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Abstract

In 1994 Grünbaum [2] showed, given a point set S
in R3, that it is always possible to construct a polyhe-
dron whose vertices are exactly S. Such a polyhedron
is called a polyhedronization of S. Agarwal et al. [1]
extended this work in 2008 by showing that a poly-
hedronization always exists that is decomposable into
a union of tetrahedra (tetrahedralizable). In the same
work they introduced the notion of a serpentine poly-
hedronization for which the dual of its tetrahedraliza-
tion is a chain. In this work we present an algorithm
for constructing a serpentine polyhedronization that has
vertices with bounded degree of 7, answering an open
question by Agarwal et al. [1].

1 Introduction

It is well-known that any set S of points in the plane
(not all of which are collinear) admits a polygonaliza-
tion, that is, there is a simple polygon whose vertex
set is exactly S. Similarly, a point set S ⊂ R3 ad-
mits a polyhedronization if there exists a simple poly-
hedron that has exactly S as its vertices. In 1994
Grünbaum proved that every point set in R3 admits
a polyhedronization. Unfortunately, the polyhedroniza-
tions generated by Grünbaum’s method can be impossi-
ble to tetrahedralize. This is because they may contain
Schönhardt polyhedra, a class of non-tetrahedralizable
polyhedra [3].

In 2008, Agarwal, Hurtado, Toussaint, and Trias
described a variety of methods for producing polyhe-
dronizations with various properties [1]. One of these
methods, called hinge polyhedronization, produces ser-
pentine polyhedronizations, meaning they are composed
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of tetrahedra whose dual (a graph where each tetrahe-
dron is a node and each edge connects a pair of nodes
whose primal entities are tetrahedra sharing a face) is a
chain. Serpentine polyhedronizations produced by the
hinge polyhedronization method are guaranteed to have
two vertices with edges to every other vertex in the set.
As a result, two vertices in these constructions have de-
gree n − 1, where n is the number of points in the set.
A natural question, and one posed by Agarwal et al., is
whether it is always possible to create serpentine poly-
hedronizations with bounded degree.

In this work we describe an algorithm for constructing
serpentine polyhedronizations that have O(1) degree.
The constant bound of the produced polyhedronizations
is 7, which we show is nearly optimal for all point sets
with greater than 12 vertices. Such bounded-degree ser-
pentine polyhedronizations are useful in applications of
modeling and graphics where low local complexity is
desirable for engineering and computational efficiency.

2 Setting

Let the point set P in R3 be in general position in the
sense that it contains no four coplanar points. The con-
vex hull of P , written CH(P ), is the intersection of all
half-spaces containing P . The boundary of each face
of CH(P ) is a polygon with coplanar vertices. Since P
contains no four coplanar points, each of the faces
of CH(P ) is triangular. The three vertices composing a
face of CH(P ) we call a face triplet.

We will make reference to points and faces that see
each other. We say that a pair of points p, q can see each
other if the segment pq does not intersect a portion of
any polyhedron present. A face f is the planar region
bounded by a triangle formed by three points. A point p
can see a face f if p can see every point in f (strong
visibility). Similarly, a point p can see a segment s if p
can see every point on s.

3 Algorithm

In this section we present a high-level overview of the
algorithm. Begin with a point set S ⊂ R3. Select a face
triplet of CH(S) arbitrarily. Call this face triplet T0.
Let S0 = S \ T0. Assign the labels u0, v0, w0 to the
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vertices of T0 and connect the three vertices to form a
triangle.

Next we search for a face triplet T1 of CH(S0) that
we can attach to the triangle T0 via a polyhedron tun-
nel (see Figure 1). The tunnel has the face triplet T0 at
one end, the face triplet T1 at the other end and is dis-
joint with the interior of CH(S0). The tunnel needs to
be tetrahedralizable and the vertices u0, v0 have degree
5 and 4, and w0 has degree 3. Moreover, the vertices
of the face triplet T1 that we will call u1, v1, w1 should
have degree 3, 4 and 5, respectively. Note that the con-
structed tunnel must meet the degree requirements for
the vertices of T0 while it determines the vertex naming
assignments for the vertices of T1.

vi
wi

ui

ui+1(3)

wi+1(5)
vi+1(4)

Figure 1: Constructing a tunnel between Ti, Ti+1. The
vertices ui and vi have degree 5 and 4, while wi has
degree 3. The other end of the tunnel, Ti+1, has three
vertices that will be labeled ui+1, vi+1, wi+1 with de-
gree 3, 4 and 5 (shown in parentheses), respectively.

After finding a face triplet T1 that meets these re-
quirements, the process is repeated for T1 and S1, T2
and S2 where Si = Si−1\Ti, until Si contains fewer than
three points. At this point a degenerate tunnel is built
out of the remaining points and the algorithm stops. In
the next two sections we prove that such a construction
is always possible, producing a valid serpentine polyhe-
dronization with bounded vertex-degree 7.

4 Tunnel Construction

Here we prove that given Ti it is always possible to find
a face triplet Ti+1 such that a three-tetrahedra tunnel
(∆1∆2∆3) can be constructed between them.

Let L1 denote the line through uivi. CallH1 the plane
containing Ti (and thus L1). Note that the plane sup-
porting Ti does not intersect CH(Si) because Ti is a face
of CH(Si−1). Rotate H1 about L1 in the direction that
maintains separation of wi and CH(Si) until CH(Si) is
intersected. This intersection will be at a vertex, an
edge, or a face. Let vcone be a vertex of the intersection
and H2 the plane through L1 and vcone. Let R1 be the
swept-out region between H1 and H2.

Now let L2 denote the line parallel to L1 through
vcone. Rotate H2 about L2, starting at uivi, in the di-
rection that maintains the separation of uivi and CH(Si)
until CH(Si) is intersected. The intersection is either an
edge or a face. If it is an edge, call this edge e. If it
is a face, select an edge e of this face that has vcone as
an endpoint. Let H3 be the plane containing L2 and e,
and let R2 be the swept-out region between H1 and H2.
Refer to Figure 2.

vcone

e

vi ui
wi

L1

L2
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Figure 2: A visualization of the arrangement created by
Ti. The angles α1, α2 denote the swept angular regions
forming R1 and R2, respectively.

Lemma 1 The segment uivi can see edge e.

Proof. Recall the plane supporting Ti does not inter-
sect CH(Si), so wi cannot interfere with visibility. Now
consider a segment connecting a point on uivi and a
point on e. This segment is contained in R2, which is
empty. Thus, neither wi nor CH(Si) can block visibility
between uivi and e. �

Connect the endpoints of e to ui and vi with four
edges to form the middle tetrahedron ∆2.

Lemma 2 Vertex wi can see face uivivcone of ∆2.

Proof. The swept-out region R1 does not contain any
portion of CH(Si) or ∆2. Furthermore, every segment
connecting wi to a point on the face uivivcone is con-
tained in R1. Thus, wi can see the face uivivcone. �

Connect wi to vcone (it is already connected to ui and
vi) to form a tetrahedron ∆3.

Lemma 3 A face f incident to e is seen by ui or vi.

Proof. First consider ∆3. The plane H2 separates ∆3

from CH(Si) and ∆2. So ∆3 cannot obscure visibility
between a vertex of ∆2 and either face of CH(Si) in-
cident to e. Now refer to Figure 3. Consider rotating
each face f of CH(Si) incident to e away from CH(Si)
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until a face of ∆2 is intersected. These rotations are
disjoint and both occur around the line containing e.
So both cannot be greater than 180◦. Let f be a face
that rotates less than 180◦. The face f is seen by the
vertices of the face of ∆2 it intersects, including either
ui or vi. Call the vertex ui or vi intersected q. �

f

y

ui

vi

∆2

e

Figure 3: The scenario described in Lemma 3. Either
ui or vi must see a face of CH(Si) incident to e. In this
case, vi sees f . So q = vi.

Connect q to y, the third vertex of this face (q is
already connected to the other two vertices of f , the
endpoints of e) to form tetrahedron ∆1.

Theorem 4 The tetrahedra ∆1,∆2,∆3 form a three-
tetrahedron tunnel in which ui, vi have degree 5 and 4,
and wi has degree 3.

Proof. See Figure 4. The vertices ui, vi, wi each have
two edges connecting them to the other two vertices
of Ti. Vertex wi is also connected to vcone, so it has
degree 3. Vertices ui and vi are also connected to the
endpoints of e. Vertex q, which is either ui or vi, is
also connected to y. Thus, one vertex from {ui, vi} has
degree 5, while the other has degree 4. �

Once the tunnel between T0 and T1 is constructed,
repeat the process to build a tunnel from T1 to T2, etc.
When Ti is reached such that Si contains fewer than
three points, construct a four- or five-vertex polyhedron.
In the next section we prove that this construction pro-
duces a valid polyhedronization that is serpentine and
has optimal bounded degree.

5 Polyhedronization Properties

In this section we prove that the union of the con-
structed tunnels is a serpentine polyhedronization with
bounded-degree 7 and that this bound is nearly optimal.

e
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Figure 4: A complete tunnel and the three tetrahedra
∆1,∆2,∆3 composing it.

Lemma 5 Tunnel interiors are disjoint.

Proof. Consider the two tunnels between Ti, Ti+1 and
Tj , Tj+1 for j 6= i. Without loss of generality, let j > i.
All of the vertices of the tunnel between Ti, Ti+1 are on
the boundary or exterior of CH(Si). Additionally, all
of the vertices of the tunnel between Tj and Tj+1 are
on boundary or interior of CH(Si). Therefore, the two
tunnels may only intersect on the boundary of CH(Si).
Hence, their interiors are disjoint. �

Theorem 6 The resulting polyhedronization of S is a
serpentine polyhedron.

Proof. Each tunnel is constructed of three tetrahe-
dra that form a chain from Ti to Ti+1 in the or-
der ∆3,∆2,∆1. The tunnel between face triplets Ti
and Ti+1 shares Ti (resp., Ti+1) with the previous (resp.,
next) tunnels, except, of course, for i = 0 in which case
there is no previous tunnel and the tetrahedron with
face T0 is the first element of the dual chain. For the
last tunnel, Tk, either a degenerate tunnel is formed
with the remaining one, or two points or the last tetra-
hedron of Tk is the end of the chain. In the degenerate
case, a face of Tk shares a face with the final degenerate
tunnel. The final degenerate tunnel must be tetrahe-
dralizable and have a dual chain since it is a polyhedron
with four or five vertices. Therefore, in both cases the
dual of the polyhedronization is a chain. �

Lemma 7 Every vertex in the polyhedronization of S
has degree at most 7.

Proof. First consider the face triplets that are not first
or last. Each vertex is part of some triangle Ti and has
two edges connecting it to the other vertices of Ti.

For a vertex ui, one additional edge is connected to
ui in the tunnel between Ti−1 and Ti, and at most three
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additional edges are connected to ui in the tunnel be-
tween Ti and Ti+1 (this occurs when ui = q). So ui
has degree at most 1 + 2 + 3 = 6. For a vertex vi, two
additional edges are connected to vi in the tunnel be-
tween Ti−1 and Ti, and at most three additional edges
are connected to vi in the tunnel between Ti and Ti+1

(this occurs when vi = q). So vi has degree at most
2 + 2 + 3 = 7. For a vertex wi, three additional edges
are connected to wi in the tunnel between Ti−1 and Ti,
and one additional edge is connected to wi in the tun-
nel between Ti and Ti+1. So wi has degree at most
3 + 2 + 1 = 6.

Now consider the vertices involved in the final four-
or five-vertex polyhedron (called D). Let Tk be the
last non-degenerate face triplet. There exists a polyhe-
dronization of D such that wk has only 1 additional edge
in D (excluding the edges to vk, uk). Using this polyhe-
dronization gives wk degree at most 3 + 2 + 1 = 6 when
combined with edges from the tunnel between Tk−1 and
Tk. All other vertices have at most 2 additional edges in
the polyhedronization (since there are at most two ver-
tices in the degenerate face triplet) and gain at most 2
vertices from the tunnel between Tk and Tk−1.. So each
of these vertices has degree at most 4 + 2 = 6.

In conclusion, the maximum degree of any vertex in
the polyhedronization is 7. �

Lemma 8 No polyhedronization of an arbitrary num-
ber of points in R3 can obtain a bounded degree of less
than 6.

Proof. By Euler’s formula, every polyhedron in general
position with |S| vertices has 3|S| − 6 edges. Hence,

the average degree of a vertex is 2(3|S|−6)
|S| = 6 − 12

|S| .

Therefore, for |S| > 12, some vertex must have degree
at least 6. �

The algorithm described produces a nearly optimal
bounded-degree polyhedronization. Indeed, Lemma 7
proved that the construction produces a polyhedroniza-
tion with bounded-degree 7, while by Lemma 8, ev-
ery polyhedronization of an arbitrary number of points
must have some vertex with degree at least 6. So
the construction has vertices with degree at most one
greater than the minimum possible degree.

6 Conclusion

In this paper we show that any point set in 3-space ad-
mits a polyhedronization with vertex degree at most 7,
while 6 is a simple lower bound. Future work includes
showing that either 6 or 7 is the true bound in the worst
case. Furthermore, we believe that our technique can be
generalized to higher dimensions.
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