
Enabling Hardware Exploration in Software-Defined
Networking: A Flexible, Portable OpenFlow Switch

Asif Khan
MIT - CSAIL

Cambridge, MA, USA
aik@csail.mit.edu

Nirav Dave
SRI International

Menlo Park, CA, USA
ndave@csl.sri.com

Abstract—The OpenFlow framework allows the data plane of
a network switch to be managed by a software-based controller.
This enables a software-defined networking model in which so-
phisticated network management policies can be deployed. In this
paper, we present an FPGA-based switch which is fully-compliant
with OpenFlow 1.0, and meets the 10 Gbps line rate. The
switch design is both modular and highly parametrized. It has
generic split-transaction interfaces and isolated platform-specific
features, making it both flexible for architectural exploration
and portable across FPGA platforms. The flow tables in the
switch can be implemented on Block RAM or DRAM without
any modifications to the rest of the design. The switch has been
ported to the NetFPGA-10G, the ML605 and the DE4 boards.
It can be integrated with a Desktop PC via either the PCIe or
the serial link, and with an FPGA-based MIPS64 softcore as
a coprocessor. The latter FPGA-based switch-processor system
provides an ideal platform for network research in which both
the data plane and the control plane can be explored.

I. INTRODUCTION

As network infrastructure becomes more integral in modern
applications, the performance and correctness requirements on
network packet flows become more complicated. Consider,
for instance, a transcoding service in the cloud. In this ap-
plication, inflows to the transcoding engine from the original
video source should have minimal latency in order to get the
data on time, while outflows need high bandwidth to serve
all clients simultaneously. Achieving these goals effectively
requires that we step away from the original self-contained,
fully-autonomous network switching model to an application-
aware switching model.

OpenFlow [1], an instance of software-defined network-
ing (SDN) is a platform coupling the deep access within
the network data plane, needed for SDN operations, with a
simple API for network-device control. OpenFlow has gained
popularity within both academia and industry [2]–[4] as a
framework for both network research and implementation.

The OpenFlow community provides an open-source soft-
ware package for Linux that implements a software OpenFlow
switch as a reference implementation [5]. Though complete
and easy to modify, software cannot meet modern line rates
and as such is a non-starter for realistic exploration of the net-
work architecture. Modern commodity switches have histori-
cally provided SDN-like functionalities at high line rate, and
many efforts have been made to wrap or modify these routers

to serve as OpenFlow switches. While fast, these commodity
implementations do not provide the full introspection which
inhibits network architecture exploration.

FPGAs provide an opportunity for flexibility with suffi-
cient speed for realistic line rates. In fact, various OpenFlow
switches [6]–[8] have been developed on the NetFPGA plat-
forms [9], a set of FPGA boards designed to support OpenFlow
and similar networking frameworks.

Naous et al. [6] demonstrated an OpenFlow switch im-
plemented on the NetFPGA-1G platform. The switch has
4 ports and is capable of meeting a 1 Gbps line rate. It
classifies packets into flows based on a 10-tuple which can
be matched either exactly or by using field-level wildcards.
It can maintain up to 64K exact match rules and up to 32
wildcard rules. Antichi et al. [7] improved on Naous et al.’s
switch by defining flows in terms of patterns described as
regular expressions. Their switch implementation can store up
to 200K rules while still meeting line rate. Yabe [8] developed
a 4-port OpenFlow switch on the NetFPGA-10G board capable
of meeting a 10 Gbps line rate.

These FPGA-based switches are able to meet realistic line
rates (1-10 Gbps), implement a significant portion of the Open-
Flow specification and have been used for network research.
The design of these switches, however, was not done with
the goal of microarchitectural exploration or portability across
FPGA platforms. They were designed in low-level Verilog
RTL with strong timing assumptions resulting in very brittle
microarchitectures. The flexibility to implement the flow tables
on a different type of memory, for example, could trigger
a complete re-design of the switch architecture. Portability
across FPGA platforms is another highly desired feature
because some FPGA boards may be more easily available
or offer better performance. These switches, however, are
strongly tied to the interface protocol and timing behavior
of the external resources, such as DRAM, available on a
particular FPGA board, severely limiting their portability.

In this paper, we detail the construction of a high-
performance OpenFlow switch in Bluespec SystemVerilog
(BSV) [10], a high-level HDL, and address the challenges
of its flexibility and portability. Our design provides many
features of interest for OpenFlow-based network research.
Specifically, our switch fully meets the OpenFlow 1.0 specifi-
cation [11] and achieves a line rate of 10 Gbps. Our design is



1

OpenFlow Switch

Flow
Table

Flow
Table

Flow
Table

Processor

Secure Channel

Controller

OpenFlow
Protocol

…

Fig. 1. Overview of the OpenFlow network architecture

highly modular and parametrized, and makes use of latency-
insensitivity, split-transaction interfaces and isolated platform-
specific features. These enable the relatively easy porting and
retuning of the switch design across FPGA platforms. We have
ported the switch to three FPGA boards: NetFPGA-10G and
ML605 from Xilinx, and DE4 from Altera.

The ability to easily carry out modular refinement of the
switch design can be exploited for improved switch func-
tionality and performance. For instance, we implemented the
flow tables on Block RAM or DRAM without making any
modifications to the rest of the design. This enabled us to
almost effortlessly explore the resource-performance tradeoff
of the two flow table implementations on the three FPGA
boards. We also implemented the switch in two configurations:
as an FPGA accelerator communicating with a Desktop PC via
the PCIe or the serial link, and as a coprocessor in an FPGA-
based MIPS64 softcore [12]. This flexibility required us to
implement adapters for the three switch-controller interfaces,
but required no modifications to the switch design.
Paper organization: Section II describes the switch architec-
ture and the OpenFlow network which includes the switch
and a processor running the OpenFlow controller software.
Section III presents an evaluation of our switch design and its
FPGA implementation. Section IV summarizes our work and
discusses some of the lessons learnt during its course.

II. DESIGN OF AN FPGA-BASED OPENFLOW SWITCH AND
NETWORK

As shown in Figure 1, the OpenFlow network architecture
includes switches, controller(s) and a secure channel based
on the OpenFlow protocol which connects the switches with
the controller(s). The OpenFlow switch directs packets based
on flow tables, while the OpenFlow controller is responsible
for modifying these flow tables to implement the high-level
routing policy. This results in a separation between data and
control plane functionality.

A. OpenFlow Switch Architecture

The high-level operation of an OpenFlow switch is quite
straightforward. As packets stream in, the switch aggregates
header information and compares it against the flow table
entries. The switch then updates the packet according to the

2

Flow Table
Controller

Arbiter

Flow Table
Entry Comp Action Proc

Flow Table
Entry Comp Action Proc

Flow Table
Entry Comp Action Proc

Flow Table
Entry Comp Action Proc

Flow Table
Entry Comp Action Proc

Switch Controller Interface

MAC1

MAC2

MAC3

MACN

Host
Processor

MAC1

MAC2

MAC3

MACN

N+1 N+1

Host
Processor

… …

Fig. 2. OpenFlow switch architecture

actions prescribed in the matching entry, and sends the updated
packet to the appropriate egresses via a crossbar.

Our switch architecture is depicted in Figure 2. It is
parametrized by N , the number of MAC ports in the switch,
and W , the width of the internal data plane. These values
can be freely changed to meet resource and performance
requirements. In an N -port instance of the switch, there are
N+1 ports with the (N+1)th port reserved for communication
with a host processor. The switch also has a controller interface
to allow the host processor access to the flow tables and the
various registers that maintain statistics.

Since a major motivation for this design was to enable
easy modular refinement and rapid microarchitectural explo-
ration, we implemented the switch in Bluespec SystemVer-
ilog (BSV) [10]. BSV is a high-level hardware description
language built around guarded atomic actions or rules, and
lightweight guarded modular interfaces. These representational
abstractions allow the designer to encode both how modules
are used, e.g., when the design should enqueue a new token
into a FIFO, and how their use is restricted, e.g., the design
cannot enqueue into a FIFO if it is full, directly and naturally.

As a switch is always permitted to drop packets due to over-
subscription, it is common practice in RTL switch designs
for the datapath to be a synchronous pipeline with no back
pressure. This reduces some design complexity and eliminates
some logic statically. However, this minor efficiency comes at
the cost of less understandable compositional semantics for
modules, constraining the modular refinement capability. For
these reasons, we implemented all the module interfaces to
provide back pressure via BSV’s ready-enable micro-interface
protocol to stall operations when sufficient buffering is not
available. This change has a negligible area cost, but it
dramatically reduces the design exploration effort.

Our switch design endorses the “fail-early” principle, drop-
ping any packet for which it cannot guarantee end-to-end
buffering. When the header flit of a packet arrives at the switch
and sufficient buffering is not available, the header flit and all
the subsequent flits belonging to the packet are discarded, and
a failure is recorded.

The design of the switch pipeline has been divided into the
following modules.
Flow Table Entry Composer: Each input port of the switch



receives packets as a sequence of fixed-size flits. For each
input port, there is an associated flow table entry composer
which aggregates the packet header and decodes it into an
internal flow table entry tag representation. This entry is
forwarded to the flow table controller as a query. The composer
also forwards the entire packet to the corresponding action
processor.
Flow Table Controller: The flow table controller is respon-
sible for maintaining the flow tables entries and the per-flow
statistics, and arbitrating the requests to access the flow tables.

The controller is implemented as a flexible pipeline capable
of tolerating variations in the flow table latency. It can receive
up to N+2 queries in each cycle: 1 from the switch controller
interface, and N + 1 from the flow table entry composers.
Every cycle, the controller, via a configurable priority scheme,
selects a request and pushes it into the pipeline. The controller
handles requests serially due to resource constraints. Since
only one request is made per packet, this is not a performance
bottleneck, and has the additional benefit of providing intra
flow table consistency.

The flow table controller maintains two tables, an exact
match table implemented on either Block RAMs or DRAM,
and a wildcard match table implemented as a CAM. Each
flow table entry consists of three components: a compressed
representation of packet header information which serves as a
tag for matching against requests, a list of actions determining
the output ports and any modifications that need to be made
to the matching packet, and flow-specific statistics, e.g., the
number of packets in the flow, the number of bytes sent, and
the time when the last matching packet was received. The data
layout has a one-to-one correspondence with the C-struct in
the OpenFlow controller software.

The flow table controller pipeline issues a request to both
the exact match and the wildcard match tables in parallel,
prioritizing the response from the exact match table. If a
match is found, it forwards the action list obtained from the
matching flow table entry to the action processor module of
the corresponding port. If, however, a match is not found, it
instructs the action processor to either drop the packet or send
the packet to the OpenFlow controller.
Action Processor: The action processor buffers the unmodi-
fied packet until it has received the action list from the flow
table controller. It updates the destination ports and the packet
header, as required by the action list. It can modify the fields
of the data link, the network and the transport layers. It also
updates the checksum for the network and the transport layers.
Arbiter: The arbiter is an (N +1)× (N +1) crossbar. Every
cycle, it selects 1 flow based on a configurable scheduling pol-
icy, and forwards the selected flow to the output queues of all
the associated destination ports. This selection is maintained
until the entire packet is transmitted. The arbiter can direct
multiple flows simultaneously.
Switch Controller Interface: The switch controller interface
module provides an address-mapped interface for the Open-
Flow controller to the flow tables and the statistics. In addition
to the necessary logic for marshaling the accesses over the

3

OpenFlow Switch

MIPS

Fetch Decode Execute Commit

Register File

Fig. 3. OpenFlow network architecture with a switch integrated into an
FPGA-based MIPS64 softcore as a coprocessor

controller-switch communication link, it has additional inter-
lock logic to guarantee that flow table updates are applied
atomically. This allows us to reason about the functionality of
the switch at the granularity of packet transfers.

B. OpenFlow Network Architecture

The use of generic interfaces facilitates the integration of the
switch with any processor that runs the OpenFlow controller
software. The processor interface can be wrapped to translate
its protocol into the split-transaction protocol of the switch
interface. Using this technique we have two instances of our
switch differentiated by the interface to the host processor.

In the first instance, the OpenFlow controller software runs
on a desktop PC which communicates with the switch via
either the PCIe DMA engine or the serial link, resulting
in highly variable latency. This corresponds to a standard
implementation of the OpenFlow network architecture.

In the second instance, the OpenFlow controller software
runs on an FPGA-based MIPS64 softcore, and the switch is
attached to the softcore as a coprocessor (see Figure 3). This
organization provides a low-latency link with a response time
guarantee. The softcore communicates with the switch using
the MIPS64 coprocessor move instructions (MFC and MTC).
Data is communicated between the switch and the softcore
in 64-bit chunks, and is translated into a dynamically-sized
tagged union representation by the interface adapter.

III. EVALUATION

Making use of the flexibility described in the previous
section, we successfully ported our switch to three FPGA
platforms: NetFPGA-10G and ML605 from Xilinx, and DE4
from Altera. Figure 4 provides a comparison of the utilized
resources, the operational clock speed and the consumed
power of the switch on the three boards. The three switch
implementations only differ in the number of MAC ports. On
the NetFPGA-10G board, which has 4 SFP+ transceivers, the
switch operates at 160 MHz and has a 64-bit datapath, meeting
the 10 Gbps per lane performance requirement.

Our switch design is very compact, and can be readily modi-
fied. It comprises of approximately 2400 lines of BSV code. In



NetFPGA-10G ML605 DE4

Ports 5×5 2×2 5×5
LUTs 24009 12062 11131
Flip Flops 29326 15469 40287
Block RAMs 159 85 1.1 Mb
Clock Speed 160 MHz 100 MHz 100 MHz
Power 876 mW 275 mW 442 mW

Fig. 4. Comparison of our OpenFlow switch implementations on different
FPGA boards

comparison, Yabe’s OpenFlow 10G switch implementation [8]
is approximately 10K lines of Verilog RTL.

We implemented the exact match flow tables on both Block
RAM and DRAM on the three FPGA boards. Figure 5 presents
the resource-performance tradeoff between Block RAM and
DRAM for implementing the flow tables on the three boards.
The switch architecture, when the exact match flow tables are
implemented on Block RAMs, has a pipeline latency of 19
cycles for a packet to travel from ingress to egress.

We implemented both “Desktop PC-switch” and “MIPS64
softcore-switch” network architectures on all three boards.
In the former architecture, the switch responds to controller
requests in 530K−560K cycles, when the serial link is used,
and in 6.6K − 7.3K cycles, when the PCIe is used. In the
latter architecture, the switch responds with a fixed latency of
9 cycles.

Our switch was tested using a regression suite maintained
by the OpenFlow community. The suite tests for OpenFlow
functionality, and verified that the switch met the OpenFlow
specification v1.0.0.

IV. CONCLUSION

Our aim was to provide a complete FPGA-based OpenFlow
switch implementation which was both flexible for architec-
tural exploration and portable across FPGA platforms so that
new and improved switch functionalities can be easily incor-
porated to facilitate research in software-defined networking.
We have successfully accomplished our goal, and hope that
our switch is widely adopted by the OpenFlow community.

To conclude, we mention some of the important lessons
learnt during the course of this work.
1) A modular design in which modules communicate through
generic interfaces, and tolerate variations in latency of the
modules that they communicate with, greatly facilitates robust
microarchitectural exploration and portability across FPGA
platforms.

FPGA Board Block RAM DRAM
Entries Latency Entries Latency

NetFPGA-10G 14.7K 1 cycle 2.9M 25 cycles
ML605 18.9K 1 cycle 5.8M 20 cycles
DE4 20.8K 1 cycle 11.6M 18 cycles

Fig. 5. Resource-performance tradeoff between Block RAM and DRAM on
different FPGA boards, when used entirely for implementing the exact match
flow tables

2) Isolating platform-specific features, such as Block RAMs
and DSP slices, not only facilitates portability, but also reduces
the inconsistencies of FPGA synthesis tools. Inline instantia-
tion of these features often results in tools silently eliminating
the control logic around them, resulting in a broken design.
3) FPGA board vendors often do not provide open source ver-
sions of IP blocks required for external communication, such
as memory controllers and PCIe drivers. The development of
these IP blocks for each board requires a substantial amount of
effort. A central venue for the user community of each board
will promote sharing and ease the development burden.

ACKNOWLEDGEMENTS

The authors would like to thank Muhammad Shahbaz and
Andrew Moore for the loan of the NetFPGA-10G board and
their support during the debugging phase, and Robert Norton
for his help in bringing up the MIPS processor. This material
is based upon work supported by the Defense Advanced
Research Projects Agency (DARPA) and the United States Air
Force, under Contract No. FA8750-11-C-0249. Any opinions,
findings and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect
the views of DARPA or the United States Air Force.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation
in campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, Mar. 2008.

[2] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown,
and S. Shenker, “NOX: towards an operating system for networks,”
SIGCOMM Comput. Commun. Rev., vol. 38, no. 3, pp. 105–110, Jul.
2008.

[3] B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado, and S. Shenker,
“Extending networking into the virtualization layer,” in 8th ACM Work-
shop on Hot Topics in Networks (HotNets-VIII), October 2009.

[4] R. Braga, E. Mota, and A. Passito, “Lightweight DDoS flooding attack
detection using NOX/OpenFlow,” in Local Computer Networks (LCN),
2010 IEEE 35th Conference on, oct. 2010, pp. 408 –415.

[5] “OpenFlow Reference Linux Software – Soft Switch,” http://
www.openflow.org/wp/tag/soft-switch.

[6] J. Naous, D. Erickson, G. A. Covington, G. Appenzeller, and N. McK-
eown, “Implementing an openflow switch on the netfpga platform,”
in Proceedings of the 4th ACM/IEEE Symposium on Architectures for
Networking and Communications Systems, ser. ANCS ’08, New York,
NY, USA, 2008, pp. 1–9.

[7] G. Antichi, A. Di Pietro, S. Giordano, G. Procissi, and D. Ficara, “De-
sign and development of an openflow compliant smart gigabit switch,”
in Global Telecommunications Conference (GLOBECOM 2011), 2011
IEEE, dec. 2011, pp. 1 –5.

[8] “OpenFlow implementation on NetFPGA-10G – Design Docu-
ment,” https://docs.google.com/document/d/1ZwHXQZo
cKwQls6Ted8VZO8h9MjBtu9WxV2fAY44eOgE/edit.

[9] M. Blott, J. Ellithorpe, N. McKeown, K. Vissers, and H. Zeng, “FPGA
Research Design Platform Fuels Network Advances,” Xilinx Xcell Jour-
nal, September 2010.

[10] Bluespec SystemVerilog Version 3.8 – Reference Guide, Bluespec, Inc.,
Waltham, MA, November 2004.

[11] “OpenFlow Switch Specification Version 1.0.0,” http://www.
openflow.org/documents/openflow-spec-v1.0.0.pdf,
December 2009.

[12] R. Watson, P. Neumann, J. Woodruff, J. Anderson, R. Anderson,
N. Dave, B. Laurie, S. Moore, S. Murdoch, P. Paeps, M. Roe, and
H. Saidi, “CHERI: a research platform deconflating hardware virtual-
ization and protection,” in Runtime Environments, Systems, Layering and
Virtualized Environments (RESoLVE 2012), March 2012.


