
Automatic Synthesis of Cache-Coherence Protocol Processors
Using Bluespec

Nirav Dave, Man Cheuk Ng, Arvind
Computer Science and Artificial Intelligence Lab

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Email: {ndave, mcn02, arvind}@csail.mit.edu

Abstract
There are few published examples of the proof of correct-
ness of a cache-coherence protocol expressed in an HDL.
A designer generally shows the correctness of a protocol
where many implementation details have been abstracted
away. Abstract protocols are often expressed as a table
of rules or state transition diagrams with an (implicit)
model of atomic actions. There is enough of a seman-
tic gap between these high-level abstract descriptions and
HDLs that the task of showing the correctness of an im-
plementation of a verified abstract protocol is as daunting
as proving the correctness of the abstract protocol in the
first place. The main contribution of this paper is to show
that 1. it is straightforward to express these protocols in
Bluespec SystemVerilog (BSV), a hardware description
language based on guarded atomic actions, and 2. it is
possible to synthesize an hardware implementation auto-
matically from such a description using the BSV com-
piler. Consequently, once a protocol has been verified at
the rules-level, little verification effort is needed to verify
the implementation. We illustrate our approach by syn-
thesizing a non-blocking MSI cache-coherence protocol
for Distributed Memory Systems and discuss the perfor-
mance of the resulting implementation.

1 Introduction
A Distributed Shared Memory multiprocessor (DSM)
consists of processor and memory modules that commu-
nicate via high-bandwidth, low latency networks designed
for cache-line sized messages (see Fig. 1). Each memory
module serves a specific range of global addresses. Pro-
cessor modules contain local caches to mitigate the long
latency of global memory accesses. A DSM system that
is designed to support shared memory parallel program-
ming models has an underlying memory model and relies
on a cache coherence protocol to preserve the integrity

of the model. In spite of decades of research, cache co-
herence protocol design and implementation remains in-
tellectually the most demanding task in building a DSM
system. Please refer to Culler-Singh-Gupta textbook[5]
for a more detailed description of DSMs and protocols.

Figure 1: Diagram of DSM System

Cache coherence protocols need to keep large amounts
of frequently accessed data in various caches coherent
with each other and with the global memory. People have
devised ingenious schemes for this purpose, and as a re-
sult, realistic cache coherence protocols tend to be com-
plex. e.g., see [2, 7, 9, 16]. Nondeterministic or time-
dependent behavior is an integral part of cache coherence
protocols which makes the task of formal verification of
real protocols quite formidable; sufficiently so that the de-
sign and verification of cache coherence protocols contin-
ues to be a topic of research both in academia and industry
[1, 4, 10, 11, 13, 14, 15].

For verification purposes, a protocol is often expressed
as a table of rules or state-transition diagrams with an

(implicit) model of atomic actions. Many implementa-
tion details are left out because they unnecessarily com-
plicate the verification process. Some other details, which
are considered important but don’t fit the tabular descrip-
tion, are included informally as comments in the protocol
description. Furthermore, implementation languages like
C or Verilog, in which abstract protocols are eventually
implemented do not provide a model of atomic actions.
Consequently, the verification of the implementation of a
“verified abstract protocol” still poses major verification
challenges. Any modification of the protocol during the
implementation stage to meet real-world constraints (e.g.
timing, area) essentially renders most of the original veri-
fication work useless. In fact, the task of proving that the
implementation of a “verified abstract protocol” is correct
is often more difficult than the task of verifying the cor-
rectness of original abstract protocol.

Shen and Arvind have shown how cache coherence pro-
tocols can be naturally and precisely represented using
Term Rewriting Systems (TRSs)[13, 14, 15, 16]. Further-
more, they have shown that such TRS descriptions lend
themselves to formal verification, especially if the rules
are divided into mandatory and voluntary rules. Manda-
tory rules are needed to make essential state transitions
and must be applied when applicable, while voluntary
rules are applied based on some policies which affect only
the performance but not the correctness of the protocol.

In this paper, we show that such protocol descriptions
can be automatically synthesized into hardware when they
are expressed in Bluespec SystemVerilog (BSV), a lan-
guage based on guarded atomic action. The translation of
TRS rules into BSV[3] is straightforward because it relies
on the rule atomicity of BSV. We show what extra steps
have to be taken, especially with regards to fairness of rule
firings to ensure the correctness of implementation.

We illustrate our technique using a non-blocking MSI
cache coherence protocol as our running example. Al-
though the basic elements of this protocol are well known,
the specific protocol we present is our own. Our class-
room experience shows that it is easy to introduce mis-
takes if one tries to optimize the protocol. Often, these
mistakes go undetected for long periods of time. We give
a parameterized hardware description of this protocol in
BSV, and report on the synthesis numbers - area and tim-
ing - for an ASIC to implement the cache-coherence pro-
tocol processor (CPP) and the memory protocol processor
(MPP). The main contribution of this paper is to show that
automatic synthesis of high-performance realistic cache
coherence protocols expressed in Bluespec is feasible. Via
some simple experimental results, we show that such high-
level synthesis will dramatically raise our ability to exper-

iment with protocols and processor-memory interfaces in
multiprocessor systems.

Paper Organization: In Section 2 we describe the MSI
protocol using TRS rules or guarded atomic actions. We
discuss our initial implementation and its correctness in
Section 3. We report our synthesis and performance re-
sults in Sections 4 and 5, respectively. Lastly, we state out
conclusions in Section 6.

2 The MSI Protocol
Even though we present a complete protocol in this sec-
tion, it is not necessary for the reader to understand its
every nuance to follow the main issues. The details as
noted are only important to appreciate the complexity of
the protocol and associated fairness issues.

The MSI protocol we will implement is non-blocking, that
is, a processor can have many outstanding memory refer-
ence. If the first reference gets a cache miss the next ref-
erences is automatically considered for processing. Non-
blocking caches may respond to processor requests out of
order and thus, each request has to be tagged so that the
processor can match a response to the request. In this
protocol, a pair of memory references has an enforced
ordering between them if and only if they are made by
the same processor and operate on the same memory ad-
dress. Without loss of correctness, some extra ordering is
enforced between two references from a processor if the
addresses in both references map onto the same memory
module.

Message Type Definition
p2c Req = Load Addr | Store Addr Value
c2m Msg = ShReqL | ExReqL |

InvH | WBIH | WBH

m2c Msg = ShRespH | ExRespH |
InvReqL | WBIReqL | WBReqL

Sender Receiver Information
Proc CPP 〈 Tag, p2c Req〉
CPP Proc 〈 Tag, Value〉
CPP MPP 〈CID, c2m Msg, Addr, CLine〉
MPP CPP 〈CID, m2c Msg, Addr, CLine〉

Figure 2: Protocol Messages

In the MSI protocol, the memory addresses stored in
the caches exist in one of three stable states: read-only
amongst some subset of the caches (Sh), held in a modi-
fied state by one cache (Ex), or stored only in main mem-
ory (Inv). Since, we are not always able to make an atomic

transition from one stable state to another, there are tran-
sient states (e.g., Pen) to represent partial transitions. A
directory (MDIR) is used to keep track of the current state
of each address. It records whether each address is held
exclusively by a single cache (E), shared amongst a set
of them (possibly the empty set) (S), or transitioning be-
tween the two (T).

In the following sections, we will describe how the
Cache Protocol Processor (CPP) handles processor re-
quests and how the CPP and the memory protocol proces-
sor (MPP) together handle each other’s requests. Figure 2
summarizes the types of messages which are used in the
system.

Messages are divided into two categories: high and low
priority. Messages representing new requests (InvReq,
WBReq, WBIReq, ShReq, ExReq) are labeled as low
priority. Responses from these requests (Inv, WB, WBI,
ShResp, ExResp) are labeled as high priority. To pre-
vent deadlock, a low-priority request must not prevent the
flow of a high-priority message indefinitely. We accom-
plish this by using a pair of queues wherever necessary,
one to hold messages of each priority.

2.1 Protocol Description

The following description should be read in conjunction
with the summary of rules given in Figures 3, 4, and 5.

Handling Processor Requests at the Cache: A pro-
cessor makes a Load or Store request by placing it into
the Processor-to-Cache queue (p2cQ). In addition to this
queue, the CPP maintains two more queues: the deferred
queue (deferQ) and the cache miss queue (cmissQ)
(see Figure 1). deferQ holds requests whose process-
ing may have to be deferred for various reasons. If it
ever becomes full, the CPP stops processing new requests
until the current request from the processor can be pro-
cessed. The cmissQ holds requests that have been for-
warded from the cache to the memory for processing. For
buffer management, it is necessary to limit the number of
such requests and consequently if cmissQ becomes full,
additional requests cannot be forwarded to the memory.
Instead, they can be placed into deferQ if desired, or
held up in p2cQ.

The CPP handles the request at the head of p2cQ by
first checking whether the address is present in the de-
ferred queue. If the address is found in deferQ, the new
request is also placed in deferQ (see Figure 3). Other-
wise, the CPP looks up the address in the cache. For a
Load request, it returns the value if the address is in the
cache (i.e. its state is either Sh or Ex). A Store request
is handled immediately only if the address is in the Ex
state. If either of these cases occurs, the CPP handles the

request by appropriately reading or writing the cache and
enqueuing a response in c2pQ.

If the requested address is in the Pen state in the cache,
the request is placed in the deferred queue. If the re-
quested address is missing from the cache and the cache
is not full, the CPP enqueues an appropriate request (i.e.,
ShReq for a load, or a ExReq for a store) to c2mQ.
It also marks the current address as pending (Pen) in the
cache. If the cache is full, the CPP is first forced to evict
another memory address from the cache. If the victim
address is in the Sh state, it sends an Invalidate message
(Inv); if it is in the Ex state, it sends a Writeback-and-
Invalidate message (WBI) to the directory. Finally, if the
request is Store and the address is in the Sh state, the
CPP invalidates the Sh copy before it sends the ExReq.

When the message at the head of deferQ is also avail-
able for processing, it is handled just like a new request.
If it cannot be completed, it remains in deferQ. Usually,
incoming requests have priority over the deferred ones for
performance reasons.

Handling Cache Messages at the Memory: MPP
maintains two queues: A high-priority and low-priority
queue. Each incoming message is placed into one of
these queues immediately according to its priority. The
MPP processes messages in the low-priority queue, only
when the high-priority queue is empty. If these queues are
full, the MPP stops accepting new messages until there is
space created by outgoing messages. For deadlock avoid-
ance, the size of the low-priority queue has to be large
enough to receive the maximum number of low-priority
requests it can receive from all of the caches. Since we
have limited the number of outstanding requests from
each cache, this size is known and related to the size of
cache miss queue (cmissQ).

When MPP receives a ShReq for address a from cache
c, it checks if a is in the S state and c is not already a
member of the directory. If so, it sends a ShResp to c and
adds c to its directory. If a is exclusively held by another
cache c′; the MPP stalls on this request and requests c′ to
write back the value (with a WBReq) and change a’s state
to be T (see Figure 4).

When MPP gets an ExReq for address a from cache
c, and no other cache has a copy, it marks the a as ex-
clusively held by c and sends a ExResp response to c.
Otherwise, if the address is in S state, sends Invalidate re-
quest (InvReq) to any other cache with an outstanding
copy. On the other hand, if the address is in E state, sends
Writeback-and-Invalidate request (WBIReq) to the cache
exclusively holding the address. For both cases, the state
will be modified to T after sending the request message.

When MPP receives an Invalidate (Inv) message from

P2C request4 deferQ CState Action Next CState
State

Load(a) a ∈ deferQ - req → deferQ1 -
a /∈ deferQ Cell(a,v,Sh) retire2 Cell(a,v,Sh)
a /∈ deferQ Cell(a,v,Ex) retire2 Cell(a,v,Ex)
a /∈ deferQ Cell(a,-,Pen) req → deferQ1 Cell(a,-,Pen)
a /∈ deferQ a /∈ cache if cmissQ.isNotFull then

〈ShReq, a, L〉 → Mem, Cell(a,-,Pen)
req → cmissQ

else
req → deferQ 1 a /∈ cache

Store(a,v) a ∈ deferQ req → deferQ1

a /∈ deferQ Cell(a,-,Sh) 〈Inv, a, H〉 → Mem, a /∈ cache
Keep req

a /∈ deferQ Cell(a,-,Ex) retire2 Cell(a,v,Ex)
a /∈ deferQ Cell(a,-,Pen) req → deferQ1 Cell(a,-,Pen)
a /∈ deferQ a /∈ cache if cmissQ.isNotFull then

〈ExReq, a, L〉 → Mem, Cell(a,-,Pen)
req → cmissQ

else
req → deferQ 1 a /∈ cache

voluntary rule - Cell(a,-,Sh) 〈Inv, a, H〉 → Mem3 a /∈ cache
- Cell(a,v,Ex) 〈WBI, a, v, H〉 → Mem3 a /∈ cache
- Cell(a,v,Ex) 〈WB, a, v, H〉 → Mem3 Cell(a,v,Sh)

1 deferQ must not be full for this operation, otherwise, req will remain in the p2cQ
2

retire means a response is sent to the requesting processor and the input request is deleted
3 c2mQH must not be full for this operation
4 The rules for handling deferQ requests are almost identical and not shown

Figure 3: Rules for Handling P2C Requests at Cache-site

C2M Message Priority MState MDIR Action Next MState Next MDIR
ShReq(c,a) Low - ∅1 〈ShResp, a, Mem[a] 〉 → c, S {c}

deq c2m Message
S c /∈ MDIR 〈ShResp, a, Mem[a] 〉 → c, S MDIR + {c}

deq c2m Message
E {c′}, c′ 6= c 〈WBReq, a 〉 → c T {c′}

ExReq(c,a) Low - ∅1 〈ExResp, a, Mem[a] 〉 → c, E {c}
deq c2m Message

S c /∈ MDIR ∀c′ ∈ MDIR. 〈InvReq, a 〉 → c′, T MDIR
E {c′}, c′ 6= c 〈WBIReq, a 〉 → c′ T {c′}

Inv(c,a) High mstate c ∈ MDIR deq c2m Message mstate MDIR - {c}
WBI(c,a,v) High T | E {c} Mem[a]:=v, S ∅

deq c2m Message
WB(c,a,v) High T | E {c} Mem[a]:=v, S {c}

deq c2m Message
1 any state with MDIR = ∅ is treated as S with ∅

Figure 4: Rules for Handling Cache Messages at Memory-site

M2C Message CState Action Next CState
ShResp(a,v) Cell(a,-,Pen) remove Load(a) from cmissQ Cell(a,v,Sh)

deq m2cQ, retire1

ExResp(a,v1) Cell(a,-,Pen) remove Store(a,v2) from cmissQ, Cell(a,v2,Ex)
deq m2cQ, retire1

InvReq(a) Cell(a,-,Sh) 〈Inv, a, H〉 → Mem2, a /∈ cache
deq m2cQ,

a /∈ cache deq m2cQ a /∈ cache
Cell(a,-,Pen) deq m2cQ Cell(a,-,Pen)

WBIReq(a) Cell(a,v,Ex) 〈WBI, a, v, H〉 → Mem2, a /∈ cache
deq m2cQ

Cell(a,-,Sh) 〈Inv, a, H〉 → Mem2, a /∈ cache
deq m2cQ

a /∈ cache deq m2cQ a /∈ cache
Cell(a,-,Pen) deq m2cQ Cell(a,-,Pen)

WBReq(a) Cell(a,v,Ex) 〈WB, a, v, H〉 → Mem2, Cell(a,v,Sh)
deq m2cQ

Cell(a,-,Sh) deq m2cQ Cell(a,-,Sh)
a /∈ cache deq m2cQ a /∈ cache
Cell(a,-,Pen) deq m2cQ Cell(a,-,Pen)

1
retire means a response is sent to the requesting processor and the input request is deleted

2 c2mQH must not be full for this operation

Figure 5: Rules for Handling Memory Responses at Cache-site

a cache c, it removes c from directory. If it receives a
writeback-and-invalidate WBI message from cache c, it
writes back the data as well removing c. If it receives a
Writeback (WB) message, it writes back the new value into
the address and changes the address state to S.

Handling Messages from Memory at the Cache:
When the CPP receives a response from memory
(ShResp, ExResp), it changes the cache state as appro-
priate, removes the corresponding entry in cmissQ and
puts a response in the c2pQ. After that, it dequeues the
memory response (see Figure 5).

When a CPP handles a request from memory, it only
modifies the cache state and sends a response back to
memory if the address is in the appropriate state: it in-
validates the Sh copy for an InvReq, writebacks the Ex
copy and invalidates the address on a WBIReq, and writes
back the data and moves from the Ex to the Sh state on
a WBReq. Otherwise, the CPP just removes the memory
request.

2.2 Voluntary Rules

In the previous sections, we saw that when the CPP han-
dled a request from the processor it could issue a ShReq
or ExReq to memory. However, there is no reason why
the CPP is limited to sending messages only when neces-
sary. It could send a message voluntarily, in effect doing
a prefetch of a value. Similarly, the CPP can also pre-

emptively, invalidate or writeback a value and the MPP
can preemptively request an invalidation from any CPP.
We have listed three voluntary rules in Figure 3. These
rules are needed to deal with capacity misses. Though we
do not give details, one can associate (and synthesize) a
policy for invoking voluntary rules.

2.3 Requirements for Correct Implementa-
tion

We must ensure that the buffer sizes are large enough
to handle the maximum number of outgoing requests to
avoid deadlocks. For the MPP to be able to accept a high-
priority message anytime, it must have space to hold the
maximum number of low-priority request messages in the
system at once plus one. Since the size of cmissQ for
each CPP is exactly the number of outstanding requests
that the CPP can have at any given time, the minimum
size of the low-priority queue in the MPP is ns+ 1 where
n is the number of caches and s is the size of the cache
miss queue.

Beyond this sizing requirement, the protocol makes the
following assumptions for its correct operation:

1. Atomicity: All actions of a rule are performed atom-
ically. This property permits us to view the behavior
of the protocol as a sequence of atomic updates to
the state.

2. Progress: If there is an action that can be performed,
an action must be performed eventually.

3. Fairness: A rule cannot be starved. As long as the
rule is enabled an infinite number of times, it must
be chosen to fire.

As we will show in the next section, this last condition
requires us to design an arbiter.

3 Implementation in BSV
Suppose we were to implement the TRS or atomic rules
as described in the Figures 3, 4, and 5 in a synchronous
language such as Verilog, Esterel, or SystemC. For each
rule we will have to figure out all the state elements (e.g.
Flipflops, Registers, FIFOs, memories) that need to be up-
dated and make sure that either all of them are updated or
none of them are. The complication in this process arises
from the fact that two different rules may need to update
some common state elements and thus, muxes and proper
control for muxing will need to be encoded by the imple-
menter. The situation is further complicated by the fact
that for performance reasons one may apply several rules
simultaneously if they update different state elements and
are conflict free. A test plan for any such implementa-
tion would be quite complex because it would have to
check for various dynamic combinations of enabled sig-
nals. Unless the process of translation from such atomic
rules into a synchronous language is automated, it is easy
to see that this task is error prone. The fact that we started
with a verified protocol can hardly provide comfort about
the correctness of the resulting implementation.

The semantic model underlying BSV is that of guarded
atomic actions. That is, a correct implementation of BSV
has to guarantee that every observable behavior conforms
to some sequential execution of these atomic rules. In
fact, at the heart of the BSV compiler is the synthesis of a
rule scheduler that selects a subset of enabled rules that do
not interfere with each other[8]. The compiler automati-
cally inserts all the necessary muxes and their controls.
Therefore, if we assume that the BSV compiler is correct
then a test plan for a BSV design does not have to include
verification of rule atomicity. We are able to effectively
leverage the verification done for the protocol itself when
we translate the protocol into BSV rules.

Next we will show that it is straightforward to express
the state transition tables shown in Figures 3, 4, and 5 into
BSV. Furthermore, BSV has a rich type structure built on
top of SystemVerilog and it provides further static guar-
antees about the correctness of the implementation. Space
limitations do not permit even a brief description of BSV

but hopefully we will provide enough hints about the syn-
tax and semantics of BSV so that the reader can follow
the expression of atomic rules in BSV. A reader can also
gain some familiarity with Bluespec by seeing examples
in [3], though the syntax is somewhat different.

3.1 BSV Modules
Bluespec System Verilog (BSV) is an object-oriented
hardware description language which is first compiled
into a TRS after type checking and static elaboration and
then further compiled into Verilog 95 or a cycle accurate
C program. In BSV, a module is the fundamental unit
of design. Each module roughly corresponds to a Ver-
ilog module. A module has three components: state, rules
which modify that state, and methods, which provide an
interface for the outside world, including other modules,
to interact with the module.

A module in Bluespec can be of one of two possible
types: a standard module which includes other modules
as state, rules, and methods, or a primitive module which
is an abstraction layer over an actual Verilog module.

All state elements (e.g. registers, queues, and memo-
ries) are explicitly specified in a module. The behavior of
a module is represented by a set of rules, each of which
consist of an action, a change on the hardware state of the
module, and a predicate, the condition that must hold for
the rule to fire. The syntax for a rule is:

rule ruleName(predicate);
action;

endrule

The interface of a module is a set of methods through
which the outside world interacts with the module. Each
interface method has a guard or predicate which restricts
when the method may be called. A method may either be
a read method (i.e. a combinational lookup returning a
value), or an action method, or a combination of the two,
an actionValue method.

An actionValue is used when we want a value to be
made available only when an appropriate action also oc-
curs. Consider a situation where we have a first-in-first-
out queue (FIFO) of values and a method that should get
a new value on each call. From the outside of the module,
we would look at the value only when it is being dequeued
from the FIFO. Thus we would write the following:

getVal = actionvalue
fifoVal.deq;
return(fifoVal.first())

endactionvalue

The action part of a rule can invoke multiple action
methods of various modules. To preserve rule atomicity

module mkCPP#(Integer deferQsz,
Integer cmissQsz,
Integer c2mQLsz)(CPP_ifc);

FIFO p2cQ <- mkSizedFIFO(2);
FIFO c2pQ <- mkSizedFIFO(2);

FIFO deferQ <- mkSizedFIFO(deferQsz);
FIFO cmissQ <- mkSizedFIFO(cmissQsz);

FIFO c2mQ_Hi <- mkSizedFIFO(2);
FIFO c2mQ_Lo <- mkSizedFIFO(c2mQLsz);

Cache cache <- mkCache();
MDir cdir <- mkDir(cache);

rule ld_defer({Load .a} matches
incomingQ.first() &&&

deferQ.find(a));
deferQ.enq(incomingQ.first());
incomingQ.deq();

endrule

<other rules> ...

method put_p2cMsg(x)...
method get_c2pMsg() ...
method put_m2cMsg(x)...
method get_c2mMsg() ...

endmodule

Figure 6: mkCPP Module

all the affected state elements in various modules have to
be updated simultaneously when the rule is applied. BSV
compiler ensures that is indeed the case[12].

3.2 The CPP and MPP Interfaces
To effectively translate our rules into a parameterized
Bluespec System Verilog design, we need an abstraction
for the communication channels between the processors,
the caches, and the shared memory modules. We can get
this via BSV’s interfaces, which are a collection of meth-
ods.

One of the most natural ways to describe communica-
tion in this system is to have the sending module directly
call a method on the receiving module. The other alter-
native is to make each module a leaf module, that does
not call external modules and then create glue actions
in a super-module to stick together associated methods.
The advantage of this second organization is that it al-
lows the modules to be compiled separately. We use the
second method because currently, the BSV compiler does

not support cyclic call structures.
To simplify issues with modularity[6], we make the

cache modules as a submodule of the Shared memory sys-
tem. While this design hierarchy does not match our ex-
pectation of the layout, it is nevertheless a useful first step
before breaking the module for physical layout.

3.3 State Elements and Queue Sizing

Once the interfaces for our module have been specified,
we can define the state elements for each module. We
represent all finite queues by FIFOs, and the storages of
the caches and the memory by RegFiles (Register Files).
There is no restriction that all caches must be the same
size, or how they are structured internally. To simplify
our design, we use only direct-mapped caches. In a real
design, we will want to buffer messages on both sides of
inter-chip communication channels. Therefore, we have
FIFOs at both ends of the communication channel. Since
messages propagate from the sender’s FIFO to the re-
ceiver’s FIFO in order, the two FIFOs behaves the same
as a single FIFO, but with one more cycle of latency in the
worst case. However, this additional cycle will be domi-
nated by the communication delay in the system.

3.4 Rules

A Bluespec rule has the same fundamental structure as a
TRS rule; it consists of a predicate and an action. There-
fore the transformation from TRS rules to a BSV rule
is straightforward. For instance consider the rule repre-
sented by the first line of Figure 3. We describe this with
the Bluespec rule ld defer shown in Figure 6. ***need
to explain syntax here - pattern matching, find, ...

Many of these rules are mutually exclusive and con-
tain similar descriptions. One could desire to merge these
rules into a single rule. We can see how the set Load rules
from Figure 3 can be merge into one rule as shown in Fig-
ure 7.

In this rule, we look at a request at the head of the
p2cQ. If the address is already in the deferQ, or the
state of the address in the cache is in the Pen state, we
move the request to the deferQ. Otherwise, if the ad-
dress is in the cache, we send a response to the processor.
If the value is not in the cache we enqueue a request to
memory, mark the address as Pen in the cache, and en-
queue the request into the cmissQ.

While there are no explicit conditions for this rule to
fire, there are a number of implicit ones. For instance, we
may need to enqueue the deferQ, which requires that it
not be full. By default, the compiler will blindly concate-
nate all the implicit conditions onto the explicit condition
(in this case “True”) we would get the final condition:

P2CReq req = p2cQ.first();
Value cVal = cacheVal(req.addr);

rule handle_P2CQReq_Load(True);
p2cQ.deq();
if(inDeferQ(req.addr))

deferQ.enq(req);
else

case(lookupDirState(req.addr))
Valid(Sh) :
c2pQ.enq(

C2PResp{req.addr,cVal});
Valid(Ex) :
c2pQ.enq(

C2PResp{req.addr,cVal});
Valid(Pen): deferQ.enq(req);
Invalid: begin
c2mLoQ.enq(shReqMsg(req.addr));
writeState(req.addr,Pen);
cmissQ.enq(req);

end
endrule

Figure 7: Load Rule in BSV

p2cQ.notEmpty && deferQ.notFull &&
c2pRsp.notFull && cmissQ.notFull

This allows the rule to fire, only if the implicit condi-
tions of the actions executed are true. However, it may not
let the rule fire when it should be valid. For instance, con-
sider the case where the requested address is in the cache,
but cmissQ is full. Here, the rule would not be allowed
to fire, even though nothing fundamental is blocking the
action.

The BSV compiler provides the
-aggressive-conditions flag to deal with
the this problem. It indicates to the compiler that the
firing condition should reflect the conditional nature of
actions in the rule. With this flag on, the conditional for
deferQ.enq would be limited to those cases where
the action is actually used (i.e. the implicit condition
associated with the enqueue would be):

deferQ.notFull ||
(!inDeferQ(req.addr) &&
(Valid(Pen) /=
lookupDirState(req.addr)))

3.5 Fairness Requirement
Next we examine the conditions given in Section for cor-
rect implementation.

The atomicity requirement is handled by the semantics
of the generated hardware. The compiler will guarantee

that all state transitions can be regarded as the composi-
tion of a series of atomic actions. The second requirement
of forward progress is also easily obtained, because the
scheduler will always choose a rule to fire if possible.

The last requirement, strong fairness of rule scheduling
is less clearly true. The compiler generates a static sched-
uler at compile time. This means that if there ever is a
place where a choice is made, then the scheduler will al-
ways prioritize one over rule over the other. Conversely, if
a rule has no conflicts the system trivially meets the strong
fairness condition for that rule. If there are no conflicts,
the rule will always be fired when its predicate is true. In
our design there are only three situations where inter-rule
conflicts arise. We need only worry about fairness in these
cases.

The first case occurs in the CPP, between rules han-
dling the instructions in p2cQ and deferQ. We see that
since the FIFOs sizes are finite, we will either run out
of messages in the deferQ or run out of free space
in the deferQ if we consistently bias towards one rule
or the other. This means that the rule that had priority
would eventually not be disabled again until the other rule
was fired. Thus, the compiler’s scheduling provides the
necessary fairness requirement. While, either priority is
correct, making the compiler enforce requests from the
deferQ first needlessly reduces the amount of memory
reordering of processor requests to the cache. So we pri-
oritize requests in p2cQ by simple urgency annotations
on the two rules.

The second case occurs in the memory, where we
choose the order of high priority message from the caches
to handle. Here we notice that since the memory blocks,
and handles responses before requests, and that the han-
dling of a cache does not directly cause another cache re-
sponse to be created, eventually we will run out of re-
sponses from other caches. Therefore, the scheduling
again provides the necessary fairness.

We are not so fortunate in the last case. This occurs
when we are choosing which of the caches’ requests we
should process. With a static prioritization a single cache
could effectively starve another cache by constantly flood-
ing the memory with requests. While we would still make
forward progress and maintain correct state, this starva-
tion is undesirable.

To prevent this from happening, we need to explicitly
encode some amount of fairness into the rules. The most
obvious solution is to add a counter which counts down
each cache, and if there is request there, handles it. While
this works relatively well, it leads to a substantial drop in
performance.

Instead, we add a pointer which points to the next cache

to be given priority. An additional set of rules are made
with higher priority than all the other rules which handle
cache requests. These rules will handle requests made to
the cache to which the pointer is pointing. Whenever any
rule completes a request we change the pointer to point to
the next cache in sequence.

Since the additional rules only ever do one of the ac-
tions associated with other rules we have in the system
and its predicate for doing the operation of one of the an-
other rules is more restrictive than that rule (it must be
able to handle the rule and the pointer must be pointing
the appropriate cache), the addition of this rule does not
change the correctness of our implementation. Addition-
ally, because requests will not leave their queues unless
they have been handled and the memory is blocking, af-
ter processing a request, all the cache request rules which
were firable would still be firable. As each time a request
is handled, we change priority, a request is guaranteed to
be on of the first n requests we process after it becomes
handleable, where n is the number of caches in the sys-
tem. Therefore this additional rule enforces the required
fairness.

4 Synthesis Results
The final design is parameterized by the number of caches
(CPP), the number of memory modules (MPP), the size
of memory in each of these units, and the sizes of various
queues. The design can also be modified with some effort
so that it can accept various cache organizations (e.g., di-
rect mapped, set associative) as a parameter. It only took
1050 lines of BSV code to represent the processor for this
protocol. Once the protocol was defined in the tabular
form, the design was completed in 3 man-days by two of
the authors. Both the designers had expert level under-
standing of BSV and the MSI protocol presented. Nearly
half of this time was spent finding and correcting typo-
graphical errors in the translation. No other functional
errors were found or introduced in this encoding phase.
The rest of the time was spent in tuning for performance
and setting up the test bench.

The final design was tested and synthesized for both
4 and 8 instantiated caches. Compilation of design re-
mained roughly constant, taking 333 seconds for a 4 cache
system, and 339 seconds for an 8 cache one.

The design was compiled with the Bluespec Compiler
version 3.8.46, available from Bluespec Inc. The gener-
ated Verilog was compiled to the TSMC 0.13µm library
using Synopsys Design Compiler version 2004.06 with a
timing constraint of 5ns The worst case (slow process,
low voltage) timing model was used. We divided the
area by 5.0922 µm2 the area of a two input NAND gate

(ND2D1) to achieve gate counts. The results of synthe-
sis of the CPP and the MPP for different sized queues is
listed in Figure 8.

All of the designs were able to meet the 5ns timing
constraint, however, the model made use of a simplified
cache. As a result our timing results should not be used
as a quantitative measure of the methodology. However
it does lend credence to the reasonability of the generated
design, since all results fell within the timing constraint.

5 Performance Evaluation

In this section, we briefly study the effect of the degree
of non-blocking on the throughput of our protocol en-
gine design with a comparison of three 4-processor sys-
tems. The first system has a blocking cache. Meanwhile,
the second and third have non-blocking caches. All sys-
tems share the same architectural parameters except for
the sizes of cmissQ, deferQ and c2mQ L because they
affect the degree of non-blocking (the functionalities of
these queues are explained in Section 2.1). For the block-
ing cache design, we modified the rules in Figure 3 and
Figure 5 accordingly so that the instruction will remain at
the head of the p2cQ and block the execution of the subse-
quent instructions when the cache is waiting for the reply
from the memory during a cache miss.

5.1 Simulation Environment

Figure 9 summarizes the parameters of each system. The
results presented in this paper are gathered from the Ver-
ilog Compiler Simulator (VCS) run on the Verilog files
generated from the BSV compiler. The testbench used in
the simulation is generated by a random memory instruc-
tion generator implemented by us for testing and verifica-
tion purposes. The testbench consists of 1-million mem-
ory instructions for each processor. We collect the results
of execution of 10 thousand memory instructions for each
cache after a warming up period of 500 thousand memory
instructions. Of the memory accesses in each instruction
stream, 10% of them are stores. Additionally, 10% of all
memory accesses are made to addresses which are shared
by all of the processors in the system. These memory
streams are fed to the cache engines through fake proces-
sor units, each with a reorder-buffer-like structure to limit
the instruction window size its cache observes. The pro-
cessor model feeds one instruction to its cache each cycle
assuming adequate space in the reorder buffer. The ac-
cess latencies of the cache and the main memory shown
in Figure 9 are the minimum times for the cache to ser-
vice a processor request, and memory to service a cache’s
request respectively.

deferQ size c2mLoQ size CPP MPP
(n) (4n + 1) Comb. Gates # Regs Comb. Gates # Regs
4 17 3875 1432 4575 1468
8 33 4835 1742 7251 2575

16 65 6240 2360 13325 4786

Figure 8: Synthesis of CPP and MPP with deferQ of size 4

Parameter Design (1 / 2 / 3)
Number of Processors 4
Address width 32 bit
Data width 32 bit
Processor ROB Size 64
Issue Rate 1 per cycle
p2cQ Size 2
c2pQ Size 2
Cache line width 1 word
Cache Size 128 entries
Non-Blocking Cache No / Yes / Yes
Cache Latency 4 cycles
Cache Bandwidth 1 word per cycle
deferQ Size 0 / 4 / 16
cmissQ Size 1 / 1 / 4
c2mQ L Size 4 / 4 / 16
c2mQ H Size 2
m2cQ Size 2
Interconnect Bandwidth 1 request, 1 response per cycle
Memory Size 512 entries
Memory Type blocking
Memory Latency 34 cycles
Memory Bandwidth 1 word every other cycle

Figure 9: Testing Systems Configurations

5.2 Simulation Results
Figure 10 shows some of the statistics collected from the
simulation. We can see that even though all systems have
comparable miss rates, the systems with non-blocking
caches have much lower CPI than the system with block-
ing caches, indicating that our non-blocking cache design
are successful at partially hiding the long latency of cache
misses.

Cache Type % Misses CPI
(deferQ / cmissQ / c2mQ L) (Improvement)

Blocking (0/1/4) 2.47% 2.35 (0%)
Non-blocking (4/1/4) 2.27% 1.68 (39.43%)

Non-blocking (16/4/16) 2.21% 1.40 (67.83%)

Figure 10: Miss Rate and CPI of Simultion Results

6 Conclusions
In this paper we first described a non-blocking MSI cache
coherence protocol for a DSM system. The protocol is
both relatively complex and realistic. We showed that it

was straightforward to encode the protocol in BSV, as
long as the implicit conditions of various method calls
were complied using the “aggressive conditionals” in the
BSV compiler. This description was both modular, and
parameterized to support an arbitrary number of cache
units and queue sizes. We then modified our design
slightly, maintaining both parameterization and modu-
larity, to have the hardware description match the “fair
scheduling” requirements of this design. In doing so, we
could leverage the complicated proof of correctness for
the original protocol in our implementation.

The biggest difficulty in this work was guaranteeing
fairness between rules. The type of strong fairness that
is needed in this design must be programmed explicitly;
simple “rule urgency annotations” fail to capture the spe-
cific requirements of this design. The correctness argu-
ments for fair scheduling in non-deterministic settings are
both difficult and problem specific. However, it may be
possible to generate a strongly-fair arbitrator for a set of
rules in a mechanical way that captures some common
cases of fairness. We propose to investigate this further.

This work is part of our project to model various
PowerPC microarchitectures for multiprocessor configu-
rations. The goal is to generate a series of modular mem-
ory systems, each with its own coherence protocol but
with identical interfaces to the processor modules. Our
setup would provide a much more realistic setting for both
protocol verification and performance measurements than
traditional simulators. Additionally, we plan to map these
BSV designs onto large FPGAs.

References
[1] Homayoon Akhiani, Damien Doligez, Paul Harter, Leslie Lamport, Mark

Tuttle, and Yuan Yu. Cache-Coherence Verification with TLA+. In World
Congress on Formal Methods in the Development of Computing Systems,
Industrial Panel, Toulouse, France, Sept, 1999.

[2] C. Amza, A. L. Cox, S. Dwarkadas, L-J. Jin, K. Rajamani, and
W. Zwaenepoel. Adaptive protocols for software distributed shared memory.
Proc. of the IEEE, Special Issue on Distributed Shared Memory, 87(3):467–
475, 1999.

[3] Bluespec, Inc., Waltham, MA. Bluespec SystemVerilog Version 3.8 Refer-
ence Guide, November 2004.

[4] Satish Chandra, Brad Richards, and James R. Larus. Teapot: Language
support for writing memory coherence protocols. In PLDI, pages 237–248,
1996.

[5] D. Culler, J. P. Singh, and A. Gupta. Modern Parallel Computer Architecture.
Morgan Kaufmann, 1997.

[6] Nirav Dave. Designing a Processor in Bluespec. Master’s thesis, Electrical
Engineering and Computer Science Department, MIT, Cambridge, MA, Jan
2005.

[7] Babak Falsafi and David A. Wood. Reactive numa: A design for unifying
s-coma and cc-numa. In Proceedings of the 24th Annual International Sym-
posium on Computer Architecture, June 1997.

[8] James C. Hoe and Arvind. Operation-Centric Hardware Description and
Synthesis. IEEE TRANSACTIONS on Computer-Aided Design of Integrated
Circuits and Systems, 23(9), September 2004.

[9] D. E. Lenoski. The Design and Analysis of DASH A Scalable Directorybased
Multiprocessor. PhD thesis, Stanford University, Stanford, CA, 1992.

[10] F. Pong and M. Dubois. A New Approach for the Verification of Cache Co-
herence Protocols . IEEE Transactions on Parallel and Distributed Systems,
August 1995.

[11] F. Pong and M. Dubois. Formal Verification of Delayed Consistency Proto-
cols. In Proceedings of the 10th International Parallel Processing Sympo-
sium, April 1996.

[12] Daniel L. Rosenband and Arvind. Modular Scheduling of Guarded Atomic
Actions. In Proceedings of DAC’04, San Diego, CA, 2004.

[13] Xiaowei Shen. Design and Verification of Adaptive Cache Coherence Proto-
cols. PhD thesis, Electrical and Computer Science Department, MIT, Cam-
bridge, MA, 2000.

[14] Xiaowei Shen and Arvind. Specification of Memory Models and Design of
Provably Correct Cache Coherence Protocols. In MIT CSAIL CSG Technical
Memo 398 (http://csg.csail.mit.edu/pubs/memos/Memo-398/memo398.pdf),
January 1997.

[15] Joseph E. Stoy, Xiaowei Shen, and Arvind. Proofs of Correctness of Cache-
Coherence Protocols. In Proceedings of FME’01: Formal Methods for In-
creasing Software Productivity, pages 47–71, London, UK, 2001. Springer-
Verlag.

[16] Xiaowei Shen, Arvind, Larry Rudolph. CACHET: An Adaptive Cache Co-
herence Protocol for Distributed Shared-Memory Systems. In Proceedings
of the 13th ACM SIGARCH International Conference on Supercomputing,
Rhodes, Greeces, Jan 1999.

