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1 Introduction

This thesis investigates two properties of fixed-angle polygonal chains: (1) condi-

tions for locking near-unit chains, and bounds on length ratios when the precise

conditions seem inaccessible; (2) the maximum span of a fixed-angle chain, that

is, the largest distance achievable between its endpoints.

1.1 Basic Definitions 4

A polygonal chain, or just a chain, is a non-self-intersecting sequence of line

segments (in 2D or 3D) connected end-to-end. The edges are also called links,

and the vertices are also called joints. The joint angle at a vertex vk refers to

the angle between the edges vk−1vk and vkvk+1. If there is no constraint on the

joint angles, the chain has universal joints. A fixed-angle chain is one in which

each joint angle at each vertex is some fixed angle αi. If all joint angles of the

chain are fixed to the same angle α, it is called an α-chain. These α-chains are

our main (although not sole) focus. We will occasionally refer to the turn angle

τ rather than the joint angle α, which is defined to be τ = π − α.

A chain is locked if its configuration space has two or more connected com-

ponents. This means it cannot be reconfigured between some pair of distinct

embeddings without self-intersection. A chain all of whose link lengths are equal

is an equilateral chain. Because we take this fixed length to be 1, we also use

the term unit chain. The length ratio L of a chain is the ratio of the longest

link length to the shortest link length. The standard 5-link “knitting needles”

chain (with universal joints) is locked for all L > 3. See Fig. 19.

A chain C is called a near-unit chain if, for any given ε > 0, there is a chain

C ′ of similar relevant properties (for us: whether or not it is locked) with length

ratio within 1± ε. Similarly, a chain C is called a near-α chain if, for any given

δ > 0, there is an α′-chain of similar relevant properties with α′ within α ± δ.

4These definitions are based on those in [DO06] and [DLO05]

1



1.2 Locked Chains

The first part of this thesis concentrates on the locking of near-unit α-chains.

Such chains have been used to model the geometry of protein backbones (which

have joint angles of ∼ 109◦ and links of roughly constant length) [ST00] [DLO05].

Understanding the locking of these chains is believed to be central to predicting

the native state of a protein, and furthermore, may clarify the space of possi-

ble protein foldings [DLO05]. A promising application that could stem from

understanding the conditions for locking is protein folding algorithms. The

configuration space being searched by current folding algorithms is vast, and

may consist of predominantly locked configurations. Yet the process by which

proteins fold as they emerge from the ribosome does not permit locked configura-

tions, so removing these configurations from the searchable configuration space

would increase the efficiency of folding algorithms. Hence one of our primary

motivations is the pursuit of this question:

Question. Does there exist a near-unit, near-α locked chain?

We show that there is a near-unit, near-60◦ locked 4-chain. However these

bond angles of 60◦ are far from the bond angles of proteins, which are close

to 109◦. Although we worked on trying to establish whether or not there are

near-unit, near-α chains for bond angles closer to those in proteins—especially

α = 90◦, we were unable to settle those questions. Therefore we sought the

smallest length ratio, the ratio of the longest to the shortest link lengths, that

permits locking. This led to our second main focus.

1.3 Maximum Span

The second part of the thesis concentrates on the maximum span of fixed-angle,

polygonal chains. This latter investigation is weakly connected to lockability, in

that the maximum span of a near-unit, α-chain provides a (weak) bound on the

length ratio for which a locked chain exists. This was our original motivation

for exploring the span of polygonal chains. However our line of investigation

shifted from lockability to maximum span, an interesting problem in its own

right.
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As previously mentioned, fixed-angled chains can model protein backbones.

Soss studied the span of such chains: the endpoint-to-endpoint distance. He

proved that finding the minimum and the maximum span of planar configura-

tions of the chain–the min and max flat span– are NP-hard problems [Sos01].

Protein backbones are rarely planar, so the real interest lies in 3D. Soss pro-

vided an example of a 4-chain whose max span in 3D is not achieved by a planar

configuration, establishing that 3D does not reduce to 2D. He designed an ap-

proximation algorithm, but left open the computational complexity of finding

3D spans.

Soss concentrated on the more interesting max-span problem, and we do

the same. We make progress on the 3D max-span problem by focussing on

restricted classes of chains, which are incidentally among the most relevant

under the protein model.

We show that the 3D max span of a unit α-chain is achieved in a pla-

nar configuration, what we call the trans-configuration: a flat configuration in

which the joint turns alternate between +τ and −τ . (The terminology is from

molecular biology, which distinguishes between the trans- and cis-configurations

of molecules.) We provide examples that show that, without the equal-length

assumption, or without the equal-angle assumption, the max-span configura-

tion might be nonplanar. For 90◦-chains, the max flat span is achieved by the

trans-configuration, and can be found efficiently, in contrast to the arbitrary-α

situation. Finally, we establish a structural theorem that permits the 3D max

span of 90◦-chains to be found via a dynamic programming algorithm in O(n3)

time.

Although in this thesis, I only prove the above results for 90◦-chains, we are

confident that the results hold for α-chains for abitrary α, and hope to write a

paper for publication with those results.

2 Near Unit, Near Fixed-Angle 4-Chains

In this section, we examine the conditions for locking near-unit, near-α 4-chains,

and prove the existence of a locked 4-chain for α ≤ 60. Recall that a chain is

locked if its configuration space has two or more connected components. This

3



means it cannot be reconfigured between some pair of distinct embeddings with-

out self-intersection.

Theorem 2.1 For any ε > 0 and any δ > 0, there is a near-unit, near 60◦

locked 4-chain, that is, one with all lengths within 1 ± ε and all angles within

60◦ ± δ.

Proof: Consider the following symmetric configuration (shown in Fig. 1) of

a 4-chain with vertices (a′, a, o, b, b′) and edges connecting adjacent vertices of

the 5-tuple: Let a and b be fixed at (− 1

2
, 0, 0) and ( 1

2
, 0, 0), respectively. Let o

be fixed at (0,
√

3

2
, 0). Note that ao and ob have unit length. Select coordinates

for a′ such that:

(1) aa′ lies between ob and bb′,

(2) |aa′| = 1 + ε,

(3) (a′ − a) · (o − a) = (1 + ε) cos(
π

3
− δ).

Similarly choose coordinates for b′ such that bb′ lies above (with respect to z)

aa′, has length 1 + ε and makes an angle of π

3
− δ with ob. Let cone A be the

cone swept out by aa′ while maintaining ∠oaa′ = π

3
− δ. Let cone B be defined

analogously. If aa′ lies between ob and bb′ for any position of b′ on cone B and

a′ on cone A, we say that aa′ is captured. That is, the motion of aa′ about ao

is restricted to angles between bb′ and ob. Refer to Fig. 2.

Our goal is to show aa′ is captured between ob and bb′, and that as ε goes

to zero, so does δ, which permit us to satisfy any given (ε, δ) pair.

Rotate aa′ such that it just touches from above ob and rotate bb′ such that

it just touches from above aa′, so that aa′ and bb′ are infinitesimally close to

the xy-plane; see Fig. 3. Then the equations of the lines containing aa′ and bb′

are y = (x + 1

2
) tan δ and y = (x − 1

2
) tan (π

3
+ δ), respectively. Solving for the

intersection of aa′ and bb′, we obtain

xint = − tan δ + tan (π

3
− δ)

tan δ − tan (π

3
− δ)

,

where xint is the x-coordinate of their intersection point. Hence we have

(1 + ε)2 = (
1

2
+ xint)

2 + ((xint +
1

2
) tan δ)2.

4
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Figure 1: Configuration of 4-chain. Notice that aa′ is captured between ob and

bb′.

-1

-0.5

0

0.5

1

x

00.250.50.75 1

y

-0.5

0

0.5

z

-1

-0.5

0

0.5

1

x

00.250.50.75 1

y

-0.5

0

0.5

z

A

B

a
a'

b'

b

x=0

A

B

b
o

x=0

Figure 2: aa′ is captured between ob and bb′ inside cone B. aa′ cannot reach

the midplane without passing through bb′ at some point along the trajectory.
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The above equation allows us to write δ has a function of ε. Geometrically

it is clear that, limε→0 δ(ε) = 0. See Fig. 3. Algebraically, as ε → 0 the LHS

goes to 1, the RHS must also go to one, which can only happen if the second

term ((xint + 1

2
) tan δ)2 goes to 0, since the first term goes to 1. And the second

term will only go to 0 if δ goes to 0.

π/3−δa

o

b

a’

b’

ε

δ

Figure 3: Geometric relationship between ε and δ.

Now we show that aa′ is captured between ob and bb′. We will do this by

showing that the conditions for escape cannot be satisfied without aa′ passing

through bb′. The minimum requirement for escape is that a′ lies along bb′ (that

is, aa′ just brushes by bb′). Let A be the unit vector along aa′. Then we obtain

the following equations:

A · (o − a) = cos(
π

3
− δ)

A · A = 1

(a′ − b) · (o − b) = |a′ − b| cos(π

3
− δ)

where a′ = a+(1+ ε)A. A tedious calculation shows that the only solution (for

appropriate ε and δ) is when a′ = b′ on midplane x = 0. See Fig. 2. But aa′

cannot reach the midplane without passing through bb′ at some point along the

trajectory. See again Fig. 2.

Notice that this theorem is tight in that if α > π/3 there are no locked

near-unit 4-chains. See Theorem 2.3. 2
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Corollary 2.2 For any n ≥ 4 and α < 60◦, there exists a locked near-unit and

near-α n-chain, i.e., one with all lengths within 1±ε and all angles within α±δ.

Proof: First notice that the construction of ?? works for any α < π/3, becoming

easier for smaller angles to lock the chain. Now take a locked near-unit, near-α

4-chain, and simply add as many links as you like to the endpoints to obtain an

arbitrarily long locked near-unit, near-α chain. 2

Theorem 2.3 There are no locked near-unit and near-α 4-chains for α > 60◦.

Proof: Let K be a near-unit 4-chain with α > 60◦. Label vertices in the order

(a′, a, o, b, b′) as before. Without a loss of generality, take a, o, and b to lie in

the xy-plane and o and b to have coordinates (0, 0, 0) and (1, 0, 0), respectively.

Because angle boa is greater than 60◦, the projection of a′ onto the xy-plane

must lie to the left of ob. (Note that if α were exactly 60◦, a′ could lie directly

o

a

a’

b’

b

Figure 4:

on top of b and close the equilateral triangle aob.) Similarly the projection of b′

must lie to the right of oa. If a′ is to the left of oa or b′ is to the right of ob we

are done. Hence take a′ and b′ to lie within the angle boa. See Fig. 4. One of

the edges bb′ or aa′ must be on top. If bb′ is above aa′, simply rotate bb′ onto

the right side of ob, such that the end links aa′ and bb′ lie on opposite sides of

ob and hence cannot possibly intersect. If aa′ is above bb′, rotate aa′ onto the

left side of oa away from b′. This exhausts all possibilities. 2
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These are the first results on near-unit, near-α chains, and, unfortunately,

none others are known at this time. It seems that larger α angles would lead to

larger length ratios.

3 Fixed-Angle 5-Chains

By an extension of the same argument, we can prove a bound on L for 5-chains.

As the reasoning is similar to that in the previous section, we only sketch the

proof.

Theorem 3.1 For any α < 90◦, there is a near-L, near-α locked 5-chain, with

L = 1/ cos α.

Proof: (Sketch.) We fix v1v2 and v3v4 to have unit length. Referring to Fig. 5,

v0

v1v2

v3
v4

v5

α

α

α

α

h

h

Figure 5: Taking |v0v1| and |v4v5| to be greater than 1

cosα
ensures that we can

lock the chain.

taking |v0v1| and |v4v5| to be greater than |v2v3| prevents the two end links

from escaping, and hence, locks the chain for reasons similar to those detailed

in Theorem 2.1. (In this sketch we do not repeat the reasoning.) Now we express

|v2v3| has a function of α. We have

h =
1

2
· 1

cos α

|v2v3| = 2h =
1

cos α
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Since making |v0v1| and |v4v5| greater than 1

cos α
locks the chain, this gives us

a length ratio L = 1

cos α
. 2

This result is weak: for α = 60◦, it leads to L = 2 when we know 1 is

achievable; for α = 70◦, it leads to L ≈ 2.9; and L → ∞ as α → 90◦.

4 Fixed-Angle 6-chains

Stefan Langerman and Joseph O’Rourke proved that there is a near-unit, 90◦,

locked 6-chain for any L >
√

2 [LO04]. See Figs. 6 and 7.

o
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a
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c
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x
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1

y
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Figure 6: A near-90◦ locked chain with L near
√

2 [LO04].
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Figure 7: Animation of opening motion [LO04]. The two end links have length
√

2 + ε.
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5 Planar Maximum Span Configurations

Recall that the maximum span of an open polygonal chain (v0, v1, . . . , vn) is

definied as the maximum distance between its endpoints v0 and vn achieved

over all configurations of the chain. The maximum flat span of a chain is the

largest such distance achieved in any flat configuration of the chain. A flat con-

figuration of a chain is a configuration in which all links lie in one plane without

self-intersection. The minimum span and minimum flat span are defined anal-

ogously.

Computing the minimum and maximum spans of a chain are of interest to

polymer physicists, who often need to compute the distribution of the distances

between the endpoints of a polymer [Sos01]. This is because the mean-squared

distance between the endpoints of polymers relates to their physical properties

such as light diffusion and scattering [Sos01]. We will also see, in Section 6

below, that the maximum span leads to bounds on the length ratio needed to

lock a chain. This connection motivated our study of the maximum span.

As mentioned in the Introduction, Soss proved that computing the minimum

or maximum flat span of a chain is NP-hard [Sos01]. Both proofs are by

reduction from set partition.

Hardness of computing extreme spans in 3D remains open for general fixed-

angle polygonal chains, but we’ll show that for a specific class of these chains

the problem becomes easy, requiring only a constant amount of computational

time. This subclass is the class of unit α-chains. We’ll also show, in Section 8.3,

that the max span of non-unit 90◦-chains can be computed in O(n3) time. In

order to prove our complexity results for the class of unit α-chains, we need to

introduce some terminology imported from biochemists.

The cis-configuration of a molecule refers to the configuration where opposite

groups lie on the same side with respect to a line of reference, as in Fig. 8(a),

while trans-configuration of a molecule refers to the configuration where opposite

groups lie on opposite sides with respect to a line of reference, as in Fig. 8(b)

[MW97]. Although typically these terms refer to the location of opposite groups

across a double bond (alkene), we will extend the terms analogously to describe

polygonal chains. We define the trans-configuration of a fixed-angle chain as

10



(a) Cis-configuration. (b) Trans-configuration.

Figure 8:

the planar configuration in which the turns at each joint alternate between +τi

and −τi, where τi = π − αi. We say that a configuration is maximal if the

maximum span is achieved in this configuration.

Lemma 5.1 (3-Chain Lemma) The maximum span of any fixed-angle 3-chain

is achieved in a planar configuration.

Proof: Let the chain be (v0, v1, v2, v3), and let β denote the angle between

v0v2 and v2v3. Then the maximum distance between v0 and v3, max |v0v3|, is

achieved when β is largest, because the lengths |v0v2| and |v2v3| are already

determined by the fixed edge lengths and fixed turn angles of the chain, leaving

only β to vary. Now we just need to show that β is largest when v3 is in the plane

Π determined by {v0, v1, v2}. See Fig. 9. If we look down on Π from above, we

obtain the view shown in Fig. 10. It is clear that the red line, the projection of

the cone rim on which v3 rides (cf. Fig. 9), intersects each level curve at most

once, beginning at some intermediate β and ending at the maximum β in the

plane Π. Hence max |v0v3| is achieved when v3 lies in Π, and so the maximal

configuration is planar. 2

Note that this lemma holds for arbitrary joint angles, not necessarily all equal,

as does the next lemma.

Lemma 5.2 (4-Vertex Lemma) Let (v0, v1, v2, . . . , vk−2, vk−1, vk) be a fixed-

angle k-chain. Then in any maximal configuration of the chain, vertices {v0, v1,

v2, vk}, and vertices {v0, vk−2, vk−1, vk} are coplanar.

11



v0 v1

v2
v3

Figure 9: The maximum span of a 3-chain is achieved in a flat configuration.

The blue rings are the level sets for β, where β is the angle between v0v2 and

v2v3. The angles increase from left to right along the pink line. The green ribs

specify all possible locations of edge v2v3, which rides along a cone whose axis

is v1v2. The rim of the cone (red) is the locus of possible locations of v3.

v0

v1

v2

v3

Figure 10: The red line intersects each level curve at most once, starting at

some intermediate β (toward the left), and ending at the maximum β (toward

the right) in the plane of {v0, v1, v2}.
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Proof: We prove the latter claim; the former follows by relabeling the vertices

in reverse. Let Π be the plane determined by {v0, vk−2, vk−1}. As in the proof

of the 3-chain Lemma 5.1, let β denote the angle between v0vk−1 and vk−1vk.

Any position of the three vertices {v0, vk−2, vk−1} in Π determine a “virtual”

3-chain (v0, vk−2, vk−1, vk) whose span is maximized when vk lies in Π (i.e.,

when β is largest) by Lemma 5.1. That is to say, for any such position, rotat-

ing vk into the planar trans-configuration of the corresponding 3-chain yields

the largest distance between v0 and vk for those particular positions of the ver-

tices v0, vk−2, and vk−1. Hence, in any maximal configuration, we must have

{v0, vk−2, vk−1, vk} coplanar; otherwise we could increase the distance between

v0 and vk by rotating vk into Π. 2

5.1 Unit α-Chains

In the above lemma and corollary we made no assumptions on the link lengths,

nor on the joint angles, except that both are fixed. Now we specialize to unit-

length chains, all of whose angles are equal to α, i.e., unit α-chains. Our first

lemma will serve as the base case in an induction proof to follow.

Lemma 5.3 The maximum span of a unit α-chain of 4 links, is achieved in a

planar configuration.

Proof: Let (v0, v1, v2, v3, v4) be such a chain. Let Π be the plane determined

by {v0, v1,v2}. Draw a sphere of radius |v0v2| centered at v2. Because |v2v4| =

|v0v2| = 2 sin α

2
, v4 must also lie on this sphere. See Fig. 11. By Lemma 5.2, we

know that v4 must also lie in Π. Hence v4 must lie on the “equatorial” great circle

that is the intersection of Π with the sphere. The maximum distance between v0

and v4 is just the diameter of this circle, i.e., |v0v2|+ |v2v4| = 2|v0v2|. And since

the planar trans-configuration achieves this distance, we have that the maximal

configuration is planar. See Fig. 12.

2

We will see later (Facts 7.3 and 7.1) that this lemma is false without either

the unit-length or the same-angle assumptions. However, there is no restriction

on the fixed angle α.

13



v0

v1

v2Π

v4

v3

Figure 11: A sphere of radius |v0v2| centered at v2. Since |v2v4| = |v0v2| =

2 sin α

2
, v4 must also lie on this sphere.

v0

v1

v2

v3

v4

α

α

Figure 12: The maximal configuration of a unit, fixed-angle 4-chain with joint

angles α is the trans-configuration. Notice that the span is just the diameter of

the circle centered at v2, which is equal to 2 |v0v2|.
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We now focus on unit α-chains of an arbitrary number of links. The argu-

ment is different for even and odd number of links.

Lemma 5.4 The maximum span of a unit α-chain, having an even number k

of links, is achieved by the planar trans-configuration.

Proof: We will prove this by induction. The base case n = 4 is achieved in

the planar trans-configuration by Lemma 5.3 above. Assume true for all even

n ≤ k − 2 that the maximal configuration of a unit α-chain with n links is

the planar trans-configuration, i.e., max |v0vn| is achieved in the planar trans-

configuration. Now we’ll show that this is true for n = k by using a subadditive

argument.

Clearly,

max |v0vk| ≤ max |v0vk−2| + |vk−2vk|

because the distance |vk−2vk| is uniquely determined from the joint angle α

and the unit lengths |vk−2vk−1| = 1 and |vk−1vk| = 1. (In other words, were

max |v0vk| larger than this quantity, the fixed distance |vk−2vk| would imply that

max |v0vk−2| is not in fact maximal.) By induction, max |v0vk−2| is achieved

in the planar trans-configuartion. The planar trans-configuration of the full

k-chain gives us equality in the above expression, so this must be the maximal

configuration since |v0vk| can be no larger. See Fig. 13.

vk

vk-1

vk-2
v0

v2

maxspan(k-2) + |vk-2vk| = k sin(α/2)

Figure 13: The maximal configuration of a unit, k-chain for even k (and joint

angles all equal to α) is the planar trans-configuration.

2

Lemma 5.5 The maximum span of a unit α-chain, having an odd number k of

links, is achieved in the planar trans-configuration.

Proof: Proving this result for odd k is significantly more difficult, despite our

intuition that the maximal configuration for odd k should also be the planar

15



trans-configuration. We will again use induction. Our base case is a unit 3-chain,

which we know we know has the planar trans-configuration for its maximal

configuration by Lemma 5.1. Assume it is true for all odd n ≤ k − 2 that

the maximal configuration of a unit n-chain with joint angles α is the planar

trans-configuration. We’ll now show true for n = k.

Let Π be the plane determined by vertices {vk−2, vk−1, vk}. Now we will

show that the position of v0 that maximizes |v0vk| is that of the planar trans-

configuration. By the 4-vertex Lemma 5.2, we know that v0 must also lie in Π

if we are to achieve a maximal configuration. Let maxspan |m| denote the max

span of a unit α-chain with m links. Let transspan |m| denote the span of the

trans-configuration of such a chain.

Draw a circle Ck−2 of radius maxspan |k − 2| centered at vk−2. We know

by the induction hypothesis that this radius is just the span of the trans-

configuration, that is, maxspan |k − 2| = transspan |k − 2|. Similarly draw a

circle Ck−1 of radius maxspan |k − 1| centered at vk−1. Now since k − 1 is

even, maxspan |k − 1| = transspan |k − 1| by Lemma 5.4. Finally, draw a circle

Ck of radius transspan |k| centered at vk. It is clear that these three circles

Ck−2, Ck−1, and Ck must intersect at a common point v∗, since any subchain of

a trans-chain is itself trans, and all three circles are based on transspans. This

construction is displayed in Fig. 14.

We aim to prove that the maxspan |k| is achieved when v0 = v∗. This v∗ is

the position of v0 when (v0, . . . , vk) is in the trans-configuration. Suppose for

contradiction that there is a position of v0 for which |v0vk| > |v∗vk|. Then v0

is exterior to Ck (blue circle in Fig. 14). Let L denote the line through v∗ and

vk. If L also passes through vk−2, then the last two links exactly extend the

trans-configuration of the first k − 2 links, and we are finished. So assume L

misses vk−2, and in particular, intersects vk−2vk−1.

That this intersection is without a loss of generality can be seen by the

following reasoning. Orient the chain horizontally (that is to say, the x-axis

bisects each link of the chain and so the y-coordinates of each vertex alternate

between +y and −y) as in Fig. 15 with v∗ having y-coord +y. Both vk−2 and

vk have y-coord −y, and vk lies to the right of vk−2; hence the line L through

v∗vk is above the line v∗vk−2. And the y-coordinate of vk−1 is +y, so the line

16



vk-1

vk

Ck-2 CkCk-1

v*

vk-2

L

Figure 14: Ck−2 is a circle of radius maxspan |k−2| = transspan |k−2| centered

at vk−2, Ck−1 is a circle of radius maxspan |k − 1| = transspan |k − 1| centered

at vk−1, and Ck is a circle of radius transspan |k| centered at vk. The circles

Ck−2, Ck−1, and Ck intersect at the common point v∗.
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determined by v∗vk−1 is horizontal. Hence L is sandwiched between the lines

along v∗vk−2 and v∗vk−1 and must intersect vk−2vk−1 by continuity.

v*

vk

vk-1

vk-2

x

y

L

+y

-y

Figure 15: L must intersect vk−2vk−1.

We have two cases to consider.

Case 1: v0 is above L and exterior to Ck. Because vk−2 lies below L and the

radius of Ck−2 is smaller than that of Ck, Ck−2 (green in Fig. 14) lies interior

to Ck above L. Hence, v0 is exterior to Ck−2, which contradicts our assumption

that maxspan |k − 2| = transspan |k − 2|.

Case 2: v0 is below L and exterior to Ck. Because vk−1 is positioned above L

and the radius of Ck−1 is smaller than that of Ck, Ck−1 (red in Fig. 14) lies

interior to Ck below L. Hence, v0 is exterior to Ck−1, which contradicts our

assumption that maxspan |k − 1| = transspan |k − 1|.

Hence v0 must lie interior or on the boundary of Ck. Thus we have

|v0vk| ≤ |v∗vk| = transspan |k|

so the maximum of |v0vk| is achieved by taking v0 = v∗. And since v∗ corre-

sponds to the planar trans-configuration of the k-chain, we have that the maxi-

mal configuratoin of the k-chain occuring in the trans-configuration as desired.

2

Putting Lemmas 5.4 and 5.5 together, we obtain:

Theorem 5.6 The maximum span of any unit α-chain is achieved in the planar

trans-configuration.
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Corollary 5.7 Computing the maximum span for unit α-chains takes constant

time.

Proof: Let C be a unit α-chain with k links.

Case 1: The number of links k is even. Then the max span of C is simply

k

2
|v0v2| =

k

2
2 sin

α

2
= k sin

α

2
,

where α is the joint angle of the chain. See Fig. 16. Notice the subadditivity of

the max span in the case where k is even.

vk

vk-1

vk-2
v0

v2

maxspan(k-2) + |vk-2vk| = k sin(α/2)

Figure 16: The maximal configuration of a unit, α-chain for even k is its trans-

configuration. Its span is equal to k sin α

2
.

Case 2: The number of links k is odd. Then the max span of C is the length

of the hypotenuse of the shaded triangle in Fig. 17, which is
√

(k sin
α

2
)2 + cos

α

2

2

.

(k/2)*|v0v2|

cos(α/2)

vk

v0

Figure 17: The maximal configuration of a unit, α-chain for odd k is its trans-

configuration. Its span is just the length of the hypotenuse of the pink triangle.

2

The values of the max span M(k, α) for unit α-chains with k links are listed

in Table 5.1. See Fig. 18 for a plot of the max span of unit α-chains as function
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k α M(k, α)

3 60◦ 1.73

4 90◦ 2.91

5 108◦ 4.09

6 120◦ 5.22

7 128.6◦ 6.32

8 135◦ 7.40

Table 1: The max spans of unit k-chains for various bond angles α and up to 8

links.

of k (up to k = 10) for α = 60◦, 90◦, and 135◦.

� � � � � �

�

�

�
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p
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# of links

Figure 18: This plot shows the max span of unit α chains as a function of k (up

to k = 10) for α = 60◦ (red), 90◦ (blue), 135◦ (green).

6 Connection between Locked Chains and Max-

imum Span 5

The “knitting needles” example is a 5-chain with universal joints that is locked.

See Fig. 19. It has three central unit links, and two end longer links. It is proved

in [DO06, Thm. 6.3.1] that the chain is locked if the long links have length

5This section was first drafted by Joseph O’Rourke to provide motivation for our study of

maxspans.
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strictly greater than 3. The proof argues that if the long links are connected

by a rope, then the resulting trefoil knot would be untied if the chain could be

straightened. This contradiction establishes that the chain is locked.

v0

v1

v2v3

v4

v5

Figure 19: The knitting needles is an example of a locked 5-chain with universal

joints

We establish here a (weak) connection between locked fixed-angle chains and

the maximum span, which was our original motivation for exploring the span.

Essentially it indicates the length ratio must be able to “overcome” to maximum

span. First we observe this lemma:

Lemma 6.1 Let C be a fixed-angle chain in some configuration, and J a subset

of its joints. If C is locked when the joints in J are made universal joints, then

C is locked when the joints in J are fixed-angle.

Proof: Universal joints simply allow more freedom, so if they chain is stuck

with universal joints, it is certainly stuck with fixed-angle joints. 2

Now our strategy is to form a unit, regular, fixed-angle k-chain, add two

links of length L weaving into a knitting-needles pattern, and follow the proof

cited above to yield a lower bound on L which will ensure locking.

Theorem 6.2 Let n = k + 2, and let α = π(k − 2)/k = π(n − 4)/(n − 3) be

the internal angle of a regular k-gon. Then there is a locked, near-unit, n-link

α-chain, whose length ratio is L = M + ε (for any ε > 0), where M is the

maximum span of a k = n − 2 unit-chain with fixed angle α.

We first illustrate the theorem for n = 8, k = 6. Then α = π(4/6) = 120◦, the

angle of a regular hexagon. Referring to Table 5.1, M(6, 120◦) =
√

109/2 ≈ 5.22.
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We can create an 8-chain based on a unit regular hexagon, that is locked for

L > 5.22. See Fig. 20a.

a b 

b´ a´ 

a 

b 

a´ m 

(a) 

(b) 

L L 

b´

Figure 20: Locked 8-chain based on a unit regular hexagon.

Proof: Form the knitting-needles configuration as illustrated in Figure 20a

for k = 6. We saw in Figs. 16 and 17 that the maximum span configuration of

a unit k-chain is symmetric about the median point m of the chain, which is a

vertex when k is even, and the midpoint of an edge when k is odd.

Draw a sphere S of diameter M centered on m. Connect the two endpoints

a′ and b′ by a rope outside of S. Then, as in the proof in [DO06], unlocking

the chain requires either a′ or b′ to enter S, for otherwise the rope maintains it

in a trefoil knot. If we imagine joints a and b universal joints, then it is clear

that L > M will prevent that penetration; see Figure 20b. As all the short

segments are confined inside S, and a′ and b′ excluded outside S, the chain

remains locked. 2

We believe this result is weak. For example, for n = 6 and k = 4, α = 90◦,
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the theorem predicts L >
√

17/2 ≈ 2.91, but we know from Figure 6 [LO04]

that L =
√

2 + ε suffices to lock a 90◦ near-unit chain.

The reason for the weakness, we believe, is that treating a and b as universal

joints loses a significant constraint. In fact the angle at those joints must be α

as well (unlike the sharply acute angle drawn in Figure 20b). If we insist that all

angles be α, then the relevant L is smaller, as indicated in Fig. 21. In effect, the

120
o

a b

Figure 21: All joint angles α.

two extreme unit links are frozen, and the span determined by the remaining

k − 2 links. A calculation shows that this yields exactly L =
√

2 for n = 6 and

α = 90◦, but we do not know how to formalize these observations.

7 Nonplanar Maximal Span Configurations

Naturally one might ask whether the maximal configuration remains planar for

non-unit chains with all equal joint angles, even special angles such as 90◦,

or for unit-chains with non-equal joint angles. The answer is no in all three

cases. Soss [Sos01] was the first to show that the maxspan of a 4-chain might

be achieved in a nonplanar configuration. He provides an example of a 4-chain

with acute angles whose maximal configuration is nonplanar. We provide other

examples of chains with nonplanar maximal configurations in Figures 22, 23,

and 24.

Fact 7.1 The maximal configuration of an α-chain whose edge lengths are not

all equal, is not necessarily planar.

Proof: Fig. 22 gives an example of a non-unit chain, with equal joint angles

whose maximal configuration is nonplanar. The lengths of the edges v0v1, v1v2,
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v0

v1 v2

v3

v4

v3
*

v4
*

1 1

3

2

Figure 22: An example of a nonunit, α-chain whose maximal configuration is

nonplanar. The span of the nonplanar configuration is 6.57, while the span of

the planar configuration is 6.48.

v2v3, and v3v4 are 3,1, 1, and 2, respectively. The span of the nonplanar con-

figuration is 6.57, while the span of the planar configuration is 6.48. 2

Even specializing to all angles equal to 90◦ does not guarantee planarity. See

Fig. 23.

Fact 7.2 The maximal configuration of a non-unit 90◦-chain is not necessarily

planar.

Proof: Fig. 23 gives an example of a non-unit 90◦ 4-chain, whose maximal

configuration is nonplanar. The lengths of the edges v0v1,v1v2, v2v3, and v3v4

are 2, 1, 1, and 2, respectively. The span of the nonplanar configuration is

≈ 4.47, while the span of the planar configuration is ≈ 4.24.

2

Fact 7.3 The maximal configuration of a unit, fixed-angle chain whose joint

angles are not all equal, is not necessarily planar.

Proof: Fig. 24 gives an example of a unit chain, with nonequal joint angles

whose maximal configuration is nonplanar. The length of each link is 1, and

the angles at v1, v2, and v3 are π/2,π/2, and π/4, respectively. The span of the

nonplanar configuration is ≈ 2.18, while the span of the planar configuration is

≈ 2.17. 2
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1

1
2

2

v0

v1

v2
v3

v4
*v3

*v4

Figure 23: An example of a nonunit, 90◦ 4-chain whose maximal configuration

is nonplanar. The nonplanar configuration has it’s fourth and fifth vertices

denoted as v∗
3 and v∗

4 , respectively. The span of the nonplanar configuration is

≈ 4.47, while the span of the planar configuration is ≈ 4.24.

v0

v1

v2

v3

v3

*

v4
*

v4

Figure 24: An example of a unit, fixed-angle chain with nonequal joint angles,

whose maximal configuration is nonplanar. The span of the nonplanar configu-

ration is ≈ 2.18, while the span of the planar configuration is ≈ 2.17.
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7.1 Alignment Lemmas

Figs. 24 23 illustrate a nice property of 4-chains. Notice how the spans in both

of these chains align, that is, the max span of the 4-chain is the sum of two

2-spans. Soss [Sos01] noticed this property in his example of a 4-chain with

nonplanar maxspan, where he used collinearity of v0, v2, v4 to argue that the

span was indeed maximal.

For 4-chains, the maximal configuration can be achieved in one of two ways:

1. The spans of subchains (v0, v1, v2) and (v2, v3, v4) align. Hence the 4-span

is the sum of two 2-spans.

2. The maximum span configuration is planar.

The following lemma shows that, if there is alignment of subchain maximum

spans, then that realizes the maximum span of the full chain.

Lemma 7.1 Let C = (v0, . . . , vn) be a fixed-angle n-chain. If there is a k such

that the maximum span of A = (v0, . . . , vk) can (by the allowable joint angle at

vk) align with the maximum span of B = (vk+1, . . . , vn), then it must be that

maxspan(C) = maxspan(A) + maxspan(B), achieved by that alignment.

Proof: In any configuration of C, we can identify a triangle 4(v0, vk, vn). By

the triangle inequality, |v0vn| ≤ |v0vk| + |vkvn|. and we know that |v0vk| ≤
maxspan(A) and |vkvn| ≤ maxspan(B). Therefore, |v0vn| ≤ maxspan(A) +

maxspan(B). Hence, when this upper bound is achieved by alignment, it must

be the maximum for the whole chain. 2

7.2 4-chain Flower

Let C = (v0, v1, v2, v3, v4) be a fixed-angle 4-chain, and without a loss of gen-

erality pin down the first two links. We briefly characterize the locus of points

where v4 can lie. Even though we understand the possible maximum span con-

figurations allowed for 4-chains (there are only two), computing this locus will

be useful for the max span analysis in Subsection 7.3. Consider the sphere S

of radius |v2v4| centered at v2. Then the locus of points where v4 is permit-

ted to lie is a region of the sphere bounded by two parallel planes, which are
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orthogonal to the axis v1v2. The top cutting plane comes from starting in the

trans-configuration of the 3-chain (v1, v2, v3, v4), and then rotating the 2-chain

(v2, v3, v4) about the axis v1v2. The bottom cutting plane comes from start-

ing in the cis-configuration of the 3-chain (v1, v2, v3, v4), and again rotating the

2-chain (v2, v3, v4) about the axis v1v2. See Fig. 25.

v2

v1

v0

Figure 25: 4-chain flower for a unit 135◦-chain.

7.3 90◦ 5-Chains

We now restrict our attention to 90◦ 5-chains for definiteness, although we be-

lieve the results extend to non-acute α (at the least). Indeed the remainder of the

analysis in the thesis is restricted to α = 90◦. For the remainder of this section,

we take v0, v1, v2 to lie in the xy-plane. Recall that 4-vertex Lemma 5.2 guar-

antees the coplanarity of v0, v1, v2, v5 (as well as the coplanarity of v0, v3, v4, v5)

in any maximal configuration. So in attempting to compute the max span of a

5-chain, we are only interested in configurations of the chain which place v5 in

the xy-plane.
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As with the 4-chain, consider a sphere S of radius |v3v5| centered at v3. We

know that v5 is confined to a region of this sphere bounded by two parallel planes

which are orthogonal to the axis v2v3. This is illustrated in Fig. 25 for α = 135◦

and Fig. 29 for α = 90◦. But before trying to understand the intersection of

this region with the xy-plane, it is natural to ask what is the intersection of the

whole sphere with the xy-plane. In other words, imagine a sphere centered at

v3 which itself lies on the rim of the cone whose axis is v1v2. (Note that, for

α = 90◦, the “cone” degenerates to a disk.) We are asking for the intersection

of this sphere with the xy-plane as v2v3 spins on its cone. It turns out that

this sphere always intersects the plane in a coaxal family of circles, as shown in

Fig. 26.

v2

v3

Figure 26: A sphere centered at v3 intersects the xy-plane in a coaxal family of

circles (blue) as v2v3 spins on its cone/disk (green).

Now since v5 is confined to a region of the sphere truncated by two planes,

the locus of points for v5 in the xy-plane is a subset of the coaxal family of
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circles. Without a loss of generality, take v0 to lie in the lower half of the xy-

plane depicted in Fig. 27. Because we are trying to maximize |v0v5|, we are only

interested in configurations which place v5 in the upper half plane (since we’ve

taken v0 to lie in the lower half plane). Hence we may ignore the bottom half

of the figure. The region corresponding to configurations that place v5 in the

xy-plane is a quadrilateral consisting of four arcs of circle. This quadrilateral is

the intersection of the band of the sphere shown in Fig. 29 with the xy-plane

as the sphere rotates around the v3 rim shown in Fig. 26. The top arc ab is

an arc of radius maxspan(v2, v3, v4, v5) centered at v2, which happens to be the

span the trans-configuration of this 3-chain. The bottom arc cd is an arc of the

circle of radius minspan(v2, v3, v4, v5) centered at v2, which is the cis-span of

this 3-chain. The vertex v5 is subject to the constraint that |v2v5| is at least

the min span of (v2, v3, v4, v5) and no greater than the max span of this 3-chain,

which is what the top and bottom arcs represent. When v5 lies along the left

or right side arcs (bc and ad of Fig. 27), v2v3 lies in the xy-plane so the sphere

centered at v3 is cut in half and intersects the plane in a great circle. Hence

arcs bc and ad are arcs of a great circle of this sphere, which recall has radius

|v3v5|.
Let us now examine what it means for v5 to lie on any one of these 4 arcs with

respect to the max span. Because we have taken v0 to lie in the lower half-plane,

and are trying to maximize the span of the 5-chain, we know that v5 must lie

on the boundary of this quadrilateral. In particular, v5 must lie along ab, bc, or

ad in any maximal configuration of the 5-chain, for if it were strictly interior to

the quadrilateral, a greater span could be achieved by moving to the boundary

of the quadrilateral. If v5 lies interior to the top arc ab, then we must have v0v5

orthogonal to ab for maximality–non-orthogonality would permit lengthening

the span by moving toward orthogonality. Hence, v0v5 must pass through v2,

the center of this circle (this is the case illustrated in the figure). This alignment

yields

|v0v5| = |v0v2| + |v2v5| = maxspan(v0, v1, v2) + maxspan(v2, v3, v4, v5).

In other words, the max span is achieved by alignment of a 2-span plus a 3-span.

This case is illustrated in Fig. 28.
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Figure 27: The region corresponding to configurations which place v5 in the

plane is a quadrilateral (blue region). The sides of the quadrilateral corre-

spond to 4-arcs of circle. The top arc ab (pink) is an arc of the circle of

radius maxspan(v2, v3, v4, v5) centered at v2, which corresponds to the trans-

configuration of this 3-chain. The bottom arc cd (also pink) is an arc of the

circle of radius minspan(v2, v3, v4, v5) centered at v2, which corresponds to the

cis-configuration of this 3-chain. The side arcs ad and bc are arcs of a great

circle of the sphere with radius |v3v5|. In this example, the link lengths of the

3-chain (v2, v3, v4, v5) are (1, 1, 1

4
).
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Because bc and ad are symmetric, we’ll only consider what happens if v5

lies on one of these arcs, say ad. Suppose v5 lies interior to ad. Then v0v5 is

orthogonal to ad. Recall that ad corresponds to v3 lying in the xy-plane, and

so orthogonality implies that v0v5 pass through v3. Also, recall that we have

taken v0, v1, v2 to lie in the xy-plane, so the additional coplanarity of v3 implies

that the 3-chain (v0, v1, v2, v3) is in its trans-configuration and hence achieves

its max span. So we have,

|v0v5| = |v0v3| + |v3v5| = maxspan(v0, v1, v2, v3) + maxspan(v3, v4, v5).

The only case left to consider is when v5 lies at a corner (either b or a).

Suppose v5 lies at the corner a = ba ∩ ad, and that v0v5 is orthogonal to

neither ba nor ad (otherwise one of the above two cases would apply). Now

since, v5 lies along ad, we have v3 lying in the xy-plane. Combining this fact

with Lemma 5.2, we have coplanarity of v0, v1, v2, v3, v5, as well as coplanarity

of v0, v3, v4, v5. Now by our assumption that v0v5 is not orthogonal to ba or

ad, we do not have collinearity of v0, v2, v5 or v0, v3, v5. Hence, we conclude

that v0, v3, v5 uniquely determine a plane, moreover since v0, v1, v2 lie in the

xy-plane, all vertices must lie in the xy-plane (i.e., the maximal configuration

of the 5-chain is planar.)
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Figure 28: The maximum span (red) of a 90◦ 5-chain with link lengths

(2, 1

4
, 1, 1, 1

4
). The last three links correspond to Fig. 27
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We conclude this analysis with a summarizing theorem:

Theorem 7.2 The maximum span of a 90◦ 5-chain is achieved in one of three

configurations:

1. Alignment of the maximum spans of the 2-chain (v0, v1, v2) and the 3-chain

(v2, v3, v4, v5), both in trans-configuration.

2. Alignment of the maximum spans of the 3-chain (v0, v1, v2, v3) and the

2-chain (v3, v4, v5), both in trans-configuration.

3. The trans-configuration of the full 5-chain.
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Figure 29: This figure depicts a 2-chain torus/flower (left) generated by link

lengths (1, 1), and a 3-chain torus/flower (right) generated by lengths (1, 1, 1

4
),

both for α = 90◦. The right figure corresponds to the quadrilaterals in Fig. 27,

although oriented differently: v5 lies on the red circles, which intersect the xz-

plane in two quadrilaterals.

8 The Maximum Span of n-link 90◦-Chains

8.1 Gradient Ascent Examples

We now generalize Theorem 7.2. The generalization was suggested by a program

written by Joseph O’Rourke which found the maximum span configurations of
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n-link chains empirically by gradient ascent. We will not discuss this program

further, but some of its outputs are shown in Figs. 30-35. It was these empirical

results that suggested the main structural theorem we prove in Theorem 8.4

below.
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Figure 30: Two views of a 9-chain: 2 + 3 + 4 subchains.
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Figure 32: Two views of a 10-chain: 4 + 6 subchains.

8.2 Structure Theorem 6

We continue to specialize all analysis to α = 90◦.

6From this section onward, the results reported were obtained in direct collaboration with

Joseph O’Rourke.
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(Fig. 33) is indeed its max span.
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Figure 35: Two views of a 12-chain: 2 + 3 + 3 + 4 subchains.

Lemma 8.1 Let C = (v0, v1, . . . , vn) be a chain that consists of several planar

sections, and such that vk is the first vertex at the joint between two planar

sections where the span of C1 = (v0, v1, . . . , vk) is not aligned with the span of

C2 = (vk, vk+1, . . . , vn). Then C cannot be in maximal span configuration.

Proof: Suppose for contradiction that C is in its maximal span configuration.

Let Π0 be the plane determined by {v0, v1, v2}, Π1 be the plane determined by

{v0, vk−1, vk}, and Π2 be the plane determined by {vk, vk+1, vn}. First note

that, because the sections up to vk have their spans aligned, those spans all lie

along the line L containing v0vk, and each plane for each section includes L.

Now, by assumption, vk+1 does not lie in Π1; therefore Π1 6= Π2. We will now

show that either vn lies along L, or Π1 = Π2, contradicting the assumptions of

the lemma.

We replace C1 with a 3-chain C ′
1 = (v0, u, vk−1, vk) lying in Π1; and we re-

place C2 with a 3-chain C ′
2 = (vk, vk+1, w, vn) lying in Π2. The two replacements

are performed by the same method, and we only explain the latter, illusrated in

Fig. 36. Extend a ray from vk+1, perpendicular to vkvk+1. Let w be the projec-

tion of vn onto this ray. Then (vk, vk+1, w, vn) is a 90◦ 3-chain. Let C ′ = C ′
1∪C ′

2.

Notice that we have not changed any spans; in particular, span(C ′) = span(C).

Because C is in a maxspan configuration by hypothesis, we know (by the

4-Vertex Lemma 5.2) that vn must lie in Π0. And, again applying the 4-Vertex
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w
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Π1

Figure 36: We replace C1 with a 3-chain C ′
1 = (v0, u, vk−1, vk) lying in Π1

by introducing u, and C2 with a 3-chain C ′
2 = (vk, vk+1, w, vn) lying in Π2 by

introducing w. Two possible positions for vn are shown.

Lemma, vn must lie in Π1, the plane determined by {v0, u, vk−1}. This leaves

us with two cases to consider: either Π0 6= Π1 or Π0 = Π1. We’ll show that

both cases lead us to a contradiction.

Case 1: Suppose Π0 6= Π1. Then vn lies along L = Π0 ∩ Π1, contradicting the

assumption that v0, vk, vn are not aligned (else we’d have span(C1) aligned with

span(C2)).

Case 2: Suppose Π0 = Π1. We now reason in a manner similar to that used

for the suffix 3-chain of a 5-chain in Section 7.3 and Theorem 7.2. We have

a suffix 3-chain C ′
2 at vk, so vn lies in or on the boundary of one of the two

quadrilaterals Q or Q′ identified in Fig. 27. By symmetry we may consider

locations for v0 in a quadrant of Π1, with vn ∈ Q. Refer to Fig. 37. Because C ′

is in its maximum span configuration, vn must lie along arc ab or arc ad (taking

v0 to be in the shaded quadrant of Fig. 37). Now we claim that the only viable

location for vn is at the corner a. For suppose vn were at some point p interior

to arc ab. Arc ab is a smooth, differentiable curve (it is an arc of a circle), so

v0vn must be orthogonal to ab because its distance is a maximum at p. Hence

v0vn passes through the center of the circle containing arc ab, namely vk. But

this contradicts our assumption that v0, vk, vn are not aligned. Similarly if vn

lies interior to arc ad, we get a contradiction. For completeness, we will go

through this reasoning as well. The locus of points interior to arc ad correspond

to configurations of C ′
2 having vk+1 lying in Π1. And by our assumption the
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Figure 37: Q is the set of points where vn might lie on Π1. L1, L2, and L3 are

three possible lines of alignment. C ′ can be lengthened by placing vn on ab (L1)

or at a (L2 and L3).
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link vkvk+1 does not lie in Π1.

Hence vn must lie at the corner a of arcs ab and ad. But this point cor-

responds to the situation when the entire chain C ′
2 is lies in Π1 in its trans-

configuration, which again contradicts our assumption that Π1 6= Π2. Thus we

conclude that the spans of any two distinct planar sections must align. In par-

ticular, if C is a chain that consists of several planar sections containing chains

Ci, then the intersection of these planes is the line v0vn which passes through

the start point and endpoint of every Ci.

2

Corollary 8.2 In a maximal span configuration, the spans of each planar sec-

tion must align, along the line segment v0vn.

Proof: Suppose there is some vk at the joint between two planar sections of a

chain C that does not lie on v0vn; select the first such vk. Then, if we partition

C into C1 and C2 as above, then the spans of C1 and C2 do not align. Therefore

the lemma shows that C could not be in maxspan configuration. 2

Lemma 8.3 If a chain is in maximal span configuration, each planar section

must be in trans-configuration.

Proof: Let C = (v0, v1, . . . , vn) be a chain in its maximal span configuration.

Suppose for contradiction that one of its planar sections contains a chain in its

cis-configuration. Without a loss of generality, we may take such a chain to be a

3-chain Ci=(vk, vk+1, vk+2, vk+3), since we can always replace a chain consisting

of several links with a 3-chain without changing the joint angles at its two

endpoints or its span. See Fig. 38. Let L denote the line of alignment through

v0vn. We’ll show that rotating (vk, vk+1, vk+2, vk+3) into its trans-configuration

yields a new line of alignment L′ and that the span of C is increased by this

reconfiguration, contrary to our assumption that C was in its maximal span

configuration.

Let Ci+1 = (vk+3, . . . , vm) be the chain lying in the planar section after

Ci. By Lemma 8.1, the endpoints of Ci+1 lie along L. We temporarily replace

(vk+2, vk+3, . . . , vm) with a 90◦ 2-chain (vk+2, u, vm) by adding a vertex u along

the line through vk+2vk+3 whose position is chosen such that vk+2u is orthogonal

to vm. Refer to Fig. 38. Notice that we have not changed the distance between
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vk and vm. Let θ denote the angle between vkvm and vkvk+1. We have two

vk

vk+1 vk+2

vk+3

vm

vo

vn

θ

u
L

Figure 38: We temporarily replace (vk+2, vk+3, . . . , vm) with a 90◦ 2-chain

(vk+2, u, vm) by adding a vertex u along the line through vk+2vk+3 whose posi-

tion is chosen such that vk+2u is orthogonal to vm. This construction preserves

the distance between vk and vm, as well as angles.

cases to consider.

Case 1: Suppose θ < π

2
. Rotate the cis 3-chain (vk, vk+1, vk+2, u) into the trans-

configuration (vk, vk+1, vk+2, u
′), as shown in Fig. 40. Then the projection of

v′
m

onto L lies to the right of vm, since θ < π

2
. So v0v

′
m

is the hypotenuse of

the right triangle with sides v0vm, vmv′
m

. Hence |v0v
′
m
| > |v0vm|. We rigidly

join the rest of the chain (vm+1, . . . , vn) to v′
m

such that v′
n

lies along v0v
′
m

and

|v′
m

v′
n
| = |vmvn|. Let L′ denote the new line of alignment through v0v

′
m

v′
n
.

We have

|v0v
′
n
| = |v0v

′
m
| + |v′

m
v′

n
| = |v0v

′
m
| + |vmvn|

> |v0vm| + |vmvn| = |v0vn|,

contradicting our assumption that C was in its maximum span configuration.

Case 2: If θ > π

2
, then flip (vk+1, vk+2, . . . , vn) to the other side of L, as il-

lustrated in Fig. 39, so that you are now in Case 1. And now the previous

argument holds. 2

Theorem 8.4 (Structure Theorem) The maximum span configuration for a

90◦-chain is either:

1. planar: trans-configuration
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Figure 39: It is always possible to flip vk+1 to return to the same plane, while

maintaining orthogonality with vk−1vk.
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Figure 40: Rotating the cis 3-chain (vk, vk+1, vk+2, u) into the trans-

configuration (vk, vk+1, vk+2, u
′) increases the span |v0vn| of the entire chain.
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2. nonplanar: there is a partition of the chain into planar sections, each of

which:

(a) is in maxspan trans-configuration; and

(b) whose spans align

This theorem captures the experimental results displayed in Figs. 30-35.

8.3 Dynamic Programming Algorithm
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Figure 41: A 7-chain used to illustrate the dynamic programming algorithm.

In general, hardness of computing the maximum span in 3D is not known.

However, we show that for 90◦-chains it can be computed in O(n3) time via a

dynamic programming algorithm.
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Subchain Details

2 − chains (5, 10) (1, 9) (9, 9) (8, 4)

span 11.2 9.1 12.7 8.9

3 − chains (5, 10, 1) (1, 9, 9) (9, 8, 4)

span 11.6 13.5 15.3

4 − chains (5, 10, 1, 9) (9, 9, 8, 4)

span 19.9 21.4

5 − chains (5, 10, 1) + (9, 9) (1, 9, 9, 8, 4)

span 11.6 + 12.7 = 24.4 22.0

7 − chain (5, 10, 1) + (9, 9, 8, 4)

span 11.6 + 21.4 = 33.1

Table 2: Dynamic programming table for chain with lengths (5, 10, 1, 9, 9, 8, 4).

Spans are reported to one decimal place.

Dynamic programming is a way of solving a problem by breaking it into

subproblems, solving each subproblem which may have overlapping subsub-

problems, and then combining these solutions [CLR90]. This strategy is typi-

cally applied to optimization problems [CLR90], such as finding the max span.

Dynamic programming algorithms can greatly reduce the computational time

required for a problem. By solving each subsubproblem exactly once, from

smallest to largest, and storing the answer in a table, whenever a subsubprob-

lem is subsequently encountered its solution does not need to be recomputed

(just look up the answer in the table–this takes constant time) [CLR90].

The Structure Theorem 8.4 permits the 3D max span of 90◦-chains to be

found via a dynamic programming algorithm in polynomial time. We illustrate

the steps of the algorithm for a 90◦ 7-chain example.

Steps of Algorithm on Example. First notice that a maximum span con-

figuration will not have the first or last link constituting its own planar section.

This is because if the first or last link constituted its own planar sectoin, then

that link would have to lie along the line of alignment, and hence it would
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lie in the adjacent planar section (so considering it would be computationally

redundant).

The following show the steps of the algorithm running on the example shown

in Fig. 41. Refer to Table 8.3 throughout.

2. Compute the span of all 2-chains as the hypotenuse of the right triangle

whose sides are the two links. The chains (10, 1) and (9, 8) are not included

because they leave 1-chains at either end, so there are four relevant 2-

chains.

3. Compute the span of all 3-chains; there are three. We know from Lemma 5.1

that the max span is achieved by the planar trans-configuration. The

chains (10, 1, 9) and (9, 9, 8) are not included.

4. Compute the span of all 4-chains; there are two. The spans of (5, 10) and

(1, 9) cannot align, so the max span of (5, 10, 1, 9) is achieved by the planar

trans-configuration. Similarly, the spans of (9, 9) and (8, 4) cannot align.

5. Compute the span of all 5-chains; there are two. For (5, 10, 1, 9, 9), the

subchains (5, 10) and (1, 9, 9) cannot align, but the subchains (5, 10, 1)

and (9, 9) can align, and by Lemma 7.1, that realizes the max span as the

sum of the spans of these two chains. For (1, 9, 9, 8, 4), neither (1, 9) and

(9, 8, 4) can align, nor can (1, 9, 9) and (8, 4), so the max span is achieved

by the planar trans-configuration of the 5-chain.

6. Both 6-chains leave one link, and so need not be explored.

7. Finally, the complete 7-chain has partitions into 2 + 5, 3 + 4, 4 + 3, and

5+2 links. For example, the partition (5, 10, 1, 9)+(9, 8, 4) would achieve

a length of 19.9 + 15.3 = 35.2, but in fact these cannot align. The only

alignment is achieved by the partition (5, 10, 1) + (9, 9, 8, 4), leading to a

max span of 11.6 + 21.4 = 33.1.

We analyze the steps above for an arbitrary 90◦ n-chain. By Lemma 8.3,

each planar section is in its trans-configuration, so computing the max span of

each subchain a constant time computation. Similarly, checking for the pos-

sibility of subchain C1 = (v0, v1, . . . , vk−1, vk) aligning with subchain C2 =
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Figure 42: Spin the plane of C2 about the line through {v0,vk,vn}, and deter-

mine, if for any θ, vk−1vk is orthogonal to vkvk+1.

(vk, vk+1, . . . , vn) takes constant time, by the following argument. Simply at-

tach C2 to C1 such that the line of alignment v0vk is collinear with the line of

alignment vkvn. Then spin the plane of C2 about the line through {v0,vk,vn},
and see if at any point vk−1vk is orthogonal to vkvk+1. See Fig. 42. If we

parametrize the spin by θ, then this is equivalent to determining whether there

exists a θ such that

(vk−1 − vk) · (vk+1(θ) − vk) = 0,

a constant time computation.

There are O(n) steps in each row and the table size is at most n2, so the

max span can be computed in O(n3) time.

9 Conclusion

Fixed-angle polygonal chains are of interest to the biochemical and physical

community, because these chains can model the geometry of protein backbones

[ST00] [DLO05], as well as polymers [Sos01]. This thesis investigated two prop-

erties of fixed-angle polygonal chains: (1) conditions for locking near-unit chains,

and bounds on length ratios when the precise conditions seem inaccessible; (2)

the maximum span of a chain, that is, the largest distance achievable between

its endpoints. Even though in this thesis, we only prove the above results for

90◦-chains, we believe that the results hold for α-chains for abitrary α. It is

likely that the polynomial time bound only holds for α-chains, and that, in its
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full generality, 3D max span is NP-hard. This is because the planar sections

are no longer guaranteed to be in the trans-configuration, so one must resort

to computing the max flat spans of the planar subchains (which can become

arbitrarly large if alignment of subsubchains is not possible), which Soss proved

was NP-hard [Sos01].

Finally, it was suggested to us by Professor Ruth Haas that our results may

extend to arbitrary dimensions. This remains to be proved.
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