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Abstract. We present a new framework for modular verification of hardware de-
signs in the style of the Bluespec language. That is, we formalize the idea of
components in a hardware design, with well-defined input and output channels;
and we show how to specify and verify components individually, with machine-
checked proofs in the Coq proof assistant. As a demonstration, we verify a fairly
realistic implementation of a multicore shared-memory system with two types of
components: memory system and processor. Both components include nontriv-
ial optimizations, with the memory system employing an arbitrary hierarchy of
cache nodes that communicate with each other concurrently, and with the proces-
sor doing speculative execution of many concurrent read operations. Nonethe-
less, we prove that the combined system implements sequential consistency. To
our knowledge, our memory-system proof is the first machine verification of a
cache-coherence protocol parameterized over an arbitrary cache hierarchy, and
our full-system proof is the first machine verification of sequential consistency
for a multicore hardware design that includes caches and speculative processors.

1 Introduction

A modern high-performance, cache-coherent, distributed-memory hardware system is
inherently complex. Such systems by their nature are highly concurrent and nondeter-
ministic. The goal of this work is to provide a framework for full verification of complex
hardware systems.

Modularity has long been understood as a key property for effective design and
verification in this domain, decomposing systems into pieces that can be specified and
verified independently. In our design, processors and memory systems independently
employ intricate optimizations that exploit opportunities for parallelism. We are able
to prove that each of these two main components still provides strong guarantees to
support sequential consistency (SC) [25], and then compose those proofs into a result
for the full system. Either component may be optimized further without requiring any
changes to the implementation, specification, or proof of the other. Our concrete opti-
mizations include speculation in processors and using a hierarchy of caches in memory.

We thus present the first mechanized proof of correctness of a realistic multi-
processor, shared-memory hardware system, including the first mechanized cor-
rectness proof of a directory-based cache-coherence protocol for arbitrary cache
hierarchies, i.e., the proof is parameterized over an unknown number of processors
connected to an unknown number of caches in an unknown number of levels (e.g.,
L1, L2). Our proof has been carried out in the Coq proof assistant and is available
at http://github.com/vmurali/SeqConsistency. Since our technique is



based on proof assistants, the computational complexity of verification remains con-
stant for any choice of parameters. In the process, we introduce a methodology for
modular verification of hardware designs, based on the theory of labeled transition
systems (LTSes).

LTSes as hardware descriptions are an established idea [17, 18, 2], for which there
are compilers that convert LTSes into efficient hardware. Our work is based on the
Bluespec language [3, 6], whose semantics match the formalism of this paper. Blue-
spec specifies hardware components as atomic rules of a transition system over state
elements, and its commercial compiler synthesizes these specs into circuits (i.e., Ver-
ilog code) with competitive performance. The model that we verify is close to liter-
ally transliterated from real Bluespec designs that have been compiled to hardware.
our cache-coherent memory system is based on a Bluespec implementation [13] used
to implement an FPGA-based simulator for a cache-coherent multiprocessor PowerPC
system [23]. The hardware synthesized from that implementation is rather efficient: an
8-core system with a 2-level cache hierarchy can run 55 million instructions per second
on the BEE FPGA board [10]. Within Coq we adopt a semantics style very close to
Bluespec, using inductive definitions of state transition systems, where each transition
rule corresponds to an atomic Bluespec rule.

Our high-level agenda here is to import to the hardware-verification domain good
ideas from the worlds of programming-language semantics and formal software veri-
fication, and to demonstrate some advantages of human-guided deductive techniques
over model-checking techniques that less readily support modularity and generaliza-
tion over infinite families of systems, and which may provide less insight to hardware
designers (e.g., by not yielding human-understandable invariants about systems).

Paper Organization: We begin with a discussion of related work in Section 2. Sec-
tion 3 introduces our flavor of the labeled transition systems formalism, including a
definition of trace refinement. Section 4 shows a generic decomposition of any mul-
tiprocessor system, independently of the memory model that it implements, and dis-
cusses the store atomicity property of the memory subcomponent. Section 5 gives a
simple formal model of sequential consistency. The following sections refine the two
main subcomponents of our multiprocessor system. Section 7 discusses definition and
verification of a speculative processor model, and Section 8 defines and proves our hier-
archical cache-coherence protocol. Finally, Section 9 shows the whole-system modular
proof of our complex system and ends with some conclusions in Section 10.

2 Related Work
Hardware verification is dominated by model checking – for example, processor ver-
ification [8, 29] and (more recently) Intel’s execution cluster verification [22]. Many
abstraction techniques are used to reduce designs to finite state spaces, which can be
explored exhaustively. There are limits to the construction of sound abstractions, so
verifications of protocols such as cache-coherence have mostly treated systems with
concrete topologies, involving particular finite numbers of caches and processors. For
instance, explicit-state model checking tools like Murphi [15] or TLC [26, 21] are able
to handle only single-level cache hierarchies with fewer than ten addresses and ten
CPUs, as opposed to the billions of addresses in a real system, or the ever-growing



number of CPUs. Symbolic model-checking techniques have fared better: McMillan
et al. have verified a two-level MSI protocol based on the Gigamax distributed mul-
tiprocessor using SMV [31]. Optimizations on these techniques (e.g., partial-order re-
duction [4], symmetry reduction [5, 19, 12, 11, 16, 37], compositional reasoning [30, 28,
20], extended-FSM [14]) also scale the approach, verifying up to two levels of cache
hierarchy, but are unable to handle multi-level hierarchical protocols. In fact, related
work by Zhang et al. [37] insists that parameterization should be restricted to single
dimensions for the state-of-the-art tools to scale practically. In all these cases, finding
invariants automatically is actually hard. Chou et al. [12] require manual insertion of
extra invariants, called “non-interference lemmas”, to eliminate counterexamples that
violate the required property. Flow-based methodology [35] gives yet another way of
manually specifying invariants. In general, we believe that the level of complexity of
the manually specified invariants between those approaches and ours is similar. More-
over, we might hope to achieve higher assurance and understanding of design ideas
by verifying infinite families of hardware designs, which resist reduction to finite-state
models. Past work by Zhang et al. [37] has involved model-checking hierarchical cache-
coherence protocols [38], with a restriction to binary trees of caches only, relying on
paper-and-pencil proofs about the behavior of fractal-like systems. Those authors agree
that, as a result, the protocol suffers from a serious performance handicap. Our cache
protocol in this paper is chosen to support more realistic performance scaling.

Theorem provers have also been used to verify microprocessors, e.g., HOL to verify
an academic microprocessor AVI-1 [36]. Cache-coherence proofs have also used mech-
anized theorem provers, though all previous work has verified only single-level hierar-
chies. Examples include using ACL2 for verifying a bus-based snoop protocol [32], us-
ing a combination of model-checking and PVS [33] to verify the FLASH protocol [24],
and using PVS to mechanize some portions of a paper-and-pencil proof verifying that
the Cachet cache-coherence protocol [34] does not violate the CRF memory model. The
first two of these works do not provide insights that can be used to design and verify
other protocols. The last falls short of proving a “full functional correctness” property
of a memory system. In this paper, we verify that property for a complex cache protocol,
based on human-meaningful invariants that generalize to related protocols.

3 Labeled Transition Systems
We make extensive use of the general theory of labeled transition systems, a semantics
approach especially relevant to communicating concurrent systems. As we are formal-
izing processors for Turing-complete machine languages, it is challenging to prove that
a system preserves almost any aspect of processor behavior from a model such as SC.
To focus our theorems, we pick the time-honored property of termination. An optimized
system should terminate or diverge iff the reference system could also terminate or di-
verge, respectively. All sorts of other interesting program properties are reducible to
this one, in the style of computability theory. Our basic definitions of transition systems
build in special treatment of halting, so that we need not mention it explicitly in most
of the following contexts.

Definition 1 A labeled transition system (LTS) is a ternary relation, over SH × Lε ×
SH , for some sets S of states and L of labels. We usually do not mention these sets



explicitly, as they tend to be clear from context. We write Xε for lifting of a set X to
have an extra “empty” element ε (like an option type in ML). We writeXH for lifting
of a set X to have an extra “halt” element H . We also implicitly consider each LTS to
be associated with an initial state in S.

For LTS A, we write (s)
`−→
A

(s′) as shorthand for (s, `, s′) ∈ A, and we write A0

for A’s initial state. The intuition is that A is one process within a concurrent system.
The label ` from set L of labels is produced when A participates in some IO exchange
with another process; otherwise it is an empty or “silent” label ε. For brevity, we may
omit labels for ε steps.

3.1 Basic Constructions on LTSes

From an LTS representing single-step system evolution, we can build an LTS capturing
arbitrary-length evolutions.

Definition 2 The transitive-reflexive closure ofA, writtenA∗, is a derived LTS. Where
A’s states and labels are S and L, the states of A∗ are S, and the labels are L∗, or
sequences of labels from the original system. A∗ steps from s to s′ when there exist
zero or more transitions in A that move from s to s′. The label of this transition is the
concatenation of all labels generated inA, where the empty or “silent” label ε is treated
as an identity element for concatenation.

We also want to compose n copies of an LTS together, with no explicit communi-
cation between them. We apply this construction later to lift a single-CPU system to a
multi-CPU system.

Definition 3 The n-repetition ofA, writtenAn, is a derived LTS. WhereA’s states and
labels are S and L, the states of An are Sn, and the labels are [1, n]×L, or pairs that
tag labels with which component system generated them. These labels are generated
only when the component system generates a label. The whole system halts whenever
one of the components halts.

Eventually, we need processes to be able to communicate with each other, which
we formalize via the + composition operator that connects same-label transitions in the
two systems, treating the label as a cooperative communication event that may now be
hidden from the outside world, as an ε label.

Definition 4 Where A and B are two LTSes sharing labels set L, and with state sets
SA and SB respectively, the communicating composition A + B is a new LTS with
states SA × SB and an empty label set, defined as follows:

A
(a) −→

A
(a′) a′ 6= H

(a, b) −−−−−→
A+ B

(a′, b)
B

(b) −→
B

(b′) b′ 6= H

(a, b) −−−−−→
A+ B

(a, b′)
HA

(a) −→
A

(H)

(a, b) −−−−−→
A+ B

(H)

HB

(b) −→
B

(H)

(a, b) −−−−−→
A+ B

(H)
Join

(a)
`−→
A

(a′) (b)
`−→
B

(b′) a′, b′ 6= H

(a, b) −−−−−→
A+ B

(a′, b′)



3.2 Refinement Between LTSes

We need a notion of when one LTS “implements” another. Intuitively, transition labels
and halting are all that the outside world can observe. Two systems that produce iden-
tical labels and termination behavior under all circumstances can be considered as safe
substitutes for one another. We need only an asymmetrical notion of compatibility:

Definition 5 For some label domain L, let f : L → Lε be a function that is able to
replace labels with alternative labels, or erase them altogether. Let LTSes A and B
have the same label set L. We say that A trace-refines B w.r.t. f , or A vf B, if:

∀sA, η. (A0)
η−−→
A∗

(sA)⇒ ∃sB . (B0)
f(η)
−−−→
B∗

(sB) ∧ (sA = H ⇔ sB = H)

Each label in the trace is replaced by the mapping of f on it, and labels mapped to
ε by f are dropped. f is overloaded to denote the multilabel version when applied to η.

For brevity, we write A v B for A vid B, for identity function id, forcing traces in
the two systems to match exactly. Under this notion of identical traces, we say that A is
sound w.r.t. B. That case matches traditional notions of trace refinement, often proved
with simulation arguments, which we also adopt.

3.3 A Few Useful Lemmas

We need the following theorems in our proof.

Theorem 1. v is reflexive and transitive.

Theorem 2. If A vf B, then An vfn Bn, where fn is f lifted appropriately to deal
with indices (fn(i, `) = (i, `′) when f(`) = `′, and fn(i, `) = ε when f(`) = ε).

Theorem 3. If A vf A′ and B vf B′, then A+B vid A
′ +B′.

All these theorems can be proved using standard techniques.

4 Decomposing a Shared-Memory Multiprocessor System

Memory	  
subsystem	  

Processor1	   P2	   Pi	  

Local	  
Buffer1	  

L1 L1 L1 
L2 L2 

… 

L3 L3 

Main	  memory	   ROB	  
PC	  

RegFile	  
State	  

Fetch	   Branch	  
Pred	  

LB2	   LBi	  
… 

Fig. 1: Components of a multiprocessor system

Any conventional multiprocessor system can be divided logically into three compo-
nents, as shown in Figure 1. The top-level system design is shown in the middle, while
the details of its components, the memory system and the processor (Pi), are shown
in the magnified boxes. The processor component Pi can be implemented in a variety
of ways, from one executing instructions one-by-one in program order, to a complex
one speculatively executing many instructions concurrently to exploit parallelism. The



memory component is normally implemented using a hierarchy of caches, in order to
increase the performance of the overall system, because the latency of accessing mem-
ory directly is large compared to that of accessing a much smaller cache. Between each
processor and the global memory subsystem appears some local buffer, LBi, each spe-
cific to processor Pi.

Popular ISAs, such as Intel x86, ARM, and PowerPC, do not guarantee sequential
consistency. However, we want to emphasize that, in every weak-memory system we
are aware of, the main memory still exposes atomic loads and stores! Weaker semantics
in a core Pi arise only because of (1) reordering of memory instructions by the core
and/or (2) the properties of the local buffers LBi connected to Pi.

Ins (
ins,
outs,m

)
p, ToM(q)
−−−−−−−→

Mm

(
ins[p := {q}]
ins(p)], outs,m

) Rm outs(p) = rs ] {r}(
ins,
outs,m

)
p, ToP(r)
−−−−−−−→
Mm

(
ins, outs[
p := rs],m

)
Ld ins(p) = qs ] {t, Ld, a}(

ins, outs,m
)
−−−→
Mm

(
ins[p := qs], outs[p := (t, Ld,m(a)) ] outs(p)],m

)
St ins(p) = qs ] {St, a, v}(

ins, outs,m
)
−−−→
Mm

(
ins[p := qs], outs[p := (St) ] outs(p)],m[a := v]

)
Fig. 2: LTS for a simple memory

Consequently, we focus on this opportunity to simplify proof decomposition. We
prove that our main memory component satisfies an intuitive store atomicity property –
which is an appropriate specification of the memory component even for implementa-
tions of weaker memory models. Store atomicity can be understood via the operational
semantics of Figure 2, describing an LTS that receives load and store requests (Ld and
St) from processors and sends back load responses (LdRp). The transfer happens via in-
put buffers ins(p) from processor p and output buffers outs(p) to processor p. Note that
this model allows the memory system to answer pending memory requests in any order
(as indicated by the bag union operator ]), even potentially reordering requests from a
single processor, so long as, whenever it does process a request, that action appears to
take place atomically.

Figure 2 provides our first example of a hardware component specified as an LTS via
a set of inference rules. Such notation may seem far from the domain of synthesizable
hardware, but it is actually extremely close to Bluespec notation, and the Bluespec
compiler translates automatically to hardware-circuits in Verilog [1].

The memory component is composed of a hierarchy of caches, with cache nodes
labeled like “L1,” “L2,” etc., to avoid the latency of round trips with main memory.
Therefore, it is the responsibility of the hierarchy of caches (which forms the mem-
ory subcomponent) to implement the store atomicity property. In fact, as we prove in
Section 8, the purpose of the cache-coherence protocol is to establish this invariant for
the memory subcomponent. Concretely, we have verified a directory-based protocol for
coordinating an arbitrary tree of caches, where each node stores a conservative approx-
imation of its children’s states.

As an instance of the above decomposition, we prove that a multiprocessor system
with no local buffering in between the processor and the memory components indeed
implements SC. We implement a highly speculative processor that executes instructions



and issues loads out of order, but commits instructions (once some “verification” is
done) in order.

The processor itself can be decomposed into several components. In the zoomed-in
version of Figure 1, we show a highly speculative out-of-order-issue processor. We have
the normal architectural state, such as values of registers. Our proofs are generic over
a family of instruction set architectures, with parameters for opcode sets and functions
for executing opcodes and decoding them from memory. Other key components are a
branch predictor, which guesses at the control-flow path that a processor will follow,
to facilitate speculation; and a reorder buffer (ROB), which decides which instructions
along that path to try executing ahead of schedule. Our proofs apply to an arbitrary
branch predictor and any reorder buffer satisfying a simple semantic condition.

Our framework establishes theorems of the form “if system A has a run with some
particular observable behavior, then systemB also has a run with the same behavior.” In
this sense, we say that A correctly implements B. Other important properties, such as
deadlock freedom forA (which might get stuck without producing any useful behavior),
are left for future work.

5 Specifying Sequential Consistency

Halt
θ(i) = (s, pc)
dec(s, pc) = H

(θ,m) −−→
SC

(H)
NonMem

θ(i) = (s, pc) dec(s, pc) = (Nm, x)
exec(s, pc, (Nm, x)) = (s′, pc′)

(θ,m) −−→
SC

(θ[i := (s′, pc′)],m)

Load θ(i) = (s, pc) dec(s, pc) = (Ld, x, a) exec(s, pc, (Ld, x,m(a))) = (s′, pc′)

(θ,m) −−→
SC

(θ[i := (s′, pc′)],m)

Store θ(i) = (s, pc) dec(s, pc) = (St, a, v) exec(s, pc, (St)) = (s′, pc′)

(θ,m) −−→
SC

(θ[i := (s′, pc′)],m[a := v])

Fig. 3: LTS for SC with n simple processors

Our final theorem in this paper establishes that a particular complex hardware sys-
tem implements sequential consistency (SC) properly. We state the theorem in terms of
the trace refinement relation v developed in Section 3. Therefore, we need to define an
LTS embodying SC. The simpler this system, the better. We need not worry about its
performance, since we prove that an optimized system remains faithful to it.

Figure 3 defines an LTS for an n-processor system that is sequentially consistent,
parameterized over details of the ISA. In particular, the ISA gives us some domains
of architectural states s (e.g., register files) and of program counters pc. A function
dec(s, pc) figures out which instruction pc references in the current state, returning the
instruction’s “decoded” form. A companion function exec(s, pc, d) actually executes
the instruction, returning a new state s′ and the next program counter pc′.

The legal instruction forms, which are outputs of dec, are (Nm, x), for an operation
not accessing memory; (Ld, x, a), for a memory load from address a; (St, a, v), for a
memory store of value v to address a; and H , for a “halt” instruction that moves the
LTS to state H . The parameter x above represents the rest of the instruction, including
the opcode, registers, constants, etc.

The legal inputs to exec encode both a decoded instruction and any relevant re-
sponses from the memory system. These inputs are (Nm, x) and St, which need no ex-



tra input from the memory; and (Ld, x, v), where v gives the contents of the requested
memory cell.

We define the initial state of SC as (θ0,m0), where m0 is some initial memory
fixed throughout our development, mapping every address to value v0; and θ0 maps
every processor ID to (s0, pc0), using architecture-specific default values s0 and pc0.

This LTS encodes Lamport’s notion of SC, where processors take turns executing
nondeterministically in a simple interleaving. Note that, in this setting, an operational
specification such as the LTS for SC is precisely the proper characterization of full
functional correctness for a hardware design, much as a precondition-postcondition pair
does that in a partial-correctness Hoare logic. Our SC LTS fully constrains observable
behavior of a system to remain consistent with simple interleaving. Similar operational
models are possible as top-level specifications for systems following weaker memory
models, by giving the LTS for the local buffer component and composing the three
components simultaneously.

Our final, optimized system is parameterized over an ISA in the same way as SC
is. In the course of the rest of this paper, we define an optimized system O and prove
O v SC. To support a modular proof decomposition, however, we need to introduce a
few intermediate systems first.

Halt dec(s, pc) = H

(s, pc,⊥) −−→
Pref

(H)
NM dec(s, pc) = (Nm, x) exec(s, pc, (Nm, x)) = (s′, pc′)(

s, pc,⊥
)
−−→
Pref

(
s′, pc′,⊥

)
LdRq dec(s, pc) = (Ld, x, a)

(s, pc,⊥)
ToM(ε, Ld, a)
−−−−−−−−−−→

Pref
(s, pc,>)

StRq dec(s, pc) = (St, a, v)

(s, pc,⊥)
ToM(St, a, v)
−−−−−−−−−−→

Pref
(s, pc,>)

LdRp

dec(s, pc) = (Ld, x, a)
exec(s, pc, (Ld, x, v)) = (s′, pc′)

(s, pc,>)
ToP(ε, Ld, v)
−−−−−−−−−→

Pref
(s′, pc′,⊥)

StRp

dec(s, pc) = (St, a, v)
exec(s, pc, (St)) = (s′, pc′)

(s, pc,>)
ToP(St)
−−−−−→

Pref
(s′, pc′,⊥)

Fig. 4: LTS for a simple decoupled processor (Pref)

6 Respecifying Sequential Consistency with Communication

Realistic hardware systems do not implement the monolithic SC of Figure 3 directly.
Instead, there is usually a split between processors and memory. Here we formalize that
split using LTSes that compose to produce a system refining the SC model.

Figure 4 defines an LTS for a simple decoupled processor (Pref). Memory does not
appear within a processor’s state. Instead, to load from or store to an address, requests
are sent to the memory system and responses are received. Both kinds of messages are
encoded as labels: ToM for requests to memory and ToP for responses from memory
back to the processor.

A state of Pref is a triple (s, pc,wait), giving the current architectural state s and
program counter pc, as well as a Boolean flag wait indicating whether the processor is
blocked waiting for a response from the memory system. As in the SC model, the state
of the processor is changed to H whenever dec returns H .

As initial state for system Pref, we use (s0, pc0,⊥).
The simple memory defined earlier in Figure 2 is meant to be composed with Pref

processors. A request to memory like (t, Ld, a) asks for the value of memory cell a,



associating a tag t that the processor can use to match responses to requests. Those
responses take the form (t, Ld, v), giving the value v of the requested memory address.

A memory state is a triple (ins, outs,m), giving not just the memory m itself, but
also buffers ins and outs for receiving processor requests and batching up responses to
processors, respectively. We define the initial state of the Mm LTS as (∅, ∅,m0), with
empty queues.

Now we can compose these LTSes to produce an implementation of SC.
For a system of n processors, our decoupled SC implementation is Pnref +Mm.

Theorem 4. Pnref +Mm v SC

Proof. By induction on traces of the decoupled system and relating it to that of the
SC reference (similar to the technique in WEB refinement [27]). We need to choose an
abstraction function f from states of the complex system to states of the simple system.
This function must be inductive in the appropriate sense: a step from s to s′ on the left
of the simulation relation must be matched by sequences of steps on the right from f(s)
to f(s′). We choose f that just preserves state components in states with no pending
memory-to-processor responses. When such responses exist, f first executes them on
the appropriate processors. ut

7 Speculative Out-Of-Order Processor
We implement a speculative processor, which may create many simultaneous outstand-
ing requests to the memory – as an optimization to increase parallelism. Our processor
proof is in some sense generic over correct speculation strategies. We parameterize over
two key components of a processor design: a branch predictor (which makes guesses
about processor-local control flow in advance of resolving conditional jumps) and a
reorder buffer (which decides what speculative instructions – such as memory loads –
are worth issuing at which moments, in effect reordering later instructions to happen
before earlier instructions have finished).

The branch predictor is the simpler of the two components, whose state is indi-
cated with metavariable bp. The operations on such state are curPpc(bp) (to extract the
current program-counter prediction); nextPpc(bp) (to advance to predicting the next
instruction); and setNextPpc(bp, pc) (to reset prediction to begin at a known-accurate
position pc). We need not impose any explicit correctness criterion on branch predic-
tors; the processor uses predictions only as hints, and it always resets the predictor using
setNextPpc after detecting an inaccurate hint.

The interface and formal contract of a reorder buffer are more involved. We write
rob as a metavariable for reorder-buffer state, and φ denotes the state of an empty buffer.
The operations associated with rob are:

– insert(pc, rob), which appends the program instruction at location pc to the list of
instructions that the buffer is allowed to consider executing.

– compute(rob), which models a step of computation inside the buffer, returning both
an updated state and an optional speculative load to issue. For instance, it invokes
the dec and exec functions (as defined for SC) internally to obtain the next program
counter, state, etc. (but the actual states are not updated).



Fetch (
s, pc,wait, rob, bp

)
−−→
Pso

(
s, pc,wait, insert(curPpc(bp), rob), nextPpc(bp)

)
Comp compute(rob) = (rob′, ε)(

s, pc,wait,
rob, bp

)
−−→
Pso

(
s, pc,wait,
rob′, bp

) SpLdRq compute(rob) = (rob′, (SpecLd, t, a))(
s, pc,wait,
rob, bp

)
ToM(t, Ld, a)
−−−−−−−−−−→

Pso

(
s, pc,wait,
rob′, bp

)
SpLdRp t 6= ε(

s, pc,wait, rob, bp
) ToP(t, Ld, v)
−−−−−−−−−→

Pso

(
s, pc,wait, updLd(rob, t, v), bp

)
Abort commit(rob) = (pc′, , ) pc′ 6= pc(

s, pc,wait, rob, bp
)
−−→
Pso

(
s, pc,wait, φ, setNextPpc(bp, pc)

)
Halt commit(rob) = H(

s, pc,⊥, rob, bp
)
−−→
Pso

(
H
) Nm commit(rob) = (pc, pc′, (Nm, s′))(

s, pc,⊥, rob, bp
)
−−→
Pso

(
s′, pc′,⊥, retire(rob), bp

)
StRq commit(rob) = (pc, pc′, (St, a, v, s′))(

s, pc,⊥,
rob, bp

)
ToM(St, a, v)
−−−−−−−−−−→

Pso

(
s, pc,>,
rob, bp

) LdRq commit(rob) = (pc, pc′, (Ld, x, a, v, s′))(
s, pc,⊥,
rob, bp

)
ToM(ε, Ld, a)
−−−−−−−−−−→

Pso

(
s, pc,>,
rob, bp

)
StRp commit(rob) = (pc, pc′, (St, a, v, s′))(

s, pc,>,
rob, bp

)
ToP(St)
−−−−−→

Pso

(
s′, pc′,⊥,
retire(rob), bp

) LdRpGd commit(rob) = (pc, pc′, (Ld, x, a, v, s′))(
s, pc,>,
rob, bp

)
ToP(ε, Ld, v)
−−−−−−−−−→

Pso

(
s′, pc′,⊥,
retire(rob), bp

)
LdRpBad commit(rob) = (pc, pc′, (Ld, x, a, v′, s′)) v′ 6= v exec(s, pc, (Ld, x, v)) = (s′′, pc′′)(

s, pc,>, rob, bp
) ToP(ε, Ld, v)
−−−−−−−−−→

Pso

(
s′′, pc′′,⊥, φ, setNextPpc(bp, pc′′)

)
Fig. 5: Speculating, out-of-order issue processor

– updLd(rob, t, v), which informs the buffer that the memory has returned result
value v for the speculative load with tag t 6= ε.

– commit(rob), which returns the next instruction in serial program order, if we
have accumulated enough memory responses to execute it accurately, or returns
ε otherwise. When commit returns an instruction, it also returns the associated pro-
gram counter plus the next program counter to which it would advance afterward.
Furthermore, the instruction is extended with any relevant response from memory
(used only for load instructions, obtained through updLd) and with the new archi-
tectural state (e.g., register file) after execution.

– retire(rob), which informs the buffer that its commit instruction was executed suc-
cessfully, so it is time to move on to the next instruction.

Figure 5 defines the speculative processor LTS Pso. This processor may issue ar-
bitrary speculative loads, but it commits only the instruction that comes next in serial
program order. The processor will issue two kinds of loads, a speculative load (whose
tag is not ε) and a commit or real load (whose tag is ε). To maintain SC, every specula-
tive load must have a matching verification load later on, and we maintain the illusion
that the program depends only on the results of verification loads, which, along with
stores, must be issued in serial program order.

When committing a previously issued speculative load instruction, the associated
speculative memory load response is verified against the new commit load response.
If the resulting values do not match, the processor terminates all past uncommitted
speculation, by emptying the reorder buffer and resetting the next predicted program
counter in the branch predictor to the correct next value. In common cases, performance
of executing loads twice is good, because it is likely that the verification load finds the



address already in a local cache – thanks to the recent processing of the speculative load.
Moreover, 60% to 90% of verification loads can be avoided by tracking speculative
loads [9]; in the future we will extend our proofs to include such optimizations.

A full processor state is (s, pc,wait , rob, bp), comprising architectural state, the
program counter, a Boolean flag indicating whether the processor is waiting for a mem-
ory response about an instruction being committed, and the reorder-buffer and branch-
predictor states. Its initial state is given by (s0, pc0,⊥, φ, bp0). The interface of this
processor with memory (i.e., communication labels with ToM,ToP) is identical to that
of the reference processor.

Finally, we impose a general correctness condition on reorder buffers (Figure 6).
Intuitively, whenever the buffer claims (via a commit output) that a particular instruc-
tion is next to execute (thus causing certain state changes), that instruction must really
be next in line according to how the program runs in the SC system, and its execution
must really cause those state changes.

ROB-invariant: If Pso reaches a state (s, pc,wait, rob, bp),
commit(rob) = (pc, pc′, (Nm, s′)) ⇒ ∃x. dec(s, pc) = (Nm, x) ∧ exec(s, pc, (Nm, x)) = (s′, pc′)
commit(rob) = (pc, pc′, (Ld, x, a, v, s′)) ⇒ dec(s, pc) = (Ld, x, a) ∧ exec(s, pc, (Ld, x, v)) = (s′, pc′)
commit(rob) = (pc, pc′, (St, a, v, s′)) ⇒ dec(s, pc) = (St, a, v) ∧ exec(s, pc, (St)) = (s′, pc′)
commit(rob) = H ⇒ dec(s, pc) = H

Fig. 6: Correctness of reorder buffer

When this condition holds, we may conclude the correctness theorem for out-of-
order processors. We use a trace-transformation function noSpec that drops all speculative-
load requests and responses (i.e., those load requests and responses whose tags are not
ε). See Definition 5 for a review of how we use such functions in framing trace re-
finement. Intuitively, we prove that any behavior by the speculating processor can be
matched by the simple processor, with speculative messages erased.

Theorem 5. Pso vnoSpec Pref

Proof. By induction on Pso traces, using an abstraction function that drops the specu-
lative messages and the rob and bp states to relate the two systems. The reorder-buffer
correctness condition is crucial to relate its behavior with the simple in-order execution
of Pref. ut

Corollary 1. Pnso vnoSpecn Pnref

Proof. Direct consequence of Theorems 5 and 2 (the latter is about n-repetition). ut

8 Cache-Based Memory System
We now turn our attention to a more efficient implementation of memory. With the
cache hierarchy of Figure 1, we have concurrent interaction of many processors with
many caches, and the relationship with the originalMm system is far from direct. How-
ever, this intricate concurrent execution is crucial to hiding the latency of main-memory
access. Figure 7 formalizes as an LTS Mc the algorithm we implemented (based on a
published implementation [13]) for providing the memory abstraction on top of a cache
hierarchy. We have what is called an invalidating directory-based hierarchical cache-
coherence protocol.



Processor/Memory Interface

Ins d, ch, cs,
dir ,w , dirw ,
ins, outs

 i,ToM(q)−−−−−→
Mc

d, ch, cs, dir ,w ,
dirw , ins[i := {q}
] ins(i)], outs


Rm outs(i) = rs ] {r}d, ch, cs,

dir ,w , dirw ,
ins, outs

 i,ToP(r)−−−−−→
Mc

d, ch, cs, dir ,
w , dirw , ins,
outs[i := rs]


Ld ins(c) = {(t, Ld, a)} ] rs cs(c, a) ≥ S(

d, ch, cs, dir ,w ,
dirw , ins, outs

)
−−−→
Mc

(
d, ch, cs, dir ,w , dirw , ins[c := rs],
outs[c := outs(c) ] {(t, Ld, d(c, a))}]

)

St ins(c) = {(St, a, v)} ] rs cs(c, a) ≥M(
d, ch, cs, dir ,w ,
dirw , ins, outs

)
−−−→
Mc

(
d[(c, a) := v], ch, cs, dir ,w , dirw , ins[c := rs],
outs[c := outs(c) ] {(St)}]

)
Child Upgrade

ChildSendReq parent(c, p) cs(c, a) < x w(c, a) = ε(
d, ch, cs, dir ,w ,
dirw , ins, outs

)
−−−→
Mc

(
d, ch[(c, p,Rq) := (a, cs(c, a), x) ] ch(c, p,Rq)],
cs, dir ,w [(c, a) := x], dirw , ins, outs

)

ParentRecvReq
parent(c, p) ch(c, p,Rq) = {(a, y, x)} ] rs cs(p, a) ≥ x
dirCompat(p, c, x, a) dirw(p, c, a) = ε dir(p, c, a) ≤ y d, ch, cs,

dir ,w , dirw ,
ins, outs

 −−−→
Mc

 d, ch[(c, p,Rq) := rs][(p, c,RR) := (Rp, (a, dir(p, c, a), x,
if(dir(p, c, a) = I) then d(p, a) else )) :: ch(p, c,RR)],

cs, dir [(p, c, a) := x],w , dirw , ins, outs


ChildRecvRsp parent(c, p) ch(p, c,RR) = rs :: (Rp, (a, y, x, v)) d, ch, cs,

dir ,w , dirw ,
ins, outs

 −−−→
Mc

 d[(c, a) := if(y = I) then v else d(c, a)], ch[(p, c,RR) := rs],
cs[(c, a) := x], dir ,w [(c, a) := if(w(c, a) ≤ x) then ε

else w(c, a)], dirw , ins, outs


Parent Downgrade

ParentSendReq parent(c, p) dir(p, c, a) > x dirw(p, c, a) = ε(
d, ch, cs, dir ,w ,
dirw , ins, outs

)
−−−→
Mc

(
d, ch[(p, c,RR) := (Rq, (a, dir(p, c, a), x)) :: ch(p, c,RR)],
cs, dir ,w , dirw [(p, c, a) := x], ins, outs

)

ChildRecvReq
parent(c, p) ch(p, c,RR) = rs :: (Rq, (a, y, x))
(∀i. parent(i, c)⇒ dir(c, i, a) ≤ x) cs(c, a) > x d, ch, cs,

dir ,w , dirw ,
ins, outs

 −−−→
Mc

 d, ch[(p, c,RR) := rs][(c, p,Rp) := (a, cs(c, a), x,
if(dir(c, a) = M) then d(c, a) else ) :: ch(c, p,Rp)],

cs[(c, a) := x], dir ,w , dirw , ins, outs


ParentRecvRsp parent(c, p) ch(c, p,Rp) = {(a, y, x, v)} :: rs dir(p, c, a) = y d, ch, cs,

dir ,w , dirw ,
ins, outs

 −−−→
Mc

 d[(p, a) := if(y = M) then v else d(p, a)], ch[(c, p,Rp) :=
rs], cs, dir [(p, c, a) := x],w , dirw [(p, c, a) :=
if(dirw(p, c, a) ≥ x) then ε else dirw(p, c, a)], ins, outs


Voluntary downgrade for replacement

VolResp parent(c, p) (∀i. parent(i, c)⇒ dir(c, i, a) ≤ x) cs(c, a) > x d, ch, cs,
dir ,w , dirw ,
ins, outs

 −−−→
Mc

 d, ch[(c, p,Rp) := (a, cs(c, a), x,
if(cs(c, a) = M) then d(c, a) else ) :: ch(c, p,Rp)],

cs[(c, a) := x], dir ,w , dirw , ins, outs


Dropping request because of voluntary downgrade

DropReq parent(c, p) ch(p, c,RR) = rs :: (Rq, (a, y, x)) cs(c, a) ≤ x(
d, ch, cs, dir ,w , dirw , ins, outs

)
−−−→
Mc

(
d, ch[(p, c,RR) := rs], cs, dir ,w , dirw , ins, outs

)
Fig. 7: LTS for cache-coherent shared-memory system

We describe a state of the system using fields d , ch , cs , dir , w , dirw , ins , outs .
The ins and outs sets are the interfaces to the processors and are exactly the same as in
Mm (Figure 2). We use parent(c, p) to denote that p is the parent of c.

A coherence state is M , S, or I , broadly representing permissions to modify, read,
or do nothing with an address, respectively, the decreasing permissions denoted byM >



S > I . More precisely, if a node n is in coherence state M or S for some address, then
there might be some node in n’s subtree that has write or read permissions, respectively,
for that address. Coherence state of cache c for address a is denoted by cs(c, a). d(c, a)
represents the data in cache c for address a.

w(c, a) stores the permission an address a in cache c is waiting for, if any. That is,
cache c has decided to upgrade its coherence state for address a to a more permissive
value, but it is waiting for acknowledgment from its parent before upgrading.

dir(p, c, a) represents the parent p’s notion of the coherence state of the child c
for address a. We later prove that this notion is always conservative, i.e., if the parent
assumes that a child does not have a particular permission, then it is guaranteed in this
system that the child will not have that permission. dirw(p, c, a) denotes whether the
parent p is waiting for any downgrade response from its child c for address a, and if so,
the coherence state that the child must downgrade to as well.

There are three types of communication channels in the system: (i) ch(p, c,RR)
(which carries both downgrade request and upgrade response messages from parent p to
its child c), (ii) ch(c, p,Rq) (which carries upgrade request messages from child c to its
parent p) and (iii) ch(c, p,Rp) (which carries downgrade response messages from child
c to its parent p). While the ch(c, p,Rp) and ch(p, c,RR) channels deliver messages
between the same pair of nodes in the same order in which the messages were injected
(i.e., they obey the FIFO property, indicated by the use of :: in Figure 7), ch(c, p,Rq)
need not obey such a property (indicated by the use of ] for unordered bags in Figure
7). This asymmetry arises because only one downgrade request can be outstanding for
one parent-child pair for an address.

Here is an intuition on how the transitions work in the common case. A cache can
spontaneously decide to upgrade its coherence state, in which case it sends an upgrade
request to its parent. The parent then makes a local decision on whether to send a re-
sponse to the requesting child or not, based on its directory approximation and its own
coherence state cs . If cs is lower than the requested upgrade, then it cannot handle
the request, and instead must decide to upgrade cs . Once the parent’s cs is not lower
than the requested upgrade, it makes sure that the rest of its children are “compatible”
with the requested upgrade (given by the dirCompat definition below). If not, the parent
must send requests to the incompatible children to downgrade. Finally, when the cs’s
upgrade and children’s downgrade responses are all received, the original request can
be responded to. A request in ins can be processed by an L1 cache only if it is in the
appropriate state, otherwise it has to request an upgrade for that address.

Definition 6 dirCompat(p, c, x, a) =

{
x = M ⇒ ∀c′ 6= c. dir(p, c′, a) = I
x = S ⇒ ∀c′ 6= c. dir(p, c′, a) ≤ S

A complication arises because a cache can voluntarily decide to downgrade its state.
This transition is used to model invalidation of cache lines to make room for a different
location. As a result, the parent’s dir and the corresponding cs of the child may go out
of sync, leading to the parent requesting a child to downgrade when it already has. To
handle this situation, the child has to drop the downgrade request when it has already
downgraded to the required state (Rule DropReq in Figure 7), to avoid deadlocks by
not dequeuing the request.



8.1 Proving Mc is Store Atomic

We must prove the following theorem, i.e., the cache-based system is sound with respect
to the simple memory.

Theorem 6. Mc vMm

We present the key theorem needed for this proof below. Throughout this section,
we say time to denote the number of transitions that occurred before reaching the spec-
ified state.

Theorem 7. A is store atomic, i.e., A v Mm and Mm v A iff for any load request
ToM(t, Ld, a) received, the response ToP(t, Ld, v) sent at time T is such that

1. v = v0 (the initial value of any memory address) and no store request ToM(St, a, v′)
has been processed at any time T ′ such that T ′ < T or

2. There is a store request ToM(St, a, v) that was processed at time Tq such that
Tq < T and no other store request ToM(St, a, v′) was processed at any time T ′

such that Tq < T ′ < T .

The proof that Mc obeys the properties in Theorem 7 is involved enough that we
state only key lemmas that we used.

Lemma 1. At any time T , if address a in cache c obeys cs(c, a) ≥ S and ∀i. dir(c, i, a) ≤
S, then a will have the latest value, i.e.,

1. d(c, a) = v0 and no store request ToM(St, a, v) has been processed at any time T ′

such that T ′ < T or
2. There is a store request ToM(St, a, v) that was processed at time Tq such that
Tq < T ∧ d(c, a) = v and no other store request ToM(St, a, v′) was processed at
any time T ′ such that Tq < T ′ < T .

It is relatively straightforward to prove the properties of Theorem 7, given Lemma 1.
To prove Lemma 1, it has to be decomposed further into the following, each of which
holds at any time.

Lemma 2. If some response m for an address a is in transit (i.e., we are considering
any time T such that Ts ≤ T ≤ Tr where Ts is the time of sendingm and Tr the time of
receiving m), then no cache can process store requests for a, and m must be sent from
a cache c where cs(c, a) ≥ S and ∀i. dir(c, i, a) ≤ S.

Lemma 3. At any time, ∀p,∀c,∀a. parent(c, p)⇒
cs(c, a) ≤ dir(p, c, a) ∧ dirCompat(p, c, dir(p, c, a), a) ∧ dir(p, c, a) ≤ cs(p, a)

The same proof structure can be used to prove other invalidation-based protocols
with inclusive caches (where any address present in a cache will also be present in its
parent) like MESI, MOSI, and MOESI; we omit the discussion of extending this proof
to these for space reasons. The MSI proof is about 12,000 lines of Coq code, of which
80% can be reused as-is for the other protocols.



9 The Final Result

With our two main results about optimized processors and memories, we can complete
the correctness proof of the composed optimized system.

First, we need to know that, whenever the simple memory can generate some trace
of messages, it could also generate the same trace with all speculative messages re-
moved. We need this property to justify the introduction of speculation, during our final
series of refinements from the optimized system to SC.

Theorem 8. Mm vnoSpecn Mm

Proof. By induction on traces, with an identity abstraction function. ut

That theorem turns out to be the crucial ingredient to justify placing a speculative
processor in-context with simple memory.

Theorem 9. Pnso +Mm v Pnref +Mm

Proof. Follows from Theorem 3 (our result about +), Corollary 1, and Theorem 8. ut

The last theorem kept the memory the same while refining the processor. The next
one does the opposite, switching out memory.

Theorem 10. Pnso +Mc v Pnso +Mm

Proof. Follows from Theorems 6 and 3 plus reflexivity of v (Theorem 1). ut

Theorem 11. Pnso +Mc v SC

Proof. We twice applyv transitivity (Theorem 1) to connect Theorems 10, 9, and 4 ut

10 Conclusions and Future Work

In this paper, we developed a mechanized modular proof of a parametric hierarchi-
cal cache-coherence protocol in Coq and use this proof modularly for a verification of
sequential consistency for a complete system containing out-of-order processors. Our
proof modularization corresponds naturally to the modularization seen in hardware im-
plementations, allowing verification to be carried out in tandem with the design. Our
overall goal is to enable design of formally verified hardware systems. To this end, we
have been working on a DSL in Coq for translating to and from Bluespec, and we are
developing appropriate libraries and proof automation, extending the work of Braibant
et al. [7] with support for modular specification and verification, systematizing some
elements of this paper’s Coq development that are specialized to our particular proof.

While we provide a clean interface for an SC system, we are also working on en-
compassing relaxed memory models commonly used in modern processors.
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