
From WiFi to WiMAX: Techniques for High-Level IP Reuse across Different
OFDM Protocols

Man Cheuk Ng, Muralidaran Vijayaraghavan, Nirav Dave, Arvind
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
Email: {mcn02,vmurali,ndave,arvind}@csail.mit.edu

Gopal Raghavan, Jamey Hicks
Nokia Research Center Cambridge

Nokia Corporation
Email: {gopal.raghavan,jamey.hicks}@nokia.com

Abstract

Orthogonal Frequency-Division Multiplexing (OFDM)
has become the preferred modulation scheme for both
broadband and high bitrate digital wireless protocols be-
cause of its spectral efficiency and robustness against mul-
tipath interference. Although the components and overall
structure of different OFDM protocols are functionally sim-
ilar, the characteristics of the environment for which a wire-
less protocol is designed often result in different instanti-
ations of various components. In this paper, we describe
how we can instantiate baseband processoring of two dif-
ferent wireless protocols, namely 802.11a and 802.16 in
Bluespec from a highly parameterized code for a generic
OFDM protocol. Our approach results in highly reusable
IP blocks that can dramatically reduce the time-to-market
of new OFDM protocols. One advantage of Bluespec over
SystemC is that our code is synthesizable into high qual-
ity hardware, which we demonstrate via synthesis results.
Using a Viterbi decoder we also demonstrate how param-
eterization can be used to study area-performance trade-
off in the implementation of a module. Furthermore, pa-
rameterized modules and modular composition can facil-
itate implementation-grounded algorithmic exploration in
the design of new protocols.

1 Introduction
In this paper, we demonstrate that it is possible to gener-

ate efficient hardware for two different wireless protocols,
namely 802.11a [8] and 802.16 [9], from the same code base
written in Bluespec SystemVerilog (BSV). The following
two features are essential for such designs: 1) a polymor-
phic type systems that permits highly parameterized codes
and 2) the ability to compose independently created mod-
ules with predictable functionality and performance. The
latter capability permits the refinement of individual mod-

ules to meet the performance objectives and exploration of
area-performance tradeoffs without exacerbating the verifi-
cation problem.

Although Verilog and VHDL support parameterized de-
signs, the standard practice is to do such parameterization
using perl scripts that generate specific RTL versions. It
may be possible to do highly parameterized designs in Sys-
temC, though we have not seen it reported in the literature.
SystemC, unlike Bluespec, only provides limited capabil-
ity to synthesize parameterized designs into efficient hard-
ware. Parameterization in Bluespec, on the other hand, can
be used freely because it does not cause any extra logic
gates to be generated; the compiler removes all the static
parameterization during the “static elaboration” phase.

This work has grown out of studying the area-power
tradeoffs in the design of 802.11a transmitter, which was
reported earlier [4]. After we implemented the 802.11a re-
ceiver, it was suggested by Nokia that we should focus on
the design problem of multi-radios. Modern cell phones
usually contain multiple radios, typically three, but some-
times as many as seven, all of which are implemented as
special hardware blocks. It would be beneficial to share not
only the design cost of such radios but even the actual hard-
ware blocks among those radios that do not operate concur-
rently. Based on these discussions we focused on “OFDM
based” protocols and built a set of highly reusable IP blocks,
which can be instantiated with different parameters for dif-
ferent protocols. Though the development of such modules
requires domain expertise, we think the use of such modules
in designing and implementing new protocols requires con-
siderably less knowledge. We hope this paper demonstrates
how the cost of hardware design, i.e., ASIC blocks, and the
time-to-market can be reduced dramatically by reusable pa-
rameterized IP.

This paper requires no prior knowledge of wireless pro-
tocols – we explain the basic concepts as needed in the
next two sections. The level of parameterization in the de-



Figure 1. Digital wireless protocol evolution
sign presented involves some sophisticated programming.
However, only a rudimentary knowledge of Bluespec is as-
sumed, which an uninitiated reader can get by reading, for
example, the 802.11a paper [4]. We will explain advanced
programming concepts as needed.
Organization: We begin by describing the importance of
OFDM-based protocols in the digital wireless landscape
(Section 2), followed by description of a generic OFDM
baseband transceiver (Section 3). We then explain how
the various blocks of 802.11a and 802.16 protocols are in-
stances of these generic blocks. Next, we show the overall
structure of the OFDM transceiver in Bluespec and discuss
the issues related to parameterization (Section 4). We fur-
ther discuss the parameterization of modules, using the ex-
ample of Viterbi decoder, for architectural exploration to
meet area, power and performance goals (Section 5). Fi-
nally, we present synthesis results (Section 6), related work
(Section 7) and our conclusions (Section 8).

2 Digital Wireless Landscape
Since the early 1990’s, there has been a rapid evolution

in digital wireless protocols to enable higher data rates, im-
prove bandwidth efficiency and to offer services to more
users. There is a dramatic shift from purely voice based ser-
vices to high bitrate data services to support web browsing,
VoIP and high definition video. Another interesting devel-
opment is the convergence of services offered via broad-
band wireless access like WiMAX and cellular networks
like 3.9G. The underlying technology that enables this high
data rate in non-line-of-sight environment is a modulation
scheme known as Orthogonal Frequency Division Multi-
plexing (OFDM) [2]. OFDM has been around for several
decades, but now its robustness to multipath interference
has been proven in practice by widespread deployment of
802.11a/g and ADSL.

Some of the challenges in wireless communication are
interference from other RF sources, self-interference due
to multipath transmissions, and frequency dependent sig-
nal loss (fading). In the narrowband environment, simple
modulation schemes, such as frequency modulation (FM),
amplitude modulation (AM), and phase modulation (PM),
protect against interferences and signal loss. However, such
simple schemes do not offer high data transmission capac-
ity. With higher channel bandwidth and greater rates of

mobility, inter and intra-symbol interference for a single
carrier becomes significant. Traditional FDM (Frequency
Domain Modulation) techniques have larger guard bands
between subcarriers and waste bandwidth. OFDM offers
an elegant solution by spreading data across many closely-
packed and overlapping narrowband subcarriers. In OFDM,
the spacing between sub-carriers is carefully designed such
that they are orthogonal to each other, meaning the product
of two carriers with different frequencies is zero if sampled
at frequency determined by sub-carrier spacing. This re-
sults in zero cross-talk between sub-carriers. In short, to
get high data rates we need higher bandwidth. To avoid
self-symbol interference and inter symbol interference the
bandwidth is divided into multiple narrowbands that carry
lower data rates and the sub-carriers are placed orthogonal
to each other. As a result, OFDM provides high spectral
efficiency and is robust against multipath interferences.

3 Generic OFDM Baseband Transceiver

The structure of a generic OFDM baseband transceiver is
shown in Figure 2. Our focus is on a parameterized imple-
mentation of the baseband processing blocks so that we can
instantiate different implementations of the blocks to sup-
port multiple radio protocols. We will not discuss the im-
plementations of MAC (Media Access Controller) and ana-
log to digital (A/D) or digital to analog (D/A) converters be-
cause they entail entirely different sets of issues. In wireless
communications, the fundamental unit of communication is
a symbol, which encodes one or more data bits. An OFDM
symbol in turn is defined as a collection of digital samples,
which are usually represented as complex numbers. The
size of the symbol is determined by the number of subcarri-
ers used in the system. In general, a fraction of subcarriers,
known as data subcarriers, are used for data transmission
and the remaining subcarriers are used for pilots and guard
bands. Pilots provide information which is used by the re-
ceiver to better estimate the frequency fading in transmitted
symbol thereby increasing the chance of a successful data
reception. Guard bands are normally added to both sides
of the frequency spectrum to avoid interference with other
carriers.

The data received from the medium access control layer
flows through various processing steps, converting it to an
OFDM symbol which is transmitted over the air. Similarly,
on the receiver side, OFDM symbols are formed from the
signals received through the A/D converter and processed
through various stages. Fnially, the resulting received data
is sent to the MAC. In the rest of this section, we briefly
describe each of the blocks in these transceiver pipelines,
and discuss parameters for each block that are needed to de-
scribe two specific OFDM-based protocols, namely 802.11a
and 802.16. In each case, where it is appropriate, we also
point out the performance required to meet the standard.
The table in Figure 3 summarizes the parameters used by
various blocks in both protocols. It should be read in con-
junction with the following description of the transceiver
pipelines.



MAC

MAC

Scrambler
FEC

Encoder
Interleaver Mapper

Pilot/Guard
Insertion

IFFT
CP

Insertion

De-
Scrambler

FEC
Decoder

De-
Interleaver

De-
Mapper

Channel
Estimater

FFT Synchronizer

TX
Controller

RX
Controller

standard specific

parametrizable

S/P

D/A

A/D

Figure 2. Generic OFDM baseband transceiver blocks

3.1 Transmitter Pipeline

TX Controller: Receives information from the MAC and
generates the control and data for all the subsequent blocks.
Scrambler: Randomizes the data bit stream to remove re-
peated patterns, like long sequences of zeros and ones. This
enables better results for Forward Error Correction (FEC).
A scrambler is usually implemented with linear feedback
shift registers (LFSR). An LFSR has two algorithmic set-
tings: the size of the shift register and the linear function,
e.g., x7 + x4 + 1, for generating the feedback.
FEC Encoder: Encodes data and adds redundancy to the
bit stream to enable the receiver to detect and correct errors.

Both protocols use convolutional coding, however,
802.16 also requires Reed-Solomon encoding before the
data is passed to the convolutional encoder.

Both protocols also use a technique known as punctur-
ing to reduce the transmitted number of bits. For higher
transmission rates in low-noise channels, the encoded data
is punctured by deleting bits before transmission and re-
placing them with fixed values on reception. This reduces
the number of bits to be carried over the channel and de-
pends on the decoder to correctly reconstruct the data.
Interleaver: Rearranges blocks of data bits by mapping
adjacent coded bits into non-adjacent subcarriers to protect
against burst errors. The block size is the same as the num-
ber of bits that are coded in a single OFDM symbol. The
symbol size itself is determined by the number of data sub-
carriers and the modulation scheme employed.
Mapper: Passes interleaved data through a serial to paral-
lel converter, mapping groups of bits to separate carriers,
and encoding each bit group by frequency, amplitude, and
phase. The output of the Mapper contains only the values
of data subcarriers for an OFDM symbol.
Pilot/Guard Insertion: Adds the values for pilot and guard
subcarriers. The subcarrier indices are protocol-specific.
Both protocols use scramblers to generate values for the pi-
lots and use null values for the guard subcarriers.
IFFT: Converts symbols from the frequency domain to the
time domain. The size of the IFFT is determined by the
number of subcarriers used by the given OFDM protocol.
CP Insertion: Copies some samples from the end of the
symbol to the front to add some redundancy to the symbols.

These duplicated samples are known as a cyclic prefix (CP).
The purpose of the cyclic prefix is to avoid Inter-Symbol
Interference (ISI) caused by multipath propagation.

This block also adds a preamble before the first trans-
mitted symbol. A preamble is a collection of predefined
complex numbers known by the receiver so that it can de-
tect the start of new transmission. The preambles for the
two protocols have similar structure.

After CP insertion, the symbol are converted into analog
signals by D/A converter and transmitted through the air.

3.2 Receiver Pipeline

The functionality of the blocks in the receiver is roughly
the reverse of the functionality of their corresponding
blocks in the transmitter. However, since the receiver has to
recover data from a degraded signal, some receiver blocks
have to do more processing and consequently require more
implementation effort. When the antenna detects the signal,
it amplifies the signal and passes it to the A/D converter to
generate baseband digital samples.
Synchronizer: Detects the starting position of an incoming
packet based on preambles. It is extremely important for
the synchronizer to correctly estimate the OFDM symbol
boundaries so that subsequent blocks process appropriate
collection of samples together. In many implementations,
the synchronizer also detects and corrects carrier frequency
offset that is caused by the difference in the oscillator fre-
quencies at transmitter and receiver or due to the Doppler
Effect. The synchronizer uses the preamble to perform tim-
ing and frequency synchronization. There are many differ-
ent implementations of the synchronizer, most of which in-
volve auto-correlation and cross-correlation. For the syn-
chronizer to support different protocols, it needs to know
the preamble structure, the symbol size and the CP size of
the protocol.
Serial to Parallel (S/P): Removes the cyclic prefix (CP)
and then aggregates samples into symbols before passing
them to the FFT. It also propagates the control information
from the RX Controller to subsequent blocks.
FFT: Converts OFDM symbols from the time domain back
into the frequency domain.
Channel Estimator: Uses the information from pilots to
estimate and compensate for frequency-dependent signal



802.11a 802.16
Scrambler

shift register size 7 bits 15 bits
linear function x7 + x4 + 1 x15 + x14 + 1

throughput 54Mbps 26.2Mbps
FEC Encoder (Reed-Solomon)

encoder profile (N,K,T) NA (255,239,8)
supported profiles (N,K,T) NA (12,12,0), (32,24,4), (40,36,2), (64,48,8),

(80,72,4), (108,96,6), (120,108,6)
throughput NA 29.1Mbps

FEC Encoder (Conv)
constraint length 7 7

supported rates 1/2, 2/3, 3/4 1/2, 2/3, 3/4, 5/6
generator polynomials 133OCT & 171OCT 171OCT & 133OCT

throughput 72Mbps 35Mbps
Interleaver

block size (bits) (blockSize) 48, 96, 192, 288 192, 384, 768, 1152
throughput 1 block per 4µs 1 block per 33µs

Mapper
modulations BPSK, QPSK, 16-QAM, 64-QAM BPSK, QPSK, 16-QAM, 64-QAM

throughput 48 samples per 4µs 192 samples per 33µs
Pilot/Guard Insertion

pilot indices -21, -7, 7, 21 -88, -63, -38, -13, 13, 38, 63, 88
guard indices -32 to -27, 0, 27 to 31 -128 to -101, 0, 101 to 127

throughput 64 samples per 4µs 256 samples per 33µs
IFFT

size 64 256
throughput 64 samples per 4µs 256 samples per 33µs

CP. Insertion
CP size 16 (32 for preamble) 8, 16, 32, 64

short preamble 8 16-sample symbols 4 64-sample symbols
long preamble 2 64-sample symbols 2 128-sample symbols

throughput 80 samples per 4µs 264 samples per 33µs
Synchronizer

preamble settings same as CP. Insertion same as CP. Insertion
throughput 20M samples per sec 8M samples per sec

S/P
symbol / CP sizes 64 / 16 256 / 8, 16, 32, 64

throughput 64 samples per 4µs 256 samples per 33µs
FFT

size 64 256
throughput 64 samples per 4µs 256 samples per 33µs

Channel Estimator
preamble settings same as CP. Insertion same as CP. Insertion

pilot/guard settings same as Pilot/Guard Insertion same as Pilot/Guard Insertion
throughput 48 samples per 4µs 192 samples per 33µs

Demapper
demodulations BPSK, QPSK, 16-QAM, 64-QAM BPSK, QPSK, 16-QAM, 64-QAM

throughput 288 decisions per 4µs 1152 decisions per 33µs
Deinterleaver

block size (decisions) 48, 96, 192, 288 192, 384, 768, 1152
throughput 1 block per 4µs 1 block per 33µs

FEC Decoder (Viterbi)
conv. code settings same as Conv. Encoder same as Conv. Encoder

throughput 54Mbps 29.1Mbps
FEC Decoder (Reed-Solomon)

Reed-Solomon settings NA same as Reed-Solomon Encoder
throughput NA 26.2Mbps

Descrambler
LFSR settings same as Scrambler same as Scrambler

throughput 54Mbps 26.2Mbps

Figure 3. Algorithmic settings of 802.11a and 802.16 transceivers



degradation. The channel estimator estimates and corrects
the errors caused by multipath interference. Similar to the
synchronizer, there are many different algorithms for chan-
nel estimation. Many of them use either the preambles or
the pilots to estimate the effect of the interference on each
data subcarrier. We parameterize the channel estimator by
protocol-specific preamble and pilot values.
Demapper: Demodulates data and converts samples to en-
coded bits, which are used by the FEC decoder. The num-
ber of encoded bits generated per sample is determined by
the specific modulation scheme. The parameters of this
block are modulation schemes supported and the functions
for converting samples to decisions.
Deinterleaver: Reverses the interleaving performed by
transmitter and restores the original arrangement of bits.
FEC Decoder: Uses the redundant information that was in-
troduced at the transmitter to detect and correct any errors
that may have occurred during transmission. Both 802.11a
and 802.16 use the Viterbi algorithm [13] to decode convo-
lutionally encoded data. To support multiple protocols, the
decoder uses the same parameter settings as the convolu-
tional encoder at the transmitter side. Since 802.16 also uses
Reed-Solomon encoding, corresponding Reed-Solomon de-
coder that supports appropriate profiles is used in the re-
ceiver side.
Descrambler: Reverses the scrambling performed by the
transmitter.
RX Controller: Based on the decoded data received from
Descrambler, the RX Controller generates the control feed-
back to S/P block.

Figure 3 summarizes the parameters used by various
blocks in 802.11a and 802.16.

4 General Considerations for Parametric
Implementations

We employ several techniques to enable significant mod-
ule reuse and customization across different protocols, ar-
chitectures, and design points. The high-level structure in
which modules are interconnected follows a transaction-
level modeling style. Furthermore we restrict communica-
tion between the modules to pass messages containing con-
trol and data values. The control part is not modified by
any module as the message flows through the pipeline and
is stripped off before the message leaves the baseband pro-
cessing section. The control part varies in type and value
for different protocols; a challenge in coding reusable mod-
ules is to relate different (dynamic) control information to
the different (static) instantiations of a module. In this sec-
tion, we illustrate this point using the parameterized coding
of the Scrambler block.

4.1 Transaction-Level Modeling Style In-
terfaces

In order to decouple modules, the interface of each mod-
ule is implemented with the ready/enable handshaking ap-
proach, which is embodied in the Put and Get inter-
faces [3]. The Bluespec compiler automatically enforces
ready/enable handshaking between modules connected in

this manner such that an upstream module will block if
the downstream module is not ready. This interface style
is compatible with transaction-level modeling (TLM) ap-
proach [5]. Thus, the interface of each module is declared
as follows:
interface Block#(type in_mesg, type out_mesg);

interface Put#(in_mesg) in;
interface Get#(out_mesg) out;

endinterface

This is a highly polymorphic definition in that the types of
the messages going in and out of the module Block are
themselves passed in as static parameters. Note that param-
eterized types are indicated with a hash mark (e.g. Mesg#).

The code above defines that the interface has an input
method called in and an output method called out and
these methods have Put and Get interfaces, respectively.
Put and Get interfaces are part of the Bluespec library. By
making use of the mkConnection function one can easily
connect the Get method of a module to the Put method
of another module provided the declared types match. The
BSV compiler automatically generates the logic needed to
transfer the data from the Get to the Put whenever both
methods are ready.

The generic OFDM transmitter pipeline can be described
as follows using the mkConnection function:

mkConnection(tx_controller.out, scrambler.in);
mkConnection(scrambler.out, encoder.in);
mkConnection(encoder.out, interleaver.in);
mkConnection(interleaver.out, mapper.in);
mkConnection(mapper.out, pilotInsert.in);
mkConnection(pilotInsert.out, ifft.in);
mkConnection(ifft.out, cpInsert.in);

The modules of the receiver pipeline are connected in a sim-
ilar fashion. Since the structure of the OFDM transceiver
is the same across protocols, this portion of the code will
remain the same regardless of the protocol we are imple-
menting. The changes will appear when we instantiate the
modules from the module definitions. BSV uses the symbol
<- for module instantiation. In the following code, we show
how one can instantiate the modules for the transceiver us-
ing module definitions (all the functions whose names start
with mk). All module definitions are generic except those
that instantiate the controllers, the encoder and the decoder:

Transmitter Modules Instantiations:
tx_controller <- mkProtocol_Controller();
// protocol-specific
scrambler <- mkScrambler(scramblerCtrl,

lfsrSz,
lFunc);

encoder <- mkEncoder();
// protocol-specific
interleaver <- mkInterleaver(intrlvrCtrl,

intrlvrGetIdx,
blockSize);

mapper <- mkMapper(mapperCtrl,
invertInput);

pilot_insert <- mkPilot_Insert(guardPos,
pilotPos,
pilotFuncs);

ifft <- mkFFT_IFFT(ifftCtrl,
ifftSize);



cp_insert <- mkCP_Insert(cpCtrl,
symbolSize);

Different OFDM protocols use different collection of
FEC schemes. For instance, as shown in Figure 3, 802.11a
uses convolutional encoder with puncture while and 802.16
uses Reed-Solomon encoder followed by convolutional en-
coder with puncture. The encoders are sufficiently differ-
ent that sharing a parameterized module definition would
be awkward, as a result, we made separate definitions, as
shown below:
802.16 encoder:
module mkEncoder (Encoder80216);

// state elements
encoder_rs <- mkRS_Encoder(rs_encoderCtrl);
encoder_conv <- mkConv_Encoder(poly_g_0,

poly_g_1);
encoder_punc <- mkPuncturer(puncCtrl,

puncFuncs);

// connections
mkConnection(encoder_rs.out,

encoder_conv.in);
mkConnection(encoder_conv.out,

encoder_punc.in);

// Get, Put methods
interface in = encoder_rs.in;
interface out = encoder_punc.out;

endmodule

802.11a encoder:
module mkEncoder (Encoder80211);

// state elements
encoder_conv <- mkConv_Encoder(poly_g_0,

poly_g_1);
encoder_punc <- mkPuncturer(puncCtrl,

puncFuncs);

// connections
mkConnection(encoder_conv.out,

encoder_punc.in);

// Get, Put methods
interface in = encoder_conv.in;
interface out = encoder_punc.out;

endmodule

OFDM Messages: In our OFDM library, blocks commu-
nicate with each other by passing OFDM messages, which
consist of two fields: control and data. The type and
format of the data is independent of the protocol being im-
plemented, but the control encoding is protocol-specific
and generated by the TX Controller or RX Controller. Con-
sequently, we define the following generic type for OFDM
messages:
typedef struct{

ctrl_t control;
Vector#(sz, data_t) data;

} Mesg#(type ctrl_t, numeric type sz,
type data_t);

The type of control is defined by ctrl t and the type of
data by a vector of data t of size sz. ctrl t, data t
and sz are static parameters which are evaluated at com-
piled time. Thus, the in mesg and out msg types are

all instances of Mesg type. For example, the type of the
message for the 802.11a Scrambler (ScramMesg) may be
defined as follows, where types ctrl t and data t are
instantiated to Ctrl80211 and Bit#(1), respectively:
typedef Mesg#(Ctrl80211, sz, Bit#(1))

ScramMesg#(numeric type sz);

Note that the ScramMesg type still has sz as a type pa-
rameter.

4.2 Parameterization of the Scrambler
In order to support various protocols, it is important that

our implementations be as flexible as possible. We achieve
this by parameterizing the implementation for both data
types and widths. We illustrate this by describing the im-
plementation of the scrambler module.

The scrambler randomizes the input bit stream by XOR-
ing each bit with a pseudo-random binary sequence (PRBS)
generated by a linear feedback shift register (LFSR). For
example, for the linear function x7 + x4 + 1, we first com-
pute the feedback bit by XORing the 4th and 7th bit of
the random number in lfsr. Then, we generate the out-
put bit by XORing inData with the feedback bit. Fi-
nally, we compute the new random number by shifting the
feedback bit into the current random number. For higher
performance, we can process up to steps bits of inData
at a time.

Function scramble given below implements the
LFSR. In BSV, functions are compiled to combinatorial cir-
cuits. This function takes as input the coefficients of the
LFSR polynomial as integer vector lFunc, the initial value
of the shift register lfsr, and the input bit vector inData.
It returns a 2-tuple of values: the new value of the shift reg-
ister and the scrambled data.
function Tuple2#(Bit#(lfsrSz),

Vector#(steps, Bit#(1)))
scramble(

Vector#(fsz, Integer) lFunc,
Bit#(lfsrSz) lfsr,
Vector#(steps, Bit#(1)) inData);

Vector#(steps, Bit#(1)) outData;
Bit#(lfsrSz) nextLfsr = lfsr;
Bit#(1) feedback;
for(i = 0; i < steps; i = i + 1)
begin

feedback = 0;
// loop to generate the feedback bit
for(j = 0; j < fsz; j = j + 1)

feedback = nextLfsr[lFunc[j]] ˆ
feedback; // XOR

// XOR feedback and inData for outData
outData[i] = inData[i] ˆ feedback;
// shift feedback into LSB
nextLfsr = {nextLfsr[n-2:0],

feedback};
end
return tuple2(nextLfsr, outData);

endfunction

One important note about this code is that it represents
a combinational circuit. All the for loops are completely
unrolled at compile time to generate a DAG during the static
elaboration phase of the BSV compiler. Consequently, the



above definition can be compiled only if lFunc (the lin-
ear function), lfsrSz (the shift register size) and steps
(the number of bits to be processed) are known at com-
pile time, and they must be passed as parameters to the
mkScrambler when it is used to instantiate a scrambler
module.

With our definition, the scramble function can be used
by both the 802.11a and the 802.16 protocols. When we use
it in 802.11a, the lFunc will be a vector containing values
4 and 7, and the fsz will be 7. On the other hand, lFunc
will contain 14 and 15 and fsz will be 15 when it is used
in 802.16. The number of bits to be processed (steps)
is not specified by the protocol and can be set to meet the
performance goals. It turns out that the scrambler is not the
slowest module and thus, even the steps value of one is
sufficient to meet the performance requirements.
Dynamic Parameters: The scrambler can have three oper-
ational modes:

1. Normal: Input is randomized using the current LFSR
state

2. Bypass: Input is forwarded without processing
3. NewSeed: The LFSR state is reset with a given value

and then the input is randomized.
The information regarding how the input data is to be

processed is specified in the control part of the message.
This information is extracted by the scramblerCtrl
function in the following scrambler module rule:

rule scrambling(True); //scrambling rule
let mesg = inQ.first();
let gCtrl = mesg.ctrl;
let sCtrl = scramblerCtrl(gCtrl);
let data = mesg.data;
case (sCtrl) matches

tagged Bypass:
outQ.enq(Mesg{ctrl: gCtrl,

data: data});
tagged Normal:
begin

match {.oBits, .oSeed} =
scramble(data, lfsr);

lfsr <= oSeed;
outQ.enq(Mesg{ctrl: gCtrl,

data: oBits);
end
tagged NewSeed .nSeed:
begin

match {.oBits, .oSeed} =
scramble(data, nSeed);

lfsr <= oSeed;
outQ.enq(Mesg{ctrl: gCtrl,

data: oBits);
end

endcase
endrule

A challenge arises because different protocols use the
scrambler differently. For example, the 802.11a protocol
requires the scrambler not to scramble the header, while the
802.16 protocol requires the header to be scrambled too.
This is why, as we pointed out earlier, the control part en-
coding is protocol-specific.

In our implementation, the control encoding of both
802.11a and 802.16 contain a field called region. The

possible values for the region field for 802.11a are
Header, FirstData, Data and Tail; The possible
values for the region field for 802.16 are FirstData,
Data and Tail. In addition to the region field, the 802.16
control encoding also contains a field seed which speci-
fies the value for the scrambler seed. The following codes
show the definitions of the scramblerCtrl for the two
protocols:
802.11a scramblerCtrl:
function ScramblerCtrl

scramblerCtrl80211(Ctrl80211 ctrl);
return case (ctrl.region)

Header: Bypass;
FirstData: NewSeed 7b101101;
Data: Normal;
Tail: Bypass;

endcase;
endfunction

802.16 scramblerCtrl:
function ScramblerCtrl

scramblerCtrl80216(Ctrl80216 ctrl);
return case (ctrl.region)

FirstData: NewSeed ctrl.seed;
Data: Normal;
Tail: Bypass;

endcase;
endfunction

We solve this problem by passing the scrambleCtrl
function as a parameter to the scrambler module. The fol-
lows show the definition of the mkScrambler with all the
required parameters we discussed earlier:
module mkScrambler#(

function ScramblerCtrl
scramblerCtrl(ctrl_t ctrl),

Integer lfsrSz,
Vector#(fsz, Integer) lFunc)

(Scrambler#(ctrl_t, steps));

// state elements
Reg#(Bit#(lfsrSz)) lfsr <- mkRegU;
... fifos (inQ, outQ) ...

// Scrambling rule
...

// Get, Put methods
...

endmodule

5 Performance Tuning through Architec-
tural Exploration

We explored various design alternatives in order to en-
sure that our design meets the performance goals. To fa-
cilitate such architectural exploration, we parameterize the
model so that different designs can be instantiated from the
same code base during the static elaboration phase. A pa-
rameterized FFT which can be instantiated with different
microarchitecture at synthesis time is shown in [4]. In this
section, we illustrate a way of parameterizing components
of the Viterbi decoder to enable architectural explorations.

A Viterbi decoder uses the Viterbi algorithm [13] to de-
code bitstreams encoded using a convolutional forward er-



ror correction code. The algorithm determines the most
likely input bitstream given the received noisy encoded
stream.

To understand the Viterbi algorithm, it helps to under-
stand the convolutional encoder. A k-bit convolutional en-
coder is a state machine consisting of 2k states, with transi-
tions between states conditional on input bits and emitting
a fixed number of output bits. In these two protocols, 2 bits
are emitted per input bit. The current state of the encoder
is named by the last k input bits. Because transitions are
conditional on a single bit, each state of the encoder can be
reached only from two previous states.

The Viterbi algorithm uses dynamic programming to find
the most likely state transition sequence followed by the en-
coder given a received bit sequence. The algorithm retraces
this sequence of states to reconstruct the original bit stream.

Too much time and memory would be required for the
decoder to wait until it has received the entire data sequence
before producing a result. However, we can achieve al-
most the same level of accuracy by recording only the last
n transitions, and emitting one bit per timestep. In practice,
a value of n = 5(k + 1) yields satisfactory results. For
802.11a and 802.16, k = 6, so n = 35.

In our implementation, the Viterbi decoder consists of
two modules: the path metric unit and the Traceback unit.
The path metric unit contains a 2k word memory, where
each entry is essentially the probability that a sequence of
input bits ended in that state. In practice, cumulative error
between the hypothesized bit stream and the received bit
stream for that state is used as the path metric for that state.
The traceback unit records the most likely n state sequence
leading to each state, encoded as one bit per state transition,
logically organized as an n entry shift register where each
entry is 2k bits.

The path metric unit updates all 2k entries for every 2
observations received from the demapper module. Once all
the new path metrics are computed, the old path metrics
can be discarded. As it computes each new path metric, it
records the previous state pointer in the traceback unit.

After the path metric unit updates the values for all the
states, the traceback unit follows the recorded previous state
pointers and emits the bit corresponding to the oldest tran-
sition in the sequence.

Path Metric Unit

The path metric unit, which is shown in Figure 4, con-
tains one or more Add-Compare-Select (ACS) units for cal-
culating the path metrics for each state. The ACS computes
two path metrics at a time, as shown in Figure 5. The num-
ber of ACS units, which is a parameter to the path metric
unit, controls number of path metrics updated per cycle.

The overall structure of the path metric unit is similar
to that of a single FFT stage [4], with the FFT butterflies
replaced by the ACS units. With the generalized pipelin-
ing technique presented in [4], we can easily parameterize
the design of the path metric unit with the number of ACS
units. This parameterization represents a tradeoff between

Figure 4. Path metric unit for k = 3

Figure 5. Add-Compare-Select unit

area and power: the area increases as we increase the num-
ber of ACS units, while the power decreases.

Traceback Unit
The traceback unit contains a n×2k bit shift register and

a decoder which reconstructs one bit at a time by traversing
the most likely state transition sequence. Traversing n = 35
transitions in one cycle leads to long cycle times. To reduce
the critical path, we pipelined the traceback unit, with a pa-
rameterized pipeline depth.

In the pipelined implementation of the traceback unit,
a single pipeline stage in the decoder traverses s pointers.
There are t such stages, such that s × t = n and n = 35.
Each pipeline register needs to store one traceback memory
column of 2k bits and a current state index.

We varied the number of pipeline stages (1, 5, 7 and 35)
to analyze various design alternatives. Figure 6 shows the
area and power measurements for different pipeline depths.
The results reflect the minimum frequency required to sup-
port the 54 Mbps bitrate for 802.11a. The figure also shows
the number of bits written to the traceback memory per cy-
cle and the complexity of the address decode logic for read-
ing out the bits from the traceback memory, which is the
input size of the multiplexing logic to read the data from
each element of the shift register. The results show that the
5-stage decode consumes the least area and least power. The



Pipeline depth Bits written per cycle Read complexity Area (mm2) Frequency (MHz) Power (mW )
35 35x64 2:1 mux 0.746 108 67.945
7 7x64 6:1 mux 0.713 108 52.310
5 5x64 8:1 mux 0.652 108 48.434
1 1x64 36:1 mux Does not meet timing

Figure 6. Viterbi synthesis results using TSMC 180nm library

1-stage version fails to meet the timing requirements.

6 Results
We wrote the designs of all the transceiver components

in Bluespec. We verified each component using testbenches
written in Bluespec. Simulations were carried out using
Bluesim, which is a cycle-accurate simulator for Bluespec
designs.

We generated a variety of RTL transceiver components
for both the 802.11a and 802.16. All the components were
generated from our OFDM library by passing appropriate
parameter values.

The RTL was generated using the Bluespec Compiler
(version 3.8.69), and then synthesized with Synopsys De-
sign Compiler (version Y-2006.06) with the TSMC 180nm
standard cell libraries. Figure 7 shows the post-synthesis
area and power estimates as well as the clock frequency for
the design to meet its respective standard. The power esti-
mates were statically generated by Design Compiler.

The lines of code for each parameterized module and
general libraries that we implemented are given in the ta-
ble. The entire code is less than 8000 lines.

The 802.11a transceiver code takes 6544 lines of code,
while the 802.16 transceiver code takes 6648. Of this, more
than 85% of the code is shared. This gives us evidence of
how much code we can leverage from the common library
when implementing a different protocol.

7 Related Work
Dave et al. [4] discuss the microarchitectural explo-

ration of an 802.11a transmitter via synthesizable highly-
parameterized descriptions in Bluespec. They explore var-
ious microarchitectures of the IFFT, which is the most
resource-intensive module of the 802.11a transmitter. Our
paper is in the same genre but shows a much more elaborate
use of parameters, primarily motivated by IP reuse.

Nordin et al. [11] present a parameterized generator
for Discrete Fourier Transform (DFT). The generator ac-
cepts parameters like the input size of the Fourier trans-
form as well as microarchitectural parameters that control
the concurrency in the generated DFT cores. This approach
is similar to our approach in the sense that it enables pa-
rameterization of both algorithmic and microarchitectural
exploration. The approaches differ in that they rely on
scripts and other techniques to generate Verilog programs,
whereas we rely on the parameterization capability of the
hardware-description language itself. The other difference
is the scope of the parameterization — we have parame-
terized the whole OFDM transceiver, whereas [11] does so
only for DFT. Similar remarks apply to Zhang et al. [14],

who present a framework to enable algorithmic and archi-
tectural co-design for interference suppression in wireless
receivers.

Salefski et al. [12] show how reconfigurable processing
can meet the needs for wireless base station design while
providing the programmability to allow field upgrades as
standards evolve. This is an orthogonal concern to the shar-
ing of code across multiple protocols.

Brier et al. [1] show how C/C++ models can be used for
architectural exploration and verification of DSP modules.
It proposes guidelines for building C/C++ models that aid
in the verification process.

Hourani et al. describe domain specific tools for the sig-
nal processing [6, 7]. These tools automatically generate
different architectural variations for signal processing algo-
rithms, enabling algorithm experts who are not skilled hard-
ware designers to make area/performance/power tradeoffs.

Krstic et al. [10] present a VHDL implementation of
low power 802.11a baseband processor. They show the
post-layout area and power estimations of their implemen-
tation which is synthesized with their 250nm standard cell
library. Our high-level parameterized Bluespec implemen-
tation is comparable to their dedicated VHDL implementa-
tion in terms of area and power.

8 Conclusions
Power and cost constraints dictate a need for special-

ized circuits in the burgeoning market of handheld devices
and sensors. Yet the ever increasing chip design costs and
time-to-market of ASICs creates a major hurdle in the ex-
ploitation of this opportunity. We think that parameterized
reusable components are the most immediate solution to
this problem. In this paper, we have shown that various
components for OFDM-based wireless protocols can be cre-
ated in a manner so that they can be instantiated with appro-
priate parameter values to be part of different protocols. A
powerful library of OFDM-based components can dramati-
cally reduce the cost of implementing OFDM-based proto-
cols and can also facilitate algorithmic exploration of new
protocols. We already have a set of components that are rich
enough to implement both 802.11a and 802.16 transceivers;
we would like to evaluate if our library is rich enough to im-
plement other OFDM protocols.

This type of component library development depends on
a language like Bluespec SystemVerilog, which has the nec-
essary type system and static elaboration facilities to make
this level of parameterization feasible. One also needs a
language with proper modular composition. Furthermore,
without the ability to synthesize the designs, meaningful
evaluations of these designs would be impossible.



Module Lines of code Area (mm2) Frequency (MHz) Power (mW )
802.11a 802.16 802.11a 802.16 802.11a 802.16 802.11a 802.16

TX Controller 267 195 0.029 0.013 5 5 0.104 0.071
Scrambler 61 0.008 0.008 5 5 0.042 0.049

RS Encoder – 105 – 0.027 – 5 – 0.114
Conv. Encoder 42 0.008 0.007 5 5 0.034 0.028

Puncturer 144 0.053 0.040 5 5 0.103 0.092
Interleaver 161 0.073 0.563 5 5 0.307 1.139

Mapper 89 0.420 1.719 5 5 1.572 6.346
Pilot 64 0.443 1.768 5 5 1.928 7.667
IFFT 318 4.736 11.651 5 5 11.961 38.319

CP Inserter 134 0.194 0.747 5 5 0.787 3.054
Synchronizer 1027 1.048 1.577 20 8 15.297 11.389

S/P 98 0.563 2.248 20 8 9.856 15.532
FFT shared (IFFT) 4.526 10.733 5 5 11.431 35.300

Channel Est. 133 0.371 1.480 5 5 1.615 6.423
Demapper 202 0.303 0.828 5 5 0.627 2.328

Deinterleaver shared (Interleaver) 0.212 0.779 5 5 0.900 3.375
Depuncturer 153 0.174 0.148 5 5 0.261 0.265

Viterbi Decoder 863 0.818 0.797 60 30 43.010 21.062
RS Decoder – 45 – 0.007 – 5 – 0.027
Descrambler shared (Scrambler) 0.008 0.008 5 5 0.042 0.049

RX Controller 153 86 0.321 1.263 5 5 2.424 9.638
Libraries 2163 – – – – – –

Parameters 472 565 – – – – – –
Total 6544 6648 14.308 36.411 – – 102.301 162.267

Figure 7. Synthesis results for modules in 802.11a and 802.16 transceivers using the TSMC 180nm
library. Area and power estimations are generated by Synopsys Design Compiler. The areas for the
802.11a and 802.16 designs are equivalent to 1.4M and 3.6M two-input NAND gates respectively.

Acknowledgments: This research is funded by Nokia Inc.
(2006 Grant to CSAIL-MIT) and the National Science
Foundation (Grant #CCF-0541164). In this project, the im-
plementations of most modules were written by Man Cheuk
Ng. The Reed-Solomon coders and the traceback unit of the
Viterbi were written by Muralidaran Vijayaraghavan. The
design of the FFT are based on the design of Nirav Dave’s
64 points FFT with the extension to support different FFT
sizes. This project is supervised by Gopal Raghavan and
Jamey Hicks at NRC and Professor Arvind at MIT.

References

[1] D. Brier and R. Mitra. Use of C/C++ models for architecture
exploration and verification of DSPs. In DAC ’06: Proceed-
ings of the 43rd annual conference on Design automation.
ACM Press, 2006.

[2] R. W. Chang. Synthesis of band-limited orthogonal signals
for multichannel data transmission. Bell System Technical
Journal, 45:1775–1796, Dec. 1966.

[3] N. Dave. Designing a Processor in Bluespec . Master’s thesis,
MIT, Cambridge, MA, Jan. 2005.

[4] N. Dave, M. Pellauer, S. Gerding, and Arvind. 802.11a
Transmitter: A Case Study in Microarchitectural Explo-
ration. In Proceedings of Formal Methods and Models for
Codesign (MEMOCODE). ACM-IEEE, 2006.

[5] T. Grotker, S. Liao, G. Martin, and S. Swan. System Design
with SystemC, chapter 8. Springer, 2002.

[6] R. Hourani, R. Jenkal, R. Davis, and W. Alexander. Auto-
mated Architectural Exploration for Signal Processing Algo-

rithms. In Proc. IEEE 40th ASILOMAR Conf. on Signals,
Systems and Computers. IEEE, 2006.

[7] R. Hourani, R. Jenkal, R. Davis, and W. Alexander. Tool in-
tegration for Signal Processing Architectural Exploration. In
Presentation in IEEE Electronic Design Process Symposium
(EDPS’06). IEEE, 2006.

[8] IEEE. IEEE standard 802.11a supplement. Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY)
Specifications, 1999.

[9] IEEE. IEEE standard 802.16. Air Interface for Fixed Broad-
band Wireless Access Systems, 2004.

[10] M. Krstic, K. Maharatna, A. Troya, E. Grass, and
U. Jagdhold. Baseband Processor for IEEE 802.11a Standard
with Embedded BIST. Facta Universitatis, Series: Electron-
ics and Energetics, 17:231–239, Aug. 2004.

[11] G. Nordin, P. Milder, J. Hoe, and M. Puschel. Automatic
Generation of Customized Discrete Fourier Transform IPs.
In DAC ’05: Proceedings of the 42nd annual conference on
Design automation. ACM Press, 2005.

[12] B. Salefski and L. Caglar. Re-configurable computing in
wireless. In DAC ’01: Proceedings of the 38th annual con-
ference on Design automation. ACM Press, 2001.

[13] A. J. Viterbi. Error bounds for convolutional codes and an
asymptotically optimum decoding algorithm. In IEEE Trans-
actions on Information Theory, 1967.

[14] N. Zhang, B. Haller, and R. Broderson. Systematic architec-
tural exploration for implementing interference suspension
techniques in wireless receivers. In 2000 IEEE Workshop on
Signal Processing Systems. IEEE Signal Processing Society,
2000.


