsa1 . . .am. A function
GEN(ai) that produces an n-best list of outputs for the
input ai. A mappinghi that represents the history of
for ai. A function ∆i(w) that represents the loss of
selecting outputw for the sampleai. ∆i must always be
non-negative and there must be at least one member of
GEN(ai) with a loss equal to 0.

Definitions: Gi = {w|w ∈ GEN(ai) and∆i(w) = 0}
Bi = GEN(ai)−Gi

Let Φi(w) be shorthand forΦ(ai,w,hi)

Algorithm:
ᾱ← 0 λ← 1.0
For t = 1 to T , i = 1 to m

• Ci = {c|c ∈ Gi and∃z such thatz ∈ Bi and
〈ᾱ, Φi(c)− Φi(z)〉 < λ∆i(z)}

• Ei = {e|e ∈ Bi and∃y such thaty ∈ Gi and
〈ᾱ, Φi(y)− Φi(e)〉 < λ∆i(e)}

• If |Ci| 6= 0, define a functionτ overCi ∪ Ei such
that the following constraints hold:

*
∑

c∈Ci
τ(c) = 1

*
∑

e∈Ei
τ(e) = 1

* ∀c ∈ Ci, τ(c) ≥ 0

* ∀e ∈ Ei, τ(e) ≥ 0

* 〈ᾱ,
(∑

c∈Ci
τ(c)Φi(c)−

∑
e∈Ei

τ(e)Φi(e)
)
〉

< λ
(∑

e∈Ei
τ(e)∆i(e)

)
Update the parameters:
ᾱ← ᾱ +

∑
c∈Ci

τ(c)Φi(c)−
∑

e∈Ei
τ(e)Φi(e)

Output : The parameters̄α.

Fig. 1. The perceptron algorithm we propose for reranking
speech recognition output. In our experiments we used the
averaged parameters from the perceptron, see [1] for details.

We can prove some useful properties for the perceptron in
Figure 1. Consider the case where the training data is linearly
separable, or more specifically there exists some vectorU and
some maximal marginδ > 0 such that||U|| = 1 and the
following constraint holds for alli:

〈U, (Φi(g)− Φi(b))〉 ≥ δ∆i(b) ∀b ∈ Bi,∀g ∈ Gi

It can be shown that in a finite number of iterations, given
that the values forτ satisfy the given constraints, the percep-
tron in Figure 1 learns a model̄α that separates the data as



follows:3

〈 ᾱ
||ᾱ|| , (Φi(g)− Φi(b))〉 ≥ γ∆i(b) ∀b ∈ Bi,∀g ∈ Gi

whereγ = λ

2λ+ 4R2
s

×δ, R is an upper bound on the maximum

length of a sample feature vector, ands is the minimum size
of the loss seen on an error. (For our loss function we have
s = 1.) Note that asλ→∞, γ → δ

2 .

4. EXPERIMENTS

We use the recognizer of [11] as our baseline recognizer (base-
G) and to generate 1000-best lists used by the discriminative
models. The discriminative model used in [1] also serves
as a baseline (base-D). We train the rerankers using Switch-
board [14], Switchboard Cellular [15], and CallHome [16]
data. Rich Transcription 2002 (rt02) [17] data was used for
development. Rich Transcription 2003 (rt03) [18] data was
used for testing. The training set consisted of 5533 conversa-
tion sides (individual speakers in a conversation), or about 3.3
million words. The development set consisted of 120 conver-
sation sides (6081 sentences) and the test set consisted of 144
conversation sides (9050 sentences).

The perceptrons train very quickly, usually converging
within three passes over the training data, and we optimize
the exact number of iterations using the development set. We
report results for the test set only for the baselines and model
that produces the best results on rt02.

We tested several combinations of the trigger features and
report results in Table 3. We find that including all three types
of trigger features–unigram self-triggers, bigram self-triggers,
and backoff triggers–gives us the best results on the develop-
ment set. This model gives us a 0.4% absolute reduction in
WER over base-D and a 1.2% absolute reduction in WER
over base-G on the development set. This optimal model also
achieves a 0.5% absolute reduction in WER over base-D for
the test set and a 1.5% absolute reduction in WER over base-
G. The results on rt03 are significant withp < 0.01 using the
sign test at the conversation level.

We also tested several combinations of the topic features
as and report results in Table 3. We found that including mul-
tiple levels of topic features leads to decreased word error
rates versus the use of just one level of topic features. Ad-
ditionally we find that if the features of each level are indi-
cator features as previous described but are scaled to1

3 , the
model performance improves. The value1

3 is used because
three levels of topic features are used, and together the contri-
bution of any unigram/topic combination sums to one. In this
way the use of multiple hierarchical topic levels forms a sort
of backoff scheme. We find that the topic-based discrimina-
tive model again gives us gives us a 0.4% absolute reduction
in WER over base-D and a 1.2% absolute reduction in WER
over base-G on the development set. This optimal model also

3For a proof of this see the appendix.

Features rt02 rt03
Base-G 37.0 36.4
Base-D 36.2 35.4
Loss-sensitive perceptron: n-grams 36.0 35.3
+ unigram self-triggers 36.0
+ bigram self-triggers 36.0
+ backoff unigram self-triggers 35.9
+ unigram and bigram self-triggers 35.8
+ unigram and backoff unigram self-
triggers

35.9

+ unigram, bigram, and backoff unigram
self-triggers

35.8 34.9

+ level 5 topic features 35.9
+ level 2,4,6 topic features 35.9
+ scaled level 2,4,6 topic features 35.8 35.0

+ unigram, bigram, backoff unigram self-
triggers, scaled level 2,4,6 topic features

35.7 34.7

Table 3. Results of base-G, base-D, and our discriminative
model on the development set (rt02) and the test set (rt03).

achieves a 0.4% absolute reduction in WER over base-D for
the test set and a 1.4% absolute reduction in WER over base-
G. The results on rt03 are significant withp < 0.01 using the
sign test at the conversation level.

In the final model, consisting of a combination of the best-
performing topic and trigger features, a 0.5% absolute reduc-
tion in WER is seen over base-D on the development set, and
a 1.3% reduction in WER is seen over base-G. On the test set
an absolute reduction in WER of 0.7% and 1.7% is seen over
base-D and base-G respectively.

5. DISCUSSION

We created several bins for the backoff trigger features with
the expectation that words with different frequencies and con-
tent levels would have different trigger behavior. The learned
weights of these features for the final discriminative model
are listed in Table 4. Frombin0 to bin6 the learned weights
increase. This confirms our hypothesis that words with in-
creasing content levels (or bin numbers) are more influenced
by triggering events. We see approximately a threefold in-
crease in weight betweenbin1 andbin6, suggesting that the
difference in behavior between the words in the two bins is
quite large, and therefore it may be worthwhile to try to create
a backoff scheme that is more sensitive to these differences.
Finally, somewhat erratic weights are seen forbin7 through
bin10. One reason for this may be that these are the rarest
words in the training set, and therefore weights for these bins
are not adequately trained.

The words which have the 40 highest weights for their as-
sociated unigram trigger features are listed in Table 5. These



bin0 0.60 bin4 13.51 bin8 2.87
bin1 6.82 bin5 14.96 bin9 15.34
bin2 12.28 bin6 18.66 bin10 8.31
bin3 13.65 bin7 2.12

Table 4. Weights of bin features in final model.

GONNA WANNA SOMEONE LAKE
WEATHER WOOD ONE’S TEND
TAUGHT NORTH OIL SORT
WEAR UH-HUH LIVED TRUCK
LIST [LAUGH] STAYED ALRIGHT
ICE NEWS READING SOMEPLACE

WRITE AWHILE COLOR TOUGH
AGE WONDERFUL DINNER CAUGHT

WOMEN RIDE SELL POOL
MEAT MEN DEER OUGHT

Table 5. The 40 unigram trigger features with highest weight
in the final model.

include content words such astruck and news, as well as
stylistic words such asgonnaandwanna. We posit that words
such asgonnaget high trigger weights because they are more
heavily used by some speakers than others. Interestingly, we
see that many of the words in the list are homonyms of other
words, such aswear andwhere, woodandwould, deerand
dear, andweatherandwhether. It seems likely that the oc-
currence of one of these words earlier in a discourse should
make it more likely to see it later and help distinguish between
homonyms.

In Table 6, the forty topic-specific unigram features with
the highest learned weights in the final model are listed. In-
terestingly most of these features are not words at all but are
interjection or breaths. This might be because these are very
frequent in speech and may be present much more in certain
styles of speech which have high correlation with topic desig-
nation. Many of these features had negative learned weights
for other topic designations, supporting this hypothesis. Ad-
ditionally, we again see short easily confusable words as with
the trigger features.

The weights learned for the features counting the number
of cluster specific topic words present in a sentence hypothe-
sis are also interesting. The features indicating that no topic
word is present always takes on a negative weight between
−15.1 and−1.8 in the final model. The feature indicating
that single topic word is present takes on a weight between
−3.5 and4.2, and the feature indicating the two or more topic
words are present is always positive, with a learned weight be-
tween1.5 and15.0. These weights confirm our intuition that
hypotheses are generally superior if they contain more topic
words.

Finally we see that the perceptron algorithm we present

[BREATH]:125 UM-HUM:113 [BREATH]:30
ONE:75 SEEN:18 YOU:76

BECAUSE:125 WAS:75 [LAUGHTER]:81
UM-HUM:78 [BREATH]:76 READ:69

HER:114 HAVE:109 BUT:104
NOT:76 IS:122 UM-HUM:99
OR:79 UH-HUH:114 WEAR:79
HE:71 WAS:176 IS:76

WHERE:67 IT:84 LIKE:76
BUT:76 HIGH:5 DID:75
IF:29 HER:86 UM-HUM:121
UP:17 I-:28 UM:106

DIDN’T:71 HIM:71 SAYING:6
UH-HUH:75

Table 6. The 40 unigram topic unigram features with highest
weight in the final model. The number following the colon
indicates the topic cluster associated with the feature.

provides additional gains over the baseline perceptron algo-
rithm. Future work might consider alternative ways to select
the parametersτ as this might lead to further gains.

6. PREVIOUS WORK

There is a large body of recent work on using discriminative
methods to improve speech recognition performance [1, 2, 19,
20, 21, 22, 23, 24]. The work of [1, 2, 19] utilizes the same
discriminative model used in this paper. While all three of
these approaches train their model using the perceptron al-
gorithm used as a baseline in this paper, [1] compares this
technique with the use of conditional random fields (CRFs).
The CRFs are trained by using the output of the perceptron al-
gorithm to prune away features and initialize the parameters
to be learned, and are able to achieve significantly better per-
formance over the perceptron algorithm. Additionally, [1, 19]
consider the use of word lattices and show little difference be-
tween training using lattices or 1000-best lists. Finally, in [2],
the discriminative model is extended to use syntactic features
which also significantly reduce word error rates.

Alternative decoding methods that optimize WER directly
include the work of [20, 21, 22]. In [20] each member of
an n-best list is considered an equally probable reference hy-
pothesis and then during decoding a hypothesis is selected
that minimizes the word error rate accordingly. In [21] this
approach is extended to word lattices using a data structure
called “word sausages” that allow decoding decisions to be
made on a word by word basis. These structures are reused in
[22] where decoding decisions are made using a set of learned
rules. All these approaches display significant improvement
to WER in large vocabulary speech recognition tasks.

In the work of [23, 24] methods of directly adjusting the
parameters of a traditional language model are presented. In
both, the parameters of a language model are adjusted to min-



imize the “loss” associated with selecting incorrect hypothe-
ses over correct hypotheses on a training set. Both meth-
ods achieve significant reductions in WER for Chinese word
recognition tasks. This approaches differs significantly from
ours however as only the traditional language model param-
eters can be altered, whereas we have the freedom to define
arbitrary features within our discriminative language model.

There is also an extensive body of work on creating adap-
tive language models for speech recognition [3, 4, 7, 8, 9, 25,
26, 27, 28]. In an early approach, [25] create an adaptive lan-
guage model by creating a language model from recent con-
text and interpolating this model with a static language model.
Later approaches use caches, which store information on pre-
viously used n-grams and distance since last use, to adjust
the language model as more context is revealed [9, 28]. Ex-
plicit triggers were incorporated into the language model by
[3, 4] using maximum entropy techniques. Topic modeling
was used by [7, 8, 9, 28, 29] with varied success. [9] explores
the use of mixtures of topic-specific language models. [7]
uses maximum entropy models and manually annotated topic
labels to create a topic-adaptive language model. Finally, in
the work of [8], the technique of latent semantic analysis is
used to model long distance information. Most of these ap-
proaches achieve large drops in language model perplexity
with less spectacular reductions in word error rate (if any).

Finally, there also is some interesting recent work on the
perceptron algorithm. The work of [10], is most closely re-
lated to the algorithm we present here. They present an mul-
ticlass classification learning algorithm that similarly makes
use of information about every violation and makes updates
accordingly. In [12], similar reranking algorithms are pre-
sented as the one here with a few key differences. For exam-
ple, here we construct a prototypical “good” and “bad” hy-
pothesis for each sample and use these to update our param-
eters. In [12], every pair of hypotheses in an n-best list that
violates the margin constraint leads to an independent update
of the parameters. This potentially puts too much weight on
long n-best lists and too little on shorter lists. Other notewor-
thy work on related online algorithms [30, 31] discuss alterna-
tive algorithm for learning full rankings as well as algorithms
that weight the updates by the amount of loss generated by a
single example.

7. CONCLUSION

In this paper we use the discriminative language model of
[1] to create a reranker that includes discourse–level features.
Specifically, we introduce trigger and topic based features that
help the discriminative language model to adapt to discourse
context. We use lexicalized and backoff trigger features that
each show individual improvements and together make a sub-
stantial gain over the baseline model. Topic labels induced by
hierarchical clustering also are shown to be effective at adjust-
ing the language model for conversations with a specific topic.

We see gains using lexicalized topic features and features that
indicate the number of topic words present in a hypothesis.
Additionally we present a perceptron algorithm used to train
the discriminative model that shows improvements as well.
Overall, the WER on the test set was reduced by 0.7 over
the baseline discriminative model, and by 1.7 over the base-
line recognizer. This work provides evidence that discrimina-
tive language modeling has the potential to deliver significant
gains for speech recognition tasks. The success of the trigger
features also shows how important discourse level informa-
tion can be to transcribing spoken language.
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Appendix

Theorem:If there exists some vectorU and some marginδ >
0 such that‖U‖ = 1 and the following constraint holds for
all examplesai in training data

〈U, (Φi(g)− Φi(b))〉 ≥ δ∆i(b) ∀b ∈ Bi,∀g ∈ Gi

then in a finite number of iterations the perceptron in Fig-
ure 1 learns a model̄α that separates the data as follows

〈 ᾱ

||ᾱ||
, (Φi(g)− Φi(b))〉 ≥ γ∆i(b) ∀b ∈ Bi,∀g ∈ Gi (1)

whereγ = λ

2λ+ 4R2
s

× δ. R is an upper bound on the max-

imum length of a sample feature vector (‖Φi(x)‖2 ≤ R2 for
all x ∈ GEN(ai)). s is the minimum size of the loss seen on
an error.

Proof: Let lk =
∑

b∈Ei
τ(b)∆i(b), the loss on thekth

mistake whereai is the example leading to the that mistake.
We know that

ks ≤
∑

k

lk ≤ kr (2)



wherer is an upper bound on loss for any example in the
training set.

We can now find an upper bound on‖ᾱk‖2 whereᾱk is
the weight vector after thekth update.

‖ᾱk‖2 =‖ᾱk−1 +
∑
c∈Ci

τ(c)Φi(c)−
∑
e∈Ei

τ(e)Φi(e)‖2

=‖ᾱk−1‖2+

2〈ᾱk−1,
∑
c∈Ci

τ(c)Φi(c)−
∑
e∈Ei

τ(e)Φi(e)〉+

‖
∑
c∈Ci

τ(c)Φi(c)−
∑
e∈Ei

τ(e)Φi(e)‖2

≤‖ᾱk−1‖2 + 2λlk + 4R2

This step follows from the last constraint imposed by the
algorithm on the definition of the functionτ and the bound
on the maximum length of a feature vector we defined above.
Sinceᾱ0 is initialized to0, we know that afterk mistakes we
have the following inequality.

‖ᾱk‖2 ≤2λ
∑

k

lk + 4kR2

Now using the inequality from Equation 2, specifically
using the fact thatk ≤

P
k lk
s , we can derive the following

inequality.

‖ᾱk‖2 ≤ 2λ
∑

k

lk +
4R2

∑
k lk

s
(3)

We can now find a lower bound on the quantity〈U, ᾱk〉.

〈U, ᾱk〉 =〈U, (ᾱk−1 +
∑
c∈Ci

τ(c)Φi(c)−
∑
e∈Ei

τ(e)Φi(e))〉

The assumption made in Equation 1 about the separabil-
ity of the training data can be applied to get the following
inequality.

〈U, ᾱk〉 ≥〈U, ᾱk−1〉+ δlk

Again, we know that afterk mistakes we can get the fol-
lowing bound.

〈U, ᾱk〉 ≥ δ
∑

k

lk (4)

We can use Equations 3 and 4 to find a lower bound on
‖ᾱk‖2 and use the bounds on‖ᾱk‖2 to bound the total loss∑

k lk.

‖ᾱk‖2 ≥〈U, ᾱk〉2

2λ
∑

k

lk +
4R2

∑
k lk

s
≥δ2(

∑
k

lk)2

2λ +
4R2

s
≥δ2(

∑
k

lk)

∑
k

lk ≤
2λ + 4R2

s

δ2
(5)

The upper bound on the total loss is constant, and since
we know that each mistake has a minimal loss ofs, we can
say that the algorithm must converge within a finite number of
iterations. We can now calculate the final normalized margin
achieved by the algorithm. Using Equation 3 and 5, we can
derive the following inequality.

‖ᾱk‖ ≤
√

2λ
∑

k

lk +
4R2

∑
k lk

s

‖ᾱk‖ ≤

√√√√(2λ +
4R2

s

)(∑
k

lk

)

‖ᾱk‖ ≤

√√√√(2λ +
4R2

s

)(
2λ + 4R2

s

δ2

)

‖ᾱk‖ ≤
(

2λ +
4R2

s

)
1
δ

Finally to calculate the normalized margin we take the
final parameter̄αfinal which we know must adhere to the
above boundary, and use it to normalize the margin achieved
λ.

λ

‖ᾱfinal‖
≥ λ(

2λ + 4R2

s

) × δ

The proof is complete.


