
Bluespec Codesign Language

BCL: A Language for Hardware-Software Codesign

Authors’ names removed for submission

Abstract
Special purpose hardware is vital to embedded systems as it can
simultaneously improve performance while reducing power con-
sumption. Due to time-to-market pressure, current design method-
ologies for embedded applications require an early determination
of the design partitioning which allows hardware and software to be
developed simultaneously, each adhering to a rigid interface con-
tract. This approach is problematic because often a good hardware-
software decomposition is not known until deep into the design
process. Fixed interfaces and the burden of reimplementation pre-
vent the migration of functionality motivated by repartitioning. We
present the Bluespec Codesign Language (BCL), based on guarded
atomic actions, to express the fine-grain parallelism necessary for
both hardware and low-level software design. In this language, the
programmer specifies the entire design, including the partitioning,
allowing the compiler to synthesize efficient software and hard-
ware, along with transactors for communication between the par-
titions. The benefit of using a single language to express the entire
design is that a programmer can easily experiment with many dif-
ferent hardware/software decompositions. We present preliminary
results for various hardware-software decompositions of an Ogg
Vorbis audio decoder.

1. Introduction
Power and performance are increasing the need for hardware im-
plementations of various components of embedded applications,
such as video decoders and wireless transceivers. While a lot of
effort is placed on the hardware components, equally important is
the software driver which orchestrates the hardware blocks. Since
the time-to-market is of paramount importance, the hardware and
the associated software driver are almost always developed in par-
allel by two separate design teams. The two teams agree upon
a hardware-software decomposition and the associated interface
early on to make the final integration as seamless as possible. How-
ever, in practice the interface rarely matches the specification pre-
cisely. This happens because the early hardware specifications are
often incomplete, leaving room for misinterpretation, or are simply
unimplementable. This integration problem has a large negative im-
pact on the time-to-market. Worse, by prematurely restricting the
design, alternatives with lower costs (i.e., area or power) or higher
performance may be ignored.

We think that the fundamental difficulty of hardware-software
codesign stems from the fact that the software and hardware con-
tinue to be developed in two separate languages, each with its own

[Copyright notice will appear here once ’preprint’ option is removed.]

semantics and programming idioms. We believe that what is needed
instead is a common language for hardware-software codesign with
the following properties:

1. Fine-grain parallelism: Hardware is inherently parallel and any
codesign language must be flexible enough to express meaning-
ful hardware structures. Low-level software which drives the
hardware does so via highly concurrent untimed transactions,
which must also be expressible in the language.

2. Easy specification of partitions: In complex designs it is impor-
tant for the designer to retain a measure of control in expressing
his insights about the partitioning between hardware and soft-
ware. Doing so within suitable algorithmic parameters should
not require any major changes in code structure.

3. Generation of high-quality hardware: Digital hardware designs
are usually expressed in RTL languages like Verilog from which
low-level hardware implementations can be automatically gen-
erated using a number of widely available commercial tools.
(Even for FPGAs it is practically impossible to completely
avoid RTL). The codesign language must compile into efficient
RTL code.

4. Generation of efficient sequential code: Since the source code
is likely to contain fine-grain transactions, it is important to
be able to interleave partially executed transactions without
introducing deadlocks while waiting for external events.

5. Shared communication channels: Often the communication be-
tween a hardware device and a processor is accomplished via
a shared bus. The high-level concurrency model of the code-
sign language should permit sharing of such channels without
introducing deadlocks.

We are not aware of any language that has all the properties listed
above. In spite of concerted efforts, hardware synthesis from se-
quential software languages like C, C++, Java has not been widely
adopted for efficiency reasons. Hardware description languages
(HDLs) like Verilog and VHDL provide extremely fine-grain paral-
lelism but lack an understandable semantic model [1]. These HDLs
are also impractical for writing software.

There are several parallel computation models whose semantics
are agnostic to implementation in hardware or software. In princi-
ple, any of these can provide a basis for hardware-software code-
sign. Threads and locks are used extensively in parallel program-
ming and also form the basis of SystemC [2] – a popular language
for modeling embedded systems. However, good hardware synthe-
sis from SystemC is unrealized for all but the most restrictive id-
ioms. Dataflow models, both at macro-levels (Kahn [3]) and fine-
grained levels (Dennis [4], Arvind [5]), provide many attractive
properties but abstract away important resource-level issues that
are important for expressing efficient hardware or software. Never-
theless dataflow models where the rates at which each node works
are specified statically have been used successfully in signal pro-
cessing applications [6, 7]. Synchronous dataflow is a clean model
of concurrency based on synchronous clocks and forms the basis

of several programming languages (e.g., Esterel [8], Rapide [9],
Shim [10], Polysynchronoy [11]). We think that non-determinism
is required to express hardware designs at a high-level and syn-
chronous languages are not suitable for this.

We have chosen guarded atomic actions as the base for BCL.
All legal behaviors in this model can be understood as a series
of atomic actions on a state. This model was used by Chandy
and Misra in Unity [12] to describe software, and then by Hoe
and Arvind to generate hardware [13]. Dijsktra’s Guarded Com-
mands [14] and Lynch’s IO Automata [15] are also closely related.
BCL extends the idea of multiple clock domains [16] from Blue-
spec SystemVerilog (BSV) [17] to specify how a design should be
split between hardware and software. Hardware compilation from
BCL is a straightforward translation into BSV. Translation of BCL
modules to efficient software is achieved using a new compiler
which we have developed and will describe in this paper.

The primary contributions of this paper are the presentation of
a single language which can be used to express fine-grain paral-
lelism, a method of specifying hardware-software partitioning at
the source level and a method of compilation of the software par-
titions into efficient software, including the transactors needed to
communicate with the hardware partitions. We demonstrate the vi-
ability of our approach by applying it to a concrete example, an
Ogg Vorbis audio decoder. We think this is the first demonstration
of multiple versions of a hardware-software codesign from the same
source code working on an FPGA .

Paper Organization: After a related work discussion, Section 3
presents the hardware-software codesign problem. In Section 4,
we demonstrate some important features of BCL and its use in
hardware design. Section 5 explains the details of the compilation
strategy, and Section 6 demonstrates how partitions are specified
in the language; these two sections can be read out of order. We
conclude with a case-study, performance results, and a discussion.

2. Related Work
There is a substantial body of work, both academic and commer-
cial, relevant to various aspects of hardware-software codesign.

1. Generation of software from hardware descriptions: Almost
every hardware description language (HDL) can compile to a soft-
ware simulator, which can be viewed as a software implementation.
Popular commercial products like Verilator [18] and Carbon [19]
show significant speedup in the performance of these simulators,
though the requirement to maintain cycle-level accuracy (at a gate-
level) is a fundamental barrier. The resulting performance is often
several magnitudes slower than natural software implementations
of the same algorithm.

Bluespec’s Bluesim [17] can exploit the fact that the cycle-
level computation can be represented as a sequence of atomic
actions. This permits dramatic improvement in performance but the
underlying cost of cycle-accuracy remains.

2. Generation of hardware from sequential software specifica-
tions: To ease the burden of hardware design, the idea of extract-
ing a hardware design from a familiar software language, e.g., C,
Java, or various functional languages has great appeal. Many sys-
tems like CatapultC [20], Pico Platform [21], or AutoPilot [22]
have been effective at generating some forms of hardware from
C code. However, specifying efficient microarchitectures with dy-
namic control can be very hard, if not impossible, to construct using
such tools [23].

A related effort is the Liquid Metal project [24] which compiles
an extension of Java into hardware. It lets the programmer specify
parts of the program in a manner which eases the analysis required
for efficient hardware generation. In contrast to BCL which relies
on explicit state and guarded atomic actions, Liquid Metal exploits
particular extensions to the Java type system.

3. Frameworks for simulating heterogeneous systems: There
are numerous systems that allow co-simulation of hardware and
software modules. Such systems, which often suffer from both low
simulation speeds and improperly specified semantics, are typically
not used for direct hardware or software synthesis.

Ptolemy [25] is a prime example of a heterogeneous model-
ing framework, which concentrates more on providing an infras-
tructure for modeling and verification, and less on the generation
of efficient software; it does not address the synthesis of hard-
ware at all. Metropolis [26], while related, has a radically differ-
ent computational model and has been used quite effectively for
hardware/software codesign, though primarily for validation and
verification rather than to synthesize efficient hardware.

SystemC [2], a C++ class library, is considered the most popu-
lar language to model heterogeneous systems. The libraries provide
great flexibility in specifying modules, but SystemC lacks clear
compositional semantics, producing unpredictable behaviors when
connecting modules. Synthesis of high-quality hardware from Sys-
temC remains a challenge.

Matlab and Simulink generate production code for embedded
processors as well as VHDL from a single algorithmic description.
Simulink employs a customizable set of block libraries which allow
the user to describe an algorithm by specifying the component
interactions. Simulink does allow the user to specify modules,
though the nature of the Matlab language is such that efficient
synthesis of hardware would be susceptible to the same pitfalls as
C-based tools. A weakness of any library-based approach is the
difficulty for users to specify new library modules.

In summary, while all these frameworks may be effective for
modeling systems, we do not believe they solve the general prob-
lem of generating efficient implementations.

4. Algorithmic approaches to hardware/software partitioning:
There is an extensive body of work which views hardware-software
partitioning as an optimization problem, similar to the way one
might look at a graph partitioning problem to minimize commu-
nication [27–29]. The success of such approaches depends upon
the quality of estimates for various cost functions as well as the
practical relevance of the optimization function. Since these ap-
proaches do not generate a working hardware/software design,
they need to make high-level approximations, often making use
of domain-specific knowledge to improve accuracy. Such analysis
should be viewed as complementing real hardware-software code-
sign approaches.

3. Hardware-Software Codesign: an Example
As a running example in this paper, we employ Ogg Vorbis, an
open-source psychoacoustically-aware audio CODEC aimed at
simple low-complexity decoding. In this section, we give a brief
description of the application, and introduce the codesign problem.

3.1 The Vorbis Pipeline
The input for Vorbis is a stream of frames of discrete compressed-
audio samples and the output is a stream of PCM frames. An input
frame typically contains a few thousand audio samples and some
“configuration” information to specify sizes and encoding of the
compressed data. All data in the Vorbis pipeline (see Figure 7)
is passed through explicit channels at the frame granularity. We
briefly describe the functionality of each block:

Stream Parser: This module is responsible for parsing configura-
tion packets (Vector Quantization Tables and Huffman codebooks),
and forwarding the appropriate configuration parameters to subse-
quent pipeline stages. It also directs the data to the correct decoder
depending on the type of data.

Floor Decoder: This module reconstructs the spectral floor vector
that has been encoded for each PCM channel. This vector is a

BCL: Hardware/Software Codesign 2 2010/11/19

low-resolution representation of the audio spectrum for the current
frame and is used as the baseline for spectral resolution.

Residue Decoder: The residue is the structure of the audio spec-
trum minus the floor curve. In this regard, it can be thought of as
the error between the actual sound and the floor vector prediction.
Residues are encoded using a lossy DCT compression.

IMDCT: This stage converts the full frame frequency spectrum, the
result of summing the floor and residue vectors, to the time domain.

Windowing: After IMDCT we have a valid time-domain sig-
nal. However, our packetized encoding causes spectral leakage
at frame boundaries. This is counteracted by overlapping consecu-
tive frames via a sliding window function biased against the more
error-prone parts of the reconstructed frame.

Conceptually we pass frames between stages of the Vorbis
pipeline but in real designs (both hardware and software) frames
are passed as a stream of smaller packets to facilitate pipelining.

3.2 The hardware-software codesign problem
The Stream Parser, and Floor and Residue decoders require mini-
mal computation consisting mostly of data transfer and simple ta-
ble lookups. Implementing these blocks in hardware is unlikely to
produce much performance improvement or power savings. In con-
trast, IMDCT requires significant computation; internally, IMDCT
uses an Inverse Fast Fourier Transform (IFFT) whose size varies
dynamically from 128 to 8192 depending on the frame size. Win-
dowing involves simple computation, but because it is directly con-
nected to the PCM output it may make sense to implement it in
hardware.

Given a frame of sizeN , IMDCT constructs a new frame of size
2N by applying two point-wise conversion functions and passes it
into the IFFT.

The resulting frame is reordered (using bit-reversed indices),
after which a point-wise function is applied to produce the final
output. One could express IMDCT in pseudo C where ifft is the
function to compute IFFT:
Array imdct(int N, Array vx){
for(i = 0; i < N; i++){

vin[i] = convertLo(i,N,vx[i]);
vin[i+N] = convertHi(i,N,vx[i]); }

vifft = ifft(2*N, vin);
for(i = 0; i < N; i++)

vout[bitReverse(i)] = convertResult(i,N,vifft[i]);
return vout; }

IFFT is usually computed using a mini IFFT of size K, called a
radix, which is simply a K-input/K-output network of additions and
multiplications. (The details of the radix are not important for our
discourse). As an example, a 64-point IFFT using size 4 radices has
3 stages each containing 16 rows of radices. Each radix instance in
a computation needs a set of rotation omega values which depend
on the particular stage and row index of the radix in the larger
computation. A radix is applied to K-elements of the input vector
to produce K-elements of the output vector, however, the index of
the output positions are not the same as the input indices. Hence
the output indices have to be shuffled to be placed in the right place.
The computation for an IFFT of size sz using K-size radices can be
expressed as follows where applyRadix encapsulates the omega
and index generation:
Array ifft(int sz, Array in){
Array temp, sdata = in;
int nStages = log(sz)/log(K), nRows = sz/K;
for (int stage = 0; stage < nStages; stage++){
for (int row = 0; row < nRows; row++)

sdata = applyRadixK(sz, stage, row, sdata);
for(int i = 0; i < sz; i++)

temp[i] = sdata[permute[sz][i]];
sdata = temp; }

return sdata;

}
Array applyRadixK(int sz, int stage, int row, Array in){
Array temp = in;
temp[row:row+K-1]=radixK(in[row:row+K-1],

omega[sz][stage][row]);
return temp;}

Now we illustrate some salient issues in hardware-software code-
sign using this example:

Hardware-software interface: For a compiler to create software
which successfully calls the hardware IFFT it will have to give
special treatment to instances of applyRadixK to correctly mar-
shal information to and from the hardware-software communica-
tion channel. There are many choices to be made here. Do hard-
ware and software work from a common memory? If so, all that
must be done is place a pointer at the appropriate rendezvous. Or
do we have to explicitly pass data through a memory mapped FIFO
structure? These choices are going to vary from platform to plat-
form and from one accelerator design to another.

Need for asynchronous request-response: There are a number of
inefficiencies if we implement the hardware-software interface as
described in the pseudo-code above. The software is sequential so
the CPU will stall while an outstanding request is made, instead of
constructing the next input to be fed to the hardware. Worse, this
sequentiality prevents us from exploiting multiple accelerators or
even just pipelining a single accelerator.

To have a truly high-performance design we have to expose
more of the inherent parallelism of the hardware system. A sim-
ple way to do this would be to partition a call into an asynchronous
request/response pair. The software can prime the pipeline with re-
quests before reaching a steady state of alternating requests and
responses. Unless specially designed to do so, this may still fail to
handle any variance in latency in the underlying communication
channel (e.g., a shared bus) or in processing speed due to improve-
ment/changes in the hardware accelerator. Proper exploitation re-
quires a measure of time-dependent or non-deterministic choice.

Dynamic parameterization: IMDCT needs to compute IFFTs of
sizes, e.g., 128, 256, ... , 8192. Dynamic parameters have a very
different effect on implementation in hardware and software. If the
processor has only one adder and multiplier, the compiled code
for all these IFFTs in software will be more or less the same. The
compiled code may differ only because we may unroll some loops
to take advantage of the ALU or memory pipelining. Therefore, the
cost of a dynamic parameterization in software is minimal.

In hardware design, however, we can instantiate many adders,
multipliers, registers etc., and are only constrained by the cost
(area) and performance requirements. Typically one would imple-
ment even a fixed size IFFT quite differently depending upon the
required performance. For example, a high performance 64-point
IFFT may use 48 size-4 radices. A low cost implementation, on
the other hand, might require us to trade time for space and use
one size-4 radix repeatedly. This problem gets vastly aggravated if
IFFTs of various sizes have to be computed. It is not likely to be
practical to design many fixed size IFFTs and call the appropriate
one as needed. Consequently, one would implement some fixed size
IFFT in hardware and repeatedly call it from a software driver or a
hardware FSM.

A panacea for hardware-software codesign would be a compiler
which given a sequential program and some performance, cost, and
power constraints, could automatically identify the blocks which
need to be implemented in hardware, implement the selected blocks
efficiently, and transform the code to make use of the new hardware
blocks. BCL provides a part of the solution to this problem by pro-
viding a system where it is easy for the designer to construct many
different hardware-software variants from one source description.
It permits a natural representation of desirable hardware structures,

BCL: Hardware/Software Codesign 3 2010/11/19

m ::= Module mn [t] // name, arg list
[n←mn [v]] // instantiate state
[Rule n a] // Rules
[ActMeth n λt.a] // Action methods
[ValMeth n λt.e] // Value methods

v ::= c // Constant Value
‖ t // Variable Reference

a ::= r := e // Register update
‖ if e then a // Conditional action
‖ a | a // Parallel composition
‖ a ; a // Sequential composition
‖ a when e // Guarded action
‖ (t = e in a) // Let action
‖ loop e a // loop action
‖ loopGuard e a // loopGuard action
‖ m.g(e) // Action Methcall g of m

e ::= r // Register Read
‖ c // Constant Value
‖ t // Variable Reference
‖ e op e // Primitive Operation
‖ e ? e : e // Conditional Expression
‖ e when e // Guarded Expression
‖ (t = e in e) // Let Expression
‖ m.f(e) // Value Methcall f of m
‖ loop e1 e2 // loop expression

op ::= && | || | ... // Primitive operations
pr ::= [m] (mn,[c]) // BCL program

Figure 1. BCL Grammar without types

with software oriented methods of communication. Instead of pro-
viding an automatic way to partition the code, the BCL compiler
makes it possible for the designer to evaluate many different parti-
tioning in a real context.

4. Expressing Hardware in BCL
The syntax of BCL sans types is given in Figure 1; its semantics
is borrowed from Bluespec and can be found in [30]. Here, we
informally explain BCL’s syntax and semantics via examples.

BCL is a language for hardware-software codesign, so we must
have the flexibility to compile any BCL program into either hard-
ware or software. Any language with a hardware target has to be
restricted so that it is compilable into an efficient FSM. It is for this
reason that BCL is best suited for writing software which requires
no dynamic heap storage allocation and where the stack depth is
known at compile-time. In spite of this restriction, BCL is a mod-
ern statically-typed language with higher-order functions and rich
data structuring facilities to express fine-grain parallelism.

In this section we will show how IMDCT can be written in BCL
to bring out various concurrency issues which are of interest to a
hardware designer. Similar issues arise when software interfaces
with hardware. In the next section we will show how a BCL design
with such fine-grain parallelism can also be compiled into efficient
software. We postpone the discussion of how the designer indicates
which parts of his design should be implemented in hardware and
which in software until Section 6.

Unlike sequential languages, a BCL program consists of explic-
itly declared state elements and a set of guarded atomic actions or
rules on these state elements. The set of rules can be applied in
any order on the state elements but only one at a time. Since the
rule to be applied can be chosen arbitrarily, a BCL program can po-
tentially generate non-deterministic behaviors. The reason we have
chosen guarded atomic actions as the basis for our language is that
this degree of nondeterminism is very useful in allowing a com-
piler to choose an particular implementation from a whole range
of implementations. The compilation of such descriptions into effi-
cient hardware is by now a well understood and a mature technol-
ogy [13, 17]. A proper operational semantics for a language with
guarded atomic actions (i.e.,the kernel of Bluespec) can be found

in [30]; it provides a good foundation to build analysis and verifi-
cation tools, as well the software compiler presented in this paper.

4.1 Preliminaries: Expressions, State Elements, and Rules
A combinational structure is a directed acyclic graph (DAG) of
primitive functions like adders, multiplier, or simply Boolean oper-
ators at a lower level. In BCL, all such structures can be described
as pure expressions. For example, for a given K, applyRadixK
and radixK described in the previous section, are pure combina-
tional functions. Their DAGs can be obtained by unrolling all loops
and inlining all function calls. The arrays sdata and temp should
be thought of as a bunch of wires, as opposed to storage elements.
Since all array indices in this example are computable statically,
each array operation simply becomes a wire connection. Syntacti-
cally applyRadixK and radixK would look the same in BCL!

Though ifft looks almost the same as these other functions,
it will have be coded quite differently in BCL because we cannot
unroll the loop with the dynamic parameter sz. Instead, we keep
the dynamic data in registers – sz, stage, row, sdata and
modify these using a rule. Each firing of the rule corresponds to one
iteration of the inner loop in our C code. Each iteration reads and
computes K elements; we use sdata to hold the newly computed
K values in the places from where the old values are read. At the
end of one stage of computation, sdata holds only newly created
values which are then shuffled into the correct places.
rule doIFFT when(busy && (stage<nStages || row<nRows)){

Vector#(max,t) temp = applyRadixK(sz,stage,row,sdata);
if(row != nRows-1){row := row+1; sdata := temp;}
else{stage := stage+1; row := 0;

for(int i = 0; i < sz; i++)
sdata[i] := temp[permute[sz][i]];}}

The rule has a predicate guard which must be true for the rule
to execute. The busy flag, which we will describe later, signifies
that there is an IFFT computation in flight. The stage and row
registers play the role of loop indices and are set on each rule
execution. The syntax (r:=e) indicates that register r is set to e.
(A register assignment should not be confused by a variable binding
which is written as (r=e)). Once enabled, this rule will execute
repeatedly until the IFFT is completed at which point the guard
will become false. As discussed before, the for-loop to shuffle data
is unrolled statically in a hardware implementation and results in a
wiring permutation.

We can easily translate this rule into hardware by constructing
combinational circuits which evaluate the rules guard and body and
add logic to update the relevant state when the guard is true. In fact
C-to-hardware synthesis tools can also generate the same FSM au-
tomatically. However, in hardware this is not the only possible im-
plementation; one might choose a different microarchitecture de-
pending on the cost-performance tradeoff. A high-performance de-
sign may use multiple copies of radixK as well as introduce sev-
eral stage buffers to operate in a fully pipelined manner. Interested
readers can find a detailed discussion of many variants in the con-
text of a 802.11a CODEC implementation in [31]. These variants
are too different from each other to be generated in an automatic
manner from the same C code. Some of these variants are also prac-
tically impossible to express in a sequential language [23].

In general multiple rules on the same state elements are used
to describe the desired behavior. The BCL semantics only requires
that one rule be executed at a time and the rule to be executed can
be chosen arbitrarily. This choice introduces the nondeterminism
often needed to express hardware at a more abstract level. For per-
formance reasons, the Bluespec compiler does static analysis of the
rules and schedules as many rules to execute concurrently as pos-
sible without violating the one-rule-at-a-time semantics [13]. The
compiler essentially generates a circuit for each rule and synthe-
sizes a scheduler for the correct execution of multiple rules. We
omit a more complete description of hardware compilation because

BCL: Hardware/Software Codesign 4 2010/11/19

BCL compiler simply calls the Bluespec SystemVerilog [17] com-
piler once the hardware partition has been isolated.

4.2 Packaging IFFT into a Module
In BCL, a module is the basic linguistic abstraction to encapsulate
computation and state. Like an object-oriented language, one thinks
of a module as an object with method interfaces; the object’s state
can be manipulated only via the object’s methods. However, the
methods in BCL are different in one important aspect: each method
has an implicit guard and a method can be called only when its
guard is true. Consequently a rule is ready to execute only when the
rule’s guard and all the methods called by the rule are ready. Such
guarded methods provide a convenient way to build large atomic
actions in a modular way and gives us flexibility to refine the timing
of internal modules.

To package the IFFT from the previous section into a module we
need to consider the interface through which the external world will
interact with the IFFT. Logically, we need to receive an input frame
and send out the resulting output frame. However, we do not want to
make any assumptions about how long the computation takes and
therefore split the IFFT call into request and response methods.
Since we want the design to be implementable in hardware we
cannot pass varying sized frames into our IFFT. Instead we will
fix the size to the maximum supported frame size, (pad the input
and output) and add an additional integer parameter to represent the
size of the current frame. This is captured in the following interface
definition parameterized by the data type t:
interface IFFT#(type t){
method Action input(int sz, Vector#(max,Complex#(t)) x);
method ActionValue#(Vector#(max,Complex#(t))) output();}

The input method is an Action, i.e., it causes a state change
when it executes but it returns nothing. Specifically, it sets the
loop counters, data and flag registers to initialize the computation.
Methods which only read state and return a result based on it are
pure functions and called value methods.The outputmethod is an
ActionValuemethod which performs both an action on the state
and returns a value. In this case output returns the completed
result from the IFFT and marks it as having been removed. The
designation of methods as Action or ActionValue is important since
the BCL type system employs monadic isolation all mutations,
easing the burden of analysis and guaranteeing the safety of pure
functions. We wrap our rule in a module as follows:
module mkIFFT(IFFT){
Reg#(int) sz <- mkRegU();
Reg#(bool) busy <- mkReg(False);
Reg#(int) stage <- mkReg(0);
Reg#(int) row <- mkReg(0);
VectorReg#(max,t) sdata <- mkVectorReg();
let nStages = tabulate(\s -> log(s)/log(k))[sz]);
let nRows = sz/K;
rule doIFFT ...
method Action input(int s, Vector#(max,t) x)when(!busy){

stage:=0; row:=0; busy:=True; sdata:=x; sz:=s;}
method ActionValue#(Vector#(max,t)) output()

when (busy && stage == nStages && row == nRows){
busy := False; return sdata;}}

Notice that our method instances have when clauses like our rule.
Here it serves the same purpose, to signify when those methods are
valid to be called. This condition will be folded into the guard of
any rule calling this method.

4.3 IMDCT: Using the IFFT Module
The polymorphic code for IMDCT is given in Figure 2. Its input
method setups the input for the IFFT and calls the input method
of the IFFT, while the output method extracts the output from
IFFT. The syntax of the first line in Figure 2 can be read as follows:
“a module named mkIMDCT being defined. It takes the module

mkIFFT (of type IFFT#(t)) as a constructor argument, and
implements the interface IMDCT#(t)”.

module mkIMDCT#(Module#(IFFT#(t))) mkIFFT)(IMDCT#(t)){
IFFT#(Complex#(t)) ifft <- mkIFFT;
FIFO#(Vector#(2*MAX,Complex#(t)) queue <- mkFIFO;
method Action input(vx) {
Vector#(2*MAX,Complex#(t)) v;
for(int i = 0; i < K; i++){

v[i] = preTable1[i]*vx[i];
v[K+i] = preTable2[i]*vx[i];}

ifft.in(2K,v); }
method ActionValue#(Vector#(2*MAX,Complex#(t)))
output(){
let x <- ifft.output();
Vector#(2K,Complex#(t)) v;
for(int i = 0; i < 2*K; i++)

v[i] = x[bitReverse(i)];
return v;}

Figure 2. mkIMDCT module definition

4.4 Marshaling/Demarshaling
All the interfaces we have seen thus far receive input and return
output as a single vector. Implementing these blocks in hardware
requires prohibitive routing resources, and this cost only becomes
more obvious when one considers the additional waste incurred for
dynamic frame sizes, since we must always pay for the maximum
size. Additionally, this style doesn’t match physical channels be-
tween hardware and software, which are generally data width lim-
ited. With these considerations, a more efficient streaming interface
for the IFFT might be written as follows:
interface IFFT#(type t){
method Action setSize(int sz);
method Action input(t x);
method ActionValue#(t) output();}

Using the new interface, the dynamic size is set using the setSize
Action method, after which the invoking rules can stream data in
and out of the module using the input and output methods.
Once a full frames worth of elements have been streamed in, the
input methods guard protects the buffered data from being over-
written while doIFFT performs the computation “in place”. Once
the user has read the transformed frame, the input method can again
begin to receive data.

We can convert the IFFTs presented in this section to use this
interface by inserting marshaling and demarshaling code in the
input/output methods, as shown below for the input case:
module mkIFFT(IFFT){
...
Reg#(int) in_cnt <- mkReg(0); //added state
VectorReg#(max,t) in_buff <- mkVectorReg();
method Action input(t x) when (!busy || in_cnt+1 < sz){
in_buff[in_cnt] := x;
if(in_cnt+1 < sz) {in_cnt := in_cnt+1;}
else{sdata := in_buff; in_cnt := 0; busy := True}}

... }

This new implementation not only synthesizes to much more effi-
cient hardware, but lets us hide some of the latency of the doIFFT
rule by buffering up the next frame while the current one is in flight.
Since BCL is a hardware-software codesign language, it must also
be possible to generate efficient software from BCL; we will de-
scribe this in the next section. A reader more interested in under-
standing partitioning can read Section 6 before reading Section 5
without loss of continuity.

5. Compiling BCL into software
Each BCL module is compiled into a C++ class and each of the
module’s rules and methods is compiled into a separate class
method. During the course of translation we need to create shadow

BCL: Hardware/Software Codesign 5 2010/11/19

copies of the state of an object. This is accomplished by construct-
ing a new object of the same class using the copy constructor. The
translation procedure maintains an environment ρwhich maps BCL
module instance names to the active class instance corresponding
to that name. A new ρ containing all immediate submodules is
constructed for the compilation of each BCL module, and serves as
the initial environment for the translation of each internal rule and
method. We now present a detailed syntax directed compilation of
BCL. The compiling scheme is presented bottom up, starting with
the compilation of expressions then actions and rules, followed by
modules. We finally discuss some optimizations to improve the
code efficiency.

For the sake of brevity we take a few notational liberties in
describing translation rules. Generated C++ code is represented by
the conjunction of three different idioms: literal C++ code (given in
the true text font), syntactic objects which evaluate to yield
C++ code (given in the document font), and environment variables
used by the compiler procedures (represented as symbols). The
names of compiler procedures that generate code fragments are
given in boldface.

5.1 Compiling Expressions
The translation of a BCL expression produces a C++ expression
and one or more statements that must be executed before the ex-
pression. The procedure to translate expressions (TE) is shown
in Figure 3; it is straightforward because expressions are com-
pletely functional. The only clause needing further explanation is
the guarded expression (e when ew). Upon evaluation, the failure
of a sub-expression’s guard should cause the entire expression to
evaluate to ⊥. If the value of an expression evaluates to ⊥, then its
use in an action causes that action to have no effect. The “throw” in
case of guard failure is “caught” in the lexically outermost action
enclosing the expression.

TE :: Env × J e K→ (CStmt, CExpr)

TE ρ J r K = (;, ρ[r].read()) TE ρ J c K = (;, c)
TE ρ J t K = (;, t)

TE ρ J e1 op e2 K = (s1;s2, ce1 op ce2)
where (s1, ce1) = TE ρ J e1 K

(s2, ce2) = TE ρ J e2 K
TE ρ J ep ? et : ef K = (sp; st; sf, cep ? cet : cef)

where (sp, cep) = TE ρ J ep K
(st, cet) = TE ρ J et K
(sf, cef) = TE ρ J ef K

TE ρ J e when ew K = (se; sw; if (!cw)
{ throw GuardFail;},ce)

where (se, ce) = TE ρ J e K
(sw, cw) = TE ρ J ew K

TE ρ J t = et in eb K = (st; t = ct; sb, cb)
where (st, ct) = TE ρ J et K

(sb, cb) = TE ρ J e K
TE ρ J m.f(e) K = (se, ρ[m].f(ce))

where (se, ce) = TE ρ J e K

Figure 3. Translation of Expressions

5.2 Compiling Actions
A rule is composed of actions and any of these actions can have
guards. Earlier we explained the meaning of a guarded action by
saying that a rule is not eligible to fire (execute) unless its guard
evaluates to true. However, due to conditional and sequential com-
position of actions, in general it is impossible to know if the guards
of all the constituent actions of a rule are true before we execute
the rule. To circumvent this limitation, we execute a rule in three
phases: In the first phase we create a shadow of all the state ele-
ments using the copy constructor. We then execute all constituent
actions, updating the shadow state. Sometimes more shadows are

needed to support the parallel semantics within an action. (In our
translation rules, we only copy and create new environments and
let the generated C++ code mutate the objects referenced by the
environment). Finally, if no guard failures are encountered we com-
mit the shadows, that is, atomically update the real state variables
with values of the shadowed state variables using parMerge or
seqMerge depending upon the action composition semantics. On
the other hand if the evaluation encounters a failed guard, it aborts
the computation and the state variables are not updated.

For perspicuity, the rules present a slightly inefficient translation
where shadows of the entire environment are created whenever a
shadow may be needed. Figure 4 gives the procedure for translating
BCL actions (TA).

TA :: Env × J a K→ CStmt
TA ρ J r := e K = se; ρ[r].write(ce);

where (se, ce) = TE ρ J e K
TA ρ J if e then a K = se; if(ce){TA ρ J a K}

where (se, ce) = TE ρ J e K
TA ρ J a1 | a2 K = cs1; cs2; (TA ρ1 Ja1K); (TA ρ2 Ja2K); pm; ms;

where (cs1, ρ1) = makeShadow ρ
(cs2, ρ2) = makeShadow ρ
(pm, ρ3) = unifyParShadows ρ1 ρ2

ms = commitShadow ρ ρ3
TA ρ J a1;a2 K = cs; (TA ρ1 Ja1K); (TA ρ1 Ja2K); ms;

where (cs, ρ1) = makeShadow ρ
ms = commitShadow ρρ1

TA ρ J a when e K = se;if(!ce){throw GuardFail;};ca
where (se, ce) = TE ρ J e K

ca = TA ρ J a K
TA ρ J t = e in a K = se; t = ce; (TA ρ J a K)

where (se, ce) = TE ρ J e K
TA ρ J m.g(e) K = se; (ρ[m].g(ce));

where (se, ce) = TE ρ J e K
TA ρ J loop e a K = cs; while(true){se;

if(!ce) break; ca;} ms;
where (cs,ρ1) = makeShadow ρ

(se, ce) = TE ρ J e K
ms = commitShadow ρ ρ1
ca = TA ρ1 JaK

TA ρ J loopGuard e a K = try{while(true){ cs; se;
if(!ce) break; ca; ms;}}catch {}

where (cs,ρ1) = makeShadow ρ
(se, ce) = TE ρ J e K

ms = commitShadow ρ ρ1
ca = TA ρ1 JaK;

Figure 4. Translation of Actions

State Assignment (r := e): This causes a side-effect in the rel-
evant part of the state of the object which can be extracted from
ρ. If e evaluates to bottom, the control would have already been
transferred automatically up the call stack via the throw in e.

Parallel Composition (a1 | a2): Both a1 and a2 observe the same
initial state, though they update the state separately. Consider the
parallel actions r1 := r2|r2 := r1 which swap the values of r1 and
r2. Such semantics are naturally implemented in hardware as swaps
can be done with no intermediate state (the values are read in the
beginning of a clock cycle and updated at the end of it). However,
in software if we update r1 before executing the second action,
then the second action will read the new value for r1 instead of the
old one. To avoid this problem, the compiler creates shadow states
for each parallel action, which are subsequently merged after both
actions have executed without guard failures. In a legal program,
the updates of parallel actions must be to disjoint state elements.
Violation of this condition can only be detected dynamically, in
which case an error is thrown.

The compiler uses several procedures to generate code to be
used in implementing parallel composition. The makeShadow pro-

BCL: Hardware/Software Codesign 6 2010/11/19

cedure takes as its argument an environment (ρ) and returns a tuple
consisting of a new environment (say ρ1), and C++ statements (say
cs1). cs1 is executed to declare and initialize the state elements ref-
erenced to in ρ1. The new environments are then used in the trans-
lation of each of the actions. The procedure unifyParShadows is
used to unify ρ1 and ρ2, implicitly checking for consistency. Along
with ρ3, which contains the names of the unified state elements, it
returns a C++ statement (pm) which actually implements the unifi-
cation. Lastly, the commitShadow procedure generates code (ms)
to commit the speculative state held in ρ3 back into the original
state ρ.

In order to understand unifyParShdows, consider the parallel
merge of two primitive Registers, each of which track their own
modification with a dirty bit:
void parMerge(Reg<T>& r1, Reg<T>& r2){
if(r1.dirty && r2.dirty) {throw ParMergeError;}
if (r2.dirty) {r1.val = r2.read(); r1.dirty = true};

From here, the reader can extrapolate the implementation to other
primitive modules such as the VectorReg used in the IFFT im-
plementation. The parMerge for this module would most likely
allow updates to disjoint locations in parallel branches of execution,
but throw an error if the same location were written. unifyPar-
Shadows generates code which recursively invokes parMerge
pointwise on the two environments, whereas commitShadow
ρ ρ1 simply performs pointwise updates of objects in ρ from
dirty objects in ρ1 by invoking seqMerge.

Sequential composition (a1; a2): The action a1; a2 represents the
execution of a1 followed by a2. a2 observes the full effect of a1,
but due to the atomic nature of action composition, no one can
observe a1’s updates without also observing a2’s. The subtlety
in sequential composition is that if a1 succeeds but a2 fails, we
need some way of undoing a1s updates. Its because of this that we
need to create a shadow state before executing either action. As the
sequential rule in Figure 4 shows, after creating the shadow ρ1,
we pass it to the translation of both a1 and a2. The code block ms
commits the resulting state. However a1; a2; a3 can all be executed
using only one shadow.

Guarded Action (a when e): The when keyword allows the pro-
grammer to guard any action. The C++ translation of guarded ac-
tions executes the guard, se, followed by the expression ce, and
throws a guardFail exception if ce evaluates to false. After this, the
code implementing a is executed.

Atomic Loop (loop e a): The semantics of this loop can be under-
stood as the reduction: loop e a ⇒ if e then (a; loop e a) else
noAction. In other words all iterations are sequentially composed
to form one atomic action. Consequently, if any iteration fails, the
whole loop action fails. This can be implemented using one shadow
which is created before entering the loop.

Protected Loop (loopGuard e a): The difference between the
protected loop and the atomic loop are in the termination semantics.
In protected loop, if a guard in a loop iteration fails, that iteration
is treated as noAction. In the atomic loop, the entire loop action
becomes noAction.

The reader might notice the absence of a parallel loop. This is
not due to any fundamental barrier in the semantics, but rather the
authors’ prejudice in how this affects design patterns in BCL.

5.3 Compiling rules and methods
Figure 5 gives the translation of rules and methods, differentiating
between action and value methods. The important thing to note
is that rules catch guard failures, whereas methods do not. This
is consistent with our implementation of the BCL semantics that
specify rules as top level objects which cannot be invoked within

the language. Methods, on the other hand, must be called from
inside a rule or another method.

genRule ρ J (Rule nm a) K =
void nm(){try{TA ρ J a K}catch{guardFail};}

genAMeth ρ J (AMeth nm v a) K = void nm(t v){TA ρ J a K}
genVMeth ρ J (VMeth nm v e) K = let (se,ce) = TE ρ J e K

in void nm(t v){se;return ce;}

Figure 5. Translation of Rules and Methods

5.4 Compiling Modules and generating main()
The C++ class corresponding to a BCL module has five methods
in addition to a method for each BCL modules rules and methods.
These five methods are a default constructor (used to instantiate
its submodules recursively), a copy constructor (used to generate
shadows, also recursive), parMerge, seqMerge, and a method
to execute internal rules.

Each BCL module instantiates all of its submodules and spec-
ifies their initial state. The corresponding C++ default construc-
tor implements this behavior exactly. Thus, by instantiating the top
module, the entire program state is recursively instantiated. For the
translation of the methods and rules of each module definition, an
environment ρ is constructed to refer to these newly instantiated
objects. This environment is used to compile all rules and methods
of this module as shown in Figure 5.

The execution semantics of a BCL program is defined by the
firing of its constituent rules. While each rule modifies the state
deterministically, nondeterminism is introduced via the choice of
which ready rule to execute. The range of behaviors that a collec-
tion of rules and state can produce is described below:

Repeatedly:
• Choose a rule to execute
• Compute the set of state updates in a shadow state U , by evaluating the

rule’s action according to the rules given in [30].
• Commit the shadow U to the original state.

This nondeterminism is resolved in each module by its method,
execSchedule. There are many important scheduling choices,
which greatly impact execution performance. A trivial schedule
simply iterates through each rule in a module, before recursively
invoking execSchedule on all submodules one by one. Once
the execSchedule of each module has been invoked recursively,
we re-invoke execSchedule on the top module. We will discuss
improvements to this approach to scheduling in Section 5.5.

Since BCL is not sufficiently dynamic to describe software at
higher levels in the software stack, facilities have to be provided
to interface BCL with other languages. We present an interface of
guarded methods to software, and an application seeking to use
BCL as a slave can directly call these methods after first verifying
that a method’s guard is “ready”. If a peer-oriented view is desired,
the BCL design may be required to call directly into the external ap-
plication. This requires designers to present an appropriate guarded
interface to the BCL application.

5.5 Optimizations
The most effective means of increasing software execution speed
is the minimization of shadows. There several ways to accomplish
this goal:

Sequencing Parallel Actions: The conversion of a parallel com-
position to a sequential one results in the saving of one shadow
copy. For example, by converting r1 := f(x) | r2 := g(x) to
r1 := f(x) ; r2 := g(x), we need not shadow states r1 and
r2 twice before executing the parallel branches. In addition, ac-
tion methods invoked on the same module in parallel which inter-
nally modify disjoint states may also be sequentialized. Even sim-

BCL: Hardware/Software Codesign 7 2010/11/19

ple data-flow analysis can reveal abundant opportunities for this
optimization.

Lifting Guards: When executing a rule whose guard fails, we
would prefer it fail as early in the execution as possible. Early
failure avoids all sorts of extra work, most importantly shadowing.
Consider the following transformation in BCL:

(a1 when a1g | a2 when a2g) ⇒ (a1 | a2) when (a1g ∧ a2g)
A C++ implementation of these semantics requires guards be

evaluated before either a1 or a2 is executed. By the rules given
in [30], it is possible to lift most guards.

Scheduling: The first order concern in scheduling is choosing a
rule which will not fail, since partial execution of any rule which
eventually fails is wasted work. Scheduling annotations in the form
of priorities among rules can be given by the programmer to direct
the compiler’scheduling decisions. Even without such annotations,
the compiler can exploit data-flow analysis which may reveal that
the execution of one rule may enable another. Portions of BCL
programs are sometimes identifiable as synchronous regions in
which case a well-known static scheduling techniques are applied.

Partial Shadowing: The reference implementation constructed a
complete shadow for every possible action composition. If com-
piler analysis reveals that only a subset of the state can be modified
by an action, only that subset needs to be shadowed.

The software implementation presented in this paper is single-
threaded, but it can be extended to multi-threaded execution en-
vironment to exploit parallelism. Work on this front ongoing, but
beyond the scope of this paper.

6. Specifying Partitions
We return to the original IMDCT example to demonstrate one of
the most important features of BCL: specifying partitions. As the
first example of partitioning, we will implement the IFFT module
in hardware and the remaining functionality in software. Later we
will discuss various partitioning of the complete Vorbis decoder.

6.1 Computational Domains
Partitions are specified using computational domains, and a type
system is used to enforce that partitions are disjoint and no inad-
vertent inter domain references are made. Imagine annotating ev-
ery method with a domain name and following the simple discipline
that each rule (and method) can refer to methods of only one do-
main. Consequently, if a rule (or method) refers to methods from
domain D only then we can say that the rule belongs to domain D.
A simple type checker can determine if the domain annotations are
consistent. A primitive module, i.e., one that does not refer to the
methods of any external module, is said to be a synchronizer if it
has methods in more than one domain. Interdomain communication
is possible only through synchronizers. In fact, as we show below
inserting synchronizers in a program is the same as specifying a
partitioning of that program.

Consider the IMDCT code shown in Figure 2. Suppose we
want to implement the IFFT in hardware and the rest of IMDCT
in software. The input and output methods of IFFT must be in
the hardware domain (HW) but the IMDCT methods that invoke
these methods must be in the software domain (SW). This seems
impossible unless we violate our type discipline which says the
domain of a method must be the same as the domain of the methods
it calls. The way we resolve this problem is by introducing two
synchronizing FIFOs with the following interfaces:
interface SyncFIFOHtoS#(type t){
(HW) Action enq(t val);
(SW) ActionValue#(t) deq(); }

interface SyncFIFOStoH#(type t){
(SW) Action enq(t val);
(HW) ActionValue#(t) deq();}

These synchronizing FIFOs can be inserted in the original
IMDCT code of Figure 2 by introducing two new rules in the HW
domain to talk to the IFFT and modifying each method of IMDCT
to call the appropriate synchronizing FIFO rather than the IFFT
directly. This is given in Figure 6.

module mkIMDCT#(Module#(IFFT#(Complex#(t))) mkIFFT)
(IMDCT#(t)){

IFFT#(Complex#(t)) ifft <- mkIFFT;
FIFO#(Vector#(2*MAX,Complex#(t)) queue <- mkFIFO;
SyncFIFOStoH#(int) sizeSync <-
mkS2H;
SyncFIFOStoH#(Vector#(2*MAX, Complex#(T))) inSync <-
mkS2H;
SyncFIFOHtoS#(Vector#(2*MAX, Complex#(T))) outSync <-
mkH2S;
rule feedIFFT{ // HW
let v <- inSync.deq();
let s <- sizeSync.deq(); ifft.input(s,v);}

rule drainIFFT{ // HW
let x <- ifft.output(); outSync.enq(x);}

method Action input(vx) { // SW
Vector#(2*MAX,Complex#(t)) v;
for(int i = 0; i < K; i++){

v[i] = preTable1[i]*vx[i];
v[K+i] = preTable2[i]*vx[i];}

inSync.enq(2K,v); }
method ActionValue#(Vector#(2*MAX,Complex#(t)))
output(){ // SW
let x <- outSync.deq();
Vector#(2K,Complex#(t)) v;
for(int i = 0; i < 2*K; i++)

v[i] = x[bitReverse(i)];
return v;}

Figure 6. partitioned mkIMDCT module definition

Though moving the design from a single domain to multiple
domains required modifying only a few lines to code, the effect is
to introduce buffering along the hardware/software cut of the data-
flow graph. In general such buffering can affect the functionality
of the design. However if we restrict such changes to interfaces
that are latency-insensitive, then such changes are correct by con-
struction. It is beyond the scope of this paper to define this prop-
erty precisely, but it suffices to say that latency sensitive hardware-
software interfaces are usually quite brittle and hence of little use.
When using BCL for hardware software codesign, an effective de-
sign methodology requires all hardware/software interfaces to be
latency insensitive. We note in passing that it is this property of
interfaces which enables modular refinement of a design: in fact,
moving a module from hardware to software is modular refine-
ment [32].

6.2 The Complete Vorbis Pipeline
The Vorbis pipeline can be partitioned in many different ways;
six are shown in Figure 7. We present the code corresponding
to the partition with the IFFT and windowing function placed in
hardware. The PCM output is naturally in hardware (speaker), so
we don’t require an additional rule to stream the output of the
windowing function back to software.
module mkVorbisPipeline(VorbisPipeline){
SOURCE source <- mkVorbisStreamGen();
Parser parser <- mkStreamParser();
ResDec resdec <- mkResidueDecoder();
FloDec flodec <- mkFloorDecoder();
IMDCT imdct <- mkIMDCT;
SyncFIFOStoH#(Complex#(t)) toWindow <- mkStoH;
WINDOW window <- mkWindowingFunction();
rule sourceToParser ... // SW
rule parserToFloor ... // SW
rule parserToResidue ... // SW

BCL: Hardware/Software Codesign 8 2010/11/19

rule reconstSignal{ //SW
let x <- resdec.output();
let y <- flodec.output();
imdct.input(x+y);}

rule imdctToSync ... // SW
rule syncToWindow ... // HW

It is possible to write very general partitioned code where domains
are represented as type parameters. We provide the following prim-
itive to enable this level of flexibility:
interface Sync#(type t, domain a, domain b){
(a) Action enq(t val);
(b) ActionValue#(t) deq();}

Suppose we declare the IMDCTs internal synchronizers in the
following manner, where a is a free type variable:
Sync#(int, a, HW) sizeSync <- mkSync;
Sync#(Complex#(t), a, HW) inSync <- mkSync;
Sync#(Complex#(t), HW, a) outSync <- mkSync;

The resulting IMDCT is fully polymorphic in its domain type. If the
parameter a is instantiated to HW, the compiler will recognize that
the synchronizers are hardware to hardware and will replace them
with lightweight FIFOs. If on the other hand a is instantiated to
SW then the synchronizers would become mkSyncHtoS (or StoH).
In other words, a very general partitioned code may insert more
synchronizers than necessary for a specific partitioning, but these
can be optimized by the compiler in a straightforward manner.

6.3 Separating Hardware from Software: Generating
Partitions

We can extract the code for a particular domain D by removing
all the rules not annotated with D from the partitioned code. We
do not have to remove methods since our type system guarantees
that any method not in D cannot be invoked by the rules of D;
such dead methods will be removed by the compiler in the target
domain. Once separated, each partition can now be treated as an
distinct BCL program and compiled to its designated target domain
in isolation. Shown below is the BCL code corresponding to the SW
partition of the Vorbis pipeline presented above. This code can now
be compiled into software according to the rules in Section 5:
module mkVorbisPipelineSW(VorbisPipeline){
SOURCE source <- mkVorbisStreamGen();
Parser parser <- mkStreamParser();
ResDec resdec <- mkResidueDecoder();
FloDec flodec <- mkFloorDecoder();
IMDCT imdct <- mkIMDCT;
Sync#(Complex#(t),SW,HW) toWindow <- mkSync;
WINDOW window <- mkWindowingFunction();
rule sourceToParser ... // SW
rule parserToFloor ... // SW
rule parserToResidue ... // SW
rule reconstSignal ... //SW
rule imdctToSync ... // SW

6.4 Sharing the communication channel
A partitioned code often involves many synchronizers. For exam-
ple, in this partitioning, we use three synchronizers from software
to hardware and one in the other direction. Often systems will pro-
vide fewer physical channels (typically one in the form of a bus)
which must be multiplexed to accommodate multiple virtual chan-
nels. It is possible to express this multiplexing in BCL, but it is
easier for the designer to use the highly parameterized library mod-
ules provided for this purpose.

In the next section we evaluate a range of partitionings where
in each case, we run the software partition either on a processor
connected the FPGA with a PCI-E bus, or on a processor embedded
in the FPGA fabric. In the embedded case, the communication
channels between hardware and software are point-to-point and no
multiplexing is required.

HW
Windowing

HW IMDCTHybrid IMDCT

SW
Windowing

IFFT Core

IMDCT FSMs

Parameter
Tables

Window
Parameters

adder/FSM

Backend FSMs

IFFT Core

IMDCT FSMs

Parameter
Tables

Window
Parameters

adder/FSM

Backend FSMs

IFFT Core

IMDCT FSMs

Parameter
Tables

Window
Parameters

adder/FSM

Backend FSMs

IFFT Core

IMDCT FSMs

Parameter
Tables

Window
Parameters

adder/FSM

Backend FSMs

IFFT Core

IMDCT FSMs

Parameter
Tables

Window
Parameters

adder/FSM

Backend FSMs

IFFT Core

IMDCT FSMs

Parameter
Tables

Window
Parameters

adder/FSM

Backend FSMs

SW IMDCT

Figure 7. Examined partitions of Ogg Vorbis. The dotted section
denotes the hardware partition.

7. The Experiment
In order to decice a hoog HW/SW partition. many compoennts
must be very strong. Hardware must be good. THe software must be
good, the communication must be good. The measurement method-
ology must be good. Besides the hardware quality, which we sig-
nificant experience with

To show the effectiveness of BCL in codesign we explored
six different hardware/software partitionings of the Vorbis decoder.
These partitionings were derived by placing the IMDCT and win-
dowing stages in either hardware or software. Three different de-
signs for IMDCT were considered: a pure software IMDCT, a
hardware IMDCT, and a hybrid IMDCT with a hardware IFFT or-
chestrated by a software FSM. (see Figure 7). As claimed by our
methodology, each of these partitions was specified and compiled
in minutes. We used Xilinx XUPv5-LX110T FPGA platform as the
target for hardware compilation.

To evaluate a
We evaluated the software by running it on two different plat-

forms. The first platform is a standard hardware acceleration
platform, where XUPv5 is connected to a 2-core 2.8GHz Ne-
halem Westmere CPU with 3GB of RAM. Communication is done
through PCI-Express on top of the Standard Co-Emulation and
Modeling infrastructure (SCE-MI), a standard protocol geared to-
wards testing and timing of hardware systems. The second platform
represents a classic embedded system and uses a MicroBlaze soft-
core inside the XUPv5 FPGA. This embedded processor runs only
at 100MHz but communicates with other FPGA objects using the
Fast Simplex Link (FSL) protocol on uni-directional point-to-point
communication channel. Running our software on these two plat-
forms only required us to use a different communication module.

To evaluate performance, we constructed a testbench consisting
of 10000 Vorbis audio frames. All computation was done using 32-
bit fixed point values with 24-bit fractional precision. The perfor-
mance results and FPGA hardware partitionings for both platforms
are shown in Figure 8.

As expected, in the accelerator platform performance tends to
improve when we place more computation on FPGA. We can also
see that the cost of communication on the PCI-express is signifi-
cant. So much so that placing partitions which increase communi-
cation (only hardware windowing versus pure software) causes a
notable slow down despite the fact that the hardware windowing
implementation is faster.

The embedded system has a much lower latency through its
communication channel. However, the performance of software is

BCL: Hardware/Software Codesign 9 2010/11/19

FrontEnd: SW SW SW SW SW SW
IMDCT: Full HW HW IFFT Full SW

Windowing: HW SW HW SW HW SW
FPGA Accelerator Platform

Speed(secs) 8.9 28.1 84.9 102 316 38.9
FPGA (Regs) 36% 32% 40% 36% 34% 0%
FPGA (Slices) 22% 22% 20% 21% 23% 0%

Embedded FPGA Platform
Speed(secs) 114 231 414 421 876 896

FPGA (Regs) 36% 35% 38% 37% 35% 33%
FPGA (Slices) 36% 35% 33% 34% 37% 39%

Figure 8. Execution and Simulation Results.

also reduced relative to the FPGA. As a result in the embedded
system it’s much more advantageous to consider systems with more
hardware than in the case of the accelerator and we end up with the
entire backend in hardware.

While this experiment handily shows how we can effectively
migrate designs across platforms and do major architectural changes
on a single platform. What remains to be seen is how does this im-
plementation fare against a hand-coded design. To evaluate this
we hand-coded the software partition for the best design parti-
tioning for the embedded platform. As hardware quality of this
methodology has been proven multiple times, we reuse the hard-
ware for testing. The resulting code is 11% faster than our built
design. Analysis shows that much of the efficiency loss is due to
inefficient scheduling of the software rules. With more intelligent
software rule scheduling we can get comparable efficiency. For de-
signs where pointers/specialized implementations cause significant
improvement.

8. Conclusion
We have presented a novel approach for exploring hardware-
software codesign tradeoffs based on expressing the entire design
using a language of guarded atomic actions. Using the example of
a Vorbis decoder we’ve shown that partitioning of designs in BCL
is natural and easy and can hide the messiness of the underlying
communication substrate. We doubt if so many different hardware-
software partitioning of Vorbis can be specified and evaluated in
one day using any two language framework. We have shown that
our compiling technique is platform independent by running it on
two very different software platforms. We used high quality com-
mercial tools for compiling hardware and showed that our soft-
ware compilation generated code whose efficiency was compara-
ble to hand-coded C. Our approach generalizes to multiple software
threads and multiple hardware substrates naturally, though we did
not explore that aspect in this paper. While it’s unlikely that the
first partitioning a designer attempts is optimal, BCL enables rapid
refinements, and allows the designer to tune the design

References
[1] P. O. Meredith, M. Katelman, J. Meseguer, and G. Roşu, “A formal

executable semantics of Verilog,” in Eighth ACM/IEEE International
Conference on Formal Methods and Models for Codesign (MEM-
OCODE’10). IEEE, 2010, pp. 179–188.

[2] S. Y. Liao, “Towards a new standard for system level design,” in Pro-
ceedings of the Eighth International Workshop on Hardware/Software
Codesign, San Diego, CA, May 2000, pp. 2–7.

[3] G. Kahn, “The semantics of simple language for parallel program-
ming,” in IFIP Congress, 1974, pp. 471–475.

[4] J. B. Dennis, J. B. Fosseen, and J. P. Linderman, “Data flow schemas,”
in International Sympoisum on Theoretical Programming, 1972.

[5] Arvind and R. Nikhil, “Executing a program on the MIT Tagged-
Token Dataflow Architecture ,” Computers, IEEE Transactions on,
vol. 39, no. 3, pp. 300 –318, Mar. 1990.

[6] E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous
data flow programs for digital signal processing,” IEEE Trans. Com-
puters, vol. 36, no. 1, pp. 24–35, 1987.

[7] W. Thies, M. Karczmarek, and S. P. Amarasinghe, “Streamit: A lan-
guage for streaming applications,” in CC, ser. Lecture Notes in Com-
puter Science, R. N. Horspool, Ed., vol. 2304. Springer, 2002.

[8] G. Berry and L. Cosserat, “The ESTEREL Synchronous Programming
Language and its Mathematical Semantics,” in Seminar on Concur-
rency, 1984, pp. 389–448.

[9] D. C. Luckham, “Rapide: A language and toolset for causal event
modeling of distributed system architectures,” in WWCA, 1998.

[10] S. A. Edwards and O. Tardieu, “Shim: a deterministic model for
heterogeneous embedded systems,” IEEE Trans. VLSI Syst., vol. 14,
no. 8, pp. 854–867, 2006.

[11] J.-P. Talpin, C. Brunette, T. Gautier, and A. Gamatié, “Polychronous
mode automata,” in EMSOFT, 2006, pp. 83–92.

[12] K. M. Chandy and J. Misra, Parallel Program Design: A Foundation.
Reading, Massachusetts: Addison-Wesley, 1988.

[13] J. C. Hoe and Arvind, “Operation-Centric Hardware Description and
Synthesis,” IEEE TRANSACTIONS on Computer-Aided Design of In-
tegrated Circuits and Systems, vol. 23, no. 9, September 2004.

[14] E. W. Dijkstra, “Guarded commands, nondeterminacy and formal
derivation of programs,” Commun. ACM, vol. 18, no. 8, 1975.

[15] N. A. Lynch and M. R. Tuttle, “An introduction to input/output au-
tomata,” CWI Quarterly, vol. 2, pp. 219–246, 1989.

[16] E. Czeck, R. Nanavati, and J. Stoy, “Reliable Design with Multiple
Clock Domains,” in Proceedings of Formal Methods and Models for
Codesign (MEMOCODE), 2006.

[17] Bluespec SystemVerilog Version 3.8 Reference Guide, Bluespec, Inc.,
Waltham, MA, Nov 2004.

[18] W. Snyder and P. Wasson, and D. Galbi, “Verilator,”
http://www.veripool.com/verilator.html, 2007.

[19] “Carbon Design Systems Inc,” http://carbondesignsystems.com.
[20] Catapult-C Manual and C/C++ style guide, Mentor Graphics, 2004.
[21] Synfora, “PICO Platform,” http://www.synfora.com/.
[22] AutoESL Desisgn Technologies, Inc.,

http://www.autoesl.com.
[23] A. Agarwal, M. C. Ng, and Arvind, “A comparative evaluation of

high-level hardware synthesis using reed-solomon decoder,” Embed-
ded Systems Letters, IEEE, vol. 2, no. 3, pp. 72 –76, 2010.

[24] S. S. Huang, A. Hormati, D. F. Bacon, and R. Rabbah, “Liquid metal:
Object-oriented programming across the hardware/software bound-
ary,” in ECOOP ’08: Proceedings of the 22nd European conference on
Object-Oriented Programming. Berlin, Heidelberg: Springer-Verlag,
2008, pp. 76–103.

[25] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy: A
framework for simulating and prototyping heterogenous systems,” Int.
Journal in Computer Simulation, vol. 4, no. 2, pp. 0–, 1994.

[26] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and
A. Sangiovanni-Vincentelli, “Metropolis: An integrated electronic
system design environment,” Computer, vol. 36, pp. 45–52, 2003.

[27] K. S. Chatha and R. Vemuri, “Magellan: multiway hardware-software
partitioning and scheduling for latency minimization of hierarchical
control-dataflow task graphs,” in CODES, 2001, pp. 42–47.

[28] P. Arató, Z. A. Mann, and A. Orbán, “Algorithmic aspects of
hardware/software partitioning,” ACM Trans. Des. Autom. Electron.
Syst., vol. 10, pp. 136–156, January 2005. [Online]. Available:
http://doi.acm.org/10.1145/1044111.1044119

[29] R. Ernst, J. Henkel, and T. Benner, “Hardware-software cosynthesis
for microcontrollers,” IEEE Des. Test, vol. 10, no. 4, pp. 64–75, 1993.

[30] N. Dave, Arvind, and M. Pellauer, “Scheduling as Rule Composition,”
in Proceedings of Formal Methods and Models for Codesign (MEM-
OCODE), Nice, France, 2007.

BCL: Hardware/Software Codesign 10 2010/11/19

[31] N. Dave, M. Pellauer, S. Gerding, and Arvind, “802.11a Transmitter:
A Case Study in Microarchitectural Exploration,” in Proceedings of
Formal Methods and Models for Codesign (MEMOCODE), Napa, CA,
2006.

[32] N. Dave, M. C. Ng, M. Pellauer, and Arvind, “A design flow based
on modular refinement,” in Formal Methods and Models for Codesign
(MEMOCODE 2010).

BCL: Hardware/Software Codesign 11 2010/11/19

