
Debugging Bluespec Designs via Equivalence
Checking

Nirav Dave∗, Michael Katelman†
∗ Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
Cambridge, MA 02139, U.S.A.

ndave@csail.mit.edu
† Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL 61801 USA

katelman@uiuc.edu

We have argued previously [1] that the best way utilize
formal methodologies for hardware design and verification is
to focus on high-level debugging tools that let the designer
think of the verification problem in the same way that he
considers the design problem. One key problem with this idea
is that while almost all design specifications are nondeter-
ministic to allow designers more freedom in generating high-
performance and efficient design, design languages in which
designers think of the problem almost all represent the design
as a deterministic state machine.

Our work focuses on hardware designed using Bluespec,
a language of guarded atomic actions (or rules) where the
rules can fire nondeterministically. Any rule whose predi-
cate guard is true can be executed. The Bluespec compiler
generates efficient synchronous hardware by automatically
selecting (or with some manual assistance) the rule execution
strategy [2][3].

In Bluespec one can represent a high-level specification of
a design using a small number of large rules. For implemen-
tation purposes, however, designers may split specification-
level rules into collections of smaller rules. For example a
specification-level rule A may be split into a set of rules
A1, . . . , An. Logically, the designer wants his system to be-
have as if all of the Ai rules fire one after the other, but to
achieve higher parallelism, and better performance, this may
not be desirable for the final design. The correctness of an
implementation is established by showing that (a) A1, . . . , An

behaves as A, and (b) that it is possible to simulate the refined
system, where A1, . . . , An may fire in any order, with the one
where the Ai’s only fire in sequence.

We have developed a tool which poses this simulation
question to help designers verify that their refinements are
correct. To use the tool, the user must provide (a) the sequence
of rules A1, . . . , An resulting from a split, and (b) a Bluespec
predicate which signifies when there are no partial transactions
of the original A transaction currently in-flight. Both pieces
of information are natural for designers to understand deeply
enough that this is not a significant imposition.

With this information we automatically generate a series of

questions which interactively prove that all finite sequences in
the refined system have a corresponding, equivalent sequence
when we constrain the firing of the Ai’s to always occur in
sequence. We exploit the predicate to drastically prune the
search space by let us reason about “flushed” starting states.

This tool can be used in two modes. One, the tool can
be used to establish bisimulation equivalence between (a)
the partitioned system and (b) the restricted system where
the “atomic” rule sequences are always executed without
interruption. The second mode of operation is a sort of dual to
the equivalence checking of the first; the tool applies heuristics
to quickly show that the two designs are not bisimilar. Both
modes are similar, but the second can be applied as a quick
check without having to wait for the full bisimulation check
to successfully complete. In either case, the imposition on the
user is the same: the user must provide (a) a set of sequences of
rules that constitute transactions, and (b) a predicate character-
izing when transactions are in-flight. From this information we
automatically generate a candidate bisimulation relation where
states that have partially completed transactions get “flushed”
by applying sequences of rules that are proper suffixes of the
provided transactions.

Internally, our tool uses symbolic simulation to generate
logical formulas representing the diagrams which must com-
mute for bisimulation. Our current symbolic simulator reads
an intermediate format output by the Bluespec compiler and
generates constraints for the bit-vector SMT solver STP [4].
We are able to symbolically execute bounded rule sequences
having an arbitrary or fixed schedule and operating from
a symbolic, or constrained symbolic, initial state. Our tool
is currently able to handle medium-sized designs, including
a relatively realistic 6-stage pipelined MIPS microprocessor
refined from a 4-stage design. Currently, proving correctness
of the refined design and finding a bug in a incorrect version
takes on the order of a few hours and 30 minutes, respectively.
We believe that with modest improvements to the compiler
these times can be reduced to the point that they are well
within the designer’s delay tolerance.



REFERENCES

[1] Arvind, Nirav Dave, and Michael Katelman. Getting formal verification
into design flow. In Lecture Notes in Computer Science, FM 2008: Formal
Methods Volume 5014/2008 pp.12-32, 2008.

[2] Nirav Dave, Arvind, and Michael Pellauer. Scheduling as Rule Com-
position. In Proceedings of Formal Methods and Models for Codesign
(MEMOCODE), Nice, France, 2007.

[3] Thomas Esposito, Mieszko Lis, Ravi Nanavati, Joseph Stoy, and Jacob
Schwartz. System and method for scheduling TRS rules. United States
Patent US 133051-0001, February 2005.

[4] Vijay Ganesh and David L. Dill. A decision procedure for bit-vectors
and arrays. In CAV, pages 519–531, 2007.


