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Abstract. The ultimate goal of formal methods is to provide assurances
about the quality, performance, security, etc. of systems. While formal
tools have advanced greatly over the past two decades, widespread pro-
liferation has not yet occurred, and the full impact of formal methods is
still to be realized. This paper presents some ideas on how to catalyze the
growth of formal techniques in day-to-day engineering practice. We draw
on our experience as hardware engineers that want to use, and have tried
to use, formal methods in our own designs. The points we make proba-
bly have been made before. However we illustrate each one with concrete
designs. Our examples support three major themes: (1) correctness de-
pends highly on the application and even a collection of formal methods
cannot handle the whole problem; (2) high-level design languages can
facilitate the interaction between design and formal methods; and (3)
formal method tools should be presented as integrated debugging aids
as opposed to one requiring mastering a foreign language or esoteric
concepts.

1 Introduction

Over the past few decades, formal techniques have made impressive progress.
For example, serious theorems (e.g., relative consistency of AC with ZF) have
been mechanically verified [1], and huge improvements in the range and ca-
pacity of decision procedures (e.g., linear arithmetic, uninterpreted functions,
bit-vectors, SAT solving) have been made [2–6]. In the hardware industry, a
number of commercial tools to support formal verification have sprung up [7–
12]. These improvements in tools and techniques have gotten the attention of
both the research community and industry. Formal methods are used within
the research community in numerous case studies ranging from security [13] and
wireless protocols [14] to processors [15] and cache-coherence protocols [16] to
buffer overflows in software [17]. In the industrial setting, ever-increasing system
complexity in both hardware and software has fostered interest in formal meth-
ods (e.g., [18–22]). Indeed, in the hardware industry, formal methods are even
widely employed for certain types of verification tasks. Sadly, despite all of these
advances and a receptive climate, formal methods have had no discernable effect
on the day-to-day design flow. Both hardware and software designers still reach
verification closure primarily through ad hoc testing and low-level debugging.



Designers are paid to make efficient systems within some constraints. The
constraints may be on performance (e.g., a video codec must process 30 frames
per second at 720p), power (e.g., a cell phone may not dissipate more that
3W), cost (e.g., the chip must not cost more than $5) or some other metric like
compatibility (e.g., a DSP that must run all existing applications). In addition
there are always limited resources and time-to-market pressures. In such an
environment, many designers believe (with some justification) that extensive
testing is sufficient to reach the corresponding confidence for the economic or
social consequences of failure. It is difficult to find cases where a product is
shipped only after it passes a full “formal verification”.

The current design flows are strongly biased towards post-design verification.
Of course design engineers are encouraged to perform unit testing but the pri-
mary task of verification rests with a verification team that is often two to three
times the size of the design team. Good verification teams prepare elaborate test
plans and then employ a horde of engineers to actually write and perform the
tests. By way of analogy, this is how the automobile industry used to be in the
United States until the early 1980’s. It employed more and more inspectors to
try to avoid shipping defective automobiles. This proved ineffective in develop-
ing higher quality automobiles. Then the Japanese industry started focusing on
zero-defect components which resulted in drastically improved quality.

The aim of this paper is to provide, via a rich set of examples, insights into
the problems that designers face and how formal methods may alleviate some
of these problems. We are convinced that designers want their designs to be
correct, and would use methods and tools that isolate tricky problems quickly.
However, a designer is unlikely to employ a tool that is too hard to use or too
slow, or provides information that the designer is at best peripherally interested
in. Designers are rarely interested in tools that require daunting specifications
in some totally unfamiliar form, or which may not be available at the time of
design. If the verification of a WiFi protocol block requires, say, axiomatization of
the 802.11a standard in PVS, then the specification task itself would overwhelm
the design task. Additionally, large formal specifications are at least as hard to
debug as large designs and their engineering utility is questionable even when
correct.

We make three points in this paper with the goal of stirring a discussion
about how to address the gap between day-to-day engineering practice and the
unrealized potential of formal methods:

1. Correctness depends on the application. Different applications require vastly
different formal techniques. Most designs will benefit from both the appli-
cation of formal methods and testing via executable specifications (see Sec-
tion 2).

2. Formal tools must be tied directly to high-level design languages. There is a
great deal of high-level information that needs to be communicated to formal
tools. Much of it is also needed for the design itself. The only practical way to
get this information to the tools is by extracting it directly from the design
itself; designers are unlikely to restate knowledge in a different notation solely
for the sake of verification (see Section 3).

3. Most formal methods and tools have a post-design bias. Instead they should be
presented as debugging aids during the design process. In the most successful



cases, designers are unaware that they are using a formal method. A good
design method is much more likely to be used by the designers if it is enforced
by the tools (see Section 4).

In this paper we focus only on hardware design, though our observations
may apply equally to software. We also do not address the problems of defective
tools (e.g., the compiler itself produces incorrect code, ambiguities in the design
language). In the hardware industry there is a tendency to merge the testing
of the tool and of the design. We feel strongly that these activities should be
kept separate. The designer must have a high degree of confidence that the
tools are bug-free or the verification task is truly monumental. Also, we do not
focus on manufacturing bugs (e.g., stuck-at-zero faults) or the errors introduced
by physical design tools. We also ignore the issue of lack of education in formal
methods on part of design engineers; we live in an environment (i.e., MIT) where
this is not an issue. We focus only on the technical challenges involved in making
formal methods fit within an effective design-debug loop. Our goal is to help the
designer produce designs which, if implemented in a totally automatic way using
bug-free tools, would have completely satisfied the specification.

2 What Needs to be Verified: Examples from Hardware

Over the last decade we have designed a variety of complex digital systems. Our
verification methodology has been based primarily on testing and occasionally
on handwritten proofs for very difficult parts of the design. In our design ex-
plorations we’ve found a number of places where formal verification could have
been highly useful. However, in no instance have we found that formal verifica-
tion would have replaced testing. This is because testing provides a more-than-
adequate guarantee for some aspects of the verification task and setting up a
testbench is usually significantly easier than a formal verification tool. Never-
theless, there are situations where a designer cannot get sufficient confidence in
the correctness of the design even with extraordinary amount of testing.

In this section we illustrate the verification task via a number of examples
taken from our own personal experiences and highlight where formal methods
could have had significant impact. These examples should also make it obvious
to the reader that proper verification involves domain specific knowledge.

2.1 Simple Deterministic Designs: IP Lookup

The Longest Prefix Match (LPM) function is used in Internet Protocol (IP)
packet routers to determine the output port to which an input packet should be
forwarded. It is a requirement that the router maintain the ordering of packets
between the same source and destination. For cost and power reasons, the mem-
ory size must be kept small. This rules out a flat table implementation which
even for IPv4 would need 232 elements. Designs often use a tree-structured table
which allows one to exploit the similarities in table entries with common pre-
fixes. The lookup procedure essentially reads the table repeatedly using different
parts of the IP address. If a result is found, an output is produced, otherwise



another read is performed in the part of the table holding the relevant subtree.
For most schemes, an IPv4 lookup requires between 1 and 4 memory reads.

One efficient implementation [23] of this lookup functionality is based on
a circular pipeline shown in Figure 1. It includes a FIFO of partially served
requests, a pipelined memory, and a completion buffer that ensures that outputs
are sent out in the correct order.
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Fig. 1. Circular Pipeline Design

Writing an operational description of IP Lookup is easy. The functional cor-
rectness is deterministic and can be implemented in any sequential language as
a single lookup in a flat IP table. Indeed, with a simple executable description
and random stimulus generation, we can achieve a high degree of confidence
via testing that the design does not produce wrong answers. However, checking
other requirements is a different story. Do packets come out in order? Does each
packet produce a result packet? One may need to check this if there is a danger
of dropped packets because the design cannot keep up with the specified input
rate. Is there a dead-cycle, that is, can a new packet enter the system in the
cycle when an old packet leaves? All these questions are very important for the
designer, and to set up tests to check all these properties is not always easy
and often not satisfactory. If one could formally state these properties and easily
verify them, most designers would take the time to do so.

2.2 Dealing with noise: 802.11a

802.11a is an IEEE standard for wireless communication [24]. The protocol trans-
lates raw bits from the Media Access Control (MAC) into Orthogonal Frequency
Division Multiplexing (OFDM) symbols comprised of 64 32-bit fixed-width com-
plex numbers. The protocol is designed to operate at different data rates; at
higher rates it consumes more input to produce each symbol. Regardless of the
rate, to be acceptable an implementation must be able to generate an OFDM
symbol every 4 µs.

The 802.11a specification only specifies how data is to be transmitted. This
specification is given operationally as a sequence of stream processing functions
(see Figure 2). Each of these functions can be viewed in a way that is similar to
the IP lookup function and consequently it is easy to translate the 802.11a specs
into an executable sequential program. In fact the block structure in the reference
is often directly visible in the implementation. Verification can be performed by
comparing the test results from the design against the executable specs. For
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debugging purposes it is not uncommon to instrument the standard executable
code to capture the bitstream after each functional block and compare it against
the internal bitstreams.

On the receiving side, the input is tightly coupled with the digital-to-analog
conversion at the transmitter, the noise properties of the transmission medium,
analog-to-digital conversion at the receiver and the phase shift between sender
and receiver. We can partition this problem into two subproblems: given a trans-
mitted stream, “can the receiver synchronize its phase to match the transmitter’s
phase?”, and “given a noisy transmitted packet can the receiver successfully re-
construct the original packet?”. Since we know the noise models the standard is
supposed to correct, we can introduce the correctable noise effects on a trans-
mitted packet (including possible phase shifts) relatively easily.

Currently, to reach sufficient confidence that an 802.11a design is transmit-
ting and receiving data reliably, we take into account two more facts. First,
the 802.11a codec was designed to reduce the effect of corner cases, which de-
termined the worst-case behavior. Second, since we can always drop data, not
getting all the exact behavior in corner cases only reduces the space of noise
which can be corrected, slightly degrading performance. Additionally, unlike the
IP lookup example, all of the design complexity lies in the data transformations,
not the control logic. These points make it so that once we have a system where
a few packets are sent and received correctly, our confidence that the design is
“good enough” to ship becomes very high. Of course more directed testing can
be performed to gain more confidence.

What simple directed testing does not cover, however, is the correctness of
fractional-level arithmetic, which is used pervasively in 802.11a. Designers need
confidence that their numerical logic works (of course, such an arithmetic library
is useful for other designs as well). This task is well suited to formal verification.

It is not uncommon in such designs that one transforms a block from an
obviously correct implementation into a higher-performing one. For example,
one may transform a large combinational circuit into a folded pipeline to reduce
area. These transformations will always need to be correct in the functional
sense but may not result in equivalent FSMs. It is possible to describe these
transformations in such a way that the functional behavior is abstracted away,
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i.e., passed in as a parameter. It would be incredibly useful if transformations
of this sort were verified formally so that we could do architectural exploration
without adding to the testing burden.

2.3 Specification of a Lossy System: The H.264 Video CODEC

The H.264 Advanced Video Codec is an ITU standard for encoding and decoding
video with a target coding efficiency twice that of H.263 and with comparable
quality to H.262 (MPEG2) [25]. H.264 enables PAL (720 × 576) resolution video
to be transmitted at 1Mbit/sec. Like other video coding standards, H.264 speci-
fies only how to reconstruct a video from an encoded bitstream, not how a video
is encoded. The goal of the encoder designer is to produce as compressed a bit-
stream as possible without degrading the user-perceivable quality. Sometimes
the encoder also has the constraint of how much computation can be performed
because the encoding may have to be done in real time or on a handheld device
such as cell phone or camcorder.

Since the encoding is lossy, what does it even mean to correctly encode a
video? We could compare the original video with the results of encoding and then
decoding the same video, but how does one classify user-perceivable differences?
A number of heuristics which approximate user-perceivable differences exist, but
these are too crude for verification purposes. Consequently there is no hard or
fast rule that the design must ensure. (Fortunately, a few errors here and there
are unlikely to be catastrophic in this application).

The decoder can be described as a relatively complex dataflow graph as
shown in Figure 3. Unlike the 802.11a transmitter which had a significant but
still manageable description, the decoding reference for H.264 is 80 thousand lines
of C and an English specification that runs into hundreds of pages! Neither of
these descriptions is complete: the English is ambiguous in many places and the
C code represents only a deterministic representation of the codec. While many
rich and complex transformations can be applied on the C code, some arbitrary
choices require significant high-level knowledge to find, effectively ruling them
out without additional knowledge. Thus, complete understanding of the codec



requires significant use of both of these specifications in tandem. We believe
that H.264 is complex enough that there is virtually no hope of ever directly
generating a complete formal specification, especially one that could be ready
during the design process.

Given these complications, designers are limited to testing for all but the
simplest sub-blocks. For the decoder, we test by taking a good mix of interesting
videos, encoding them, and then checking that the output of the reference C code
and design match. As with the 802.11 transmitter, by instrumenting the reference
code one can also generate internal bitstreams at the output of functional blocks
and compare them against the design.

The main use of formal methods in this example, like 802.11, would be re-
stricted to testing arithmetic libraries, correctness of transformations for perfor-
mance, etc. One could also formally verify some tricky parts of dataflow in the
pipeline. For example, one could prove that the inter-prediction block does not
read the reference frame before it has been properly constructed. However, in
case of such an error the bitstream is unlikely to match with the C reference
code and the error would be caught by running a few sample videos.

2.4 Nondeterminism: Cache Coherence

Verifying the correctness of a cache coherence protocol for shared memory sys-
tems presents a unique challenge. On one hand, there is no ambiguity about a
correct answer; each Load is supposed to return a value from a set of possible
Store values. On the other hand, both the protocol and its operating environ-
ment exhibit nondeterminism, i.e., time dependent behavior. This is also an area
where absolute correctness is expected. After all, software systems rely on the
perfect behavior of Load-Store instructions on any machine!

Protocols are often described abstractly in tabular form where each line rep-
resents a valid transition in the protocols abstract state space. These transitions
(or rules) are allowed to be applied in any order. Even though many rules can be
applied at a time, their behavior is understandable as if the rules were applied
one at a time in some order. This representation captures the nondeterminism
of both the protocol and its environment accurately. These tabular descriptions
are often independent of the number of processors or the size of caches.

Cache coherence protocols present two challenges in verification: how to in-
corporate nondeterminism in the verification framework and how to state for-
mally the correctness criterion so that it is of use in the verification process. An
operational model of a protocol, i.e., an interpreter that applies protocol rules in
some deterministic order is of limited use because it explores a very small subset
of the nondeterministic state space. Even for cleverly designed tests it is hard
to convince oneself that the protocol functions correctly in all cases and enters
neither deadlock nor livelock in any circumstance. The verification problem is
further exacerbated by the fact that modern protocols tend to be very complex
for performance reasons and are understood by very few implementers.

Model checking has proven quite useful in identifying obscure bugs in cache
coherence protocols. Indeed, for these reasons cache coherence protocols are well-
trodden ground in the formal methods literature (e.g., see [26]). This literature
also shows the limitations of model checking if one is looking for an absolute



guarantee of correctness for this problem. First, the designer/verifier builds an
abstraction of the real design, because the tools cannot handle the real design.
Second, the designer looks for a set of invariants, such as “a dirty copy of an
address cannot exist in more than one cache”, whose proof will guarantee the
correctness of the whole protocol. Third, to keep the state space from exploding,
model checking is applied to a small machine configuration (e.g., three caches
and two unique addresses). The designer has to convince himself that if there is
a bug in the protocol it will show up in this small system.

We think all these steps are fraught with problems; there is always a chance
of omitting an important detail in the abstraction process. Without a formal
proof it is difficult to convince oneself that a set of invariants is sufficient to
verify the whole protocol. Finally, one needs to prove, that the correctness of
the simple system configuration that was checked implies the correctness of all
possible system configurations.

This is one area where model checking coupled with mechanical theorem
proving can be very useful in proving the correctness of a protocol. But to be
useful in practice, the implementation must be generated automatically from
the protocol description that is used in the verification process. We will also
report our attempts at mechanical theorem proving of a complex cache coherence
protocol in Section 4.

2.5 Simple Specification, Complex Design: Processors

Microprocessors encompass many important architectural concepts that occur
throughout the wider spectrum of digital logic design. At the same time, “abso-
lute correctness” is what is required of a microprocessor. People are more tolerant
of software bugs than a microprocessor which “sort of works”. Given the eco-
nomic importance of microprocessors it is not surprising that microprocessors
have pushed verification research and continue to be a rich source of technical
problems and proving ground for new verification tools. In addition, the size and
complexity of modern microarchitectures has led to a situation where functional
verification is a significant contributor to the microprocessor design cycle.

Specifying the correctness of a microprocessor is relatively straightforward:
it must respect the semantics of the target instruction set (ISA). Modulo certain
complexities (e.g., virtual memory, exceptions) a typical ISA consists of basic
arithmetic, memory, and branching instructions that together constitute a simple
but extremely expressive programming language. Unlike the previous example of
H.264 or 802.11a, this specification can be defined via a simple (one-instruction-
at-a-time) processor implementation or some other software ISA interpreter in
a straightforward manner. The proof obligation is then that the more complex
implementation matches the simpler one. These days microprocessors are often
multicore or appear in shared memory systems. Consequently, cache coherence
issues discussed in the previous section can be treated as a subset of micropro-
cessor verification problem.

The classic technique for establishing that a particular microarchitecture is
a correct implementation of an ISA is to show that its state transitions can be
simulated by a much simpler and obviously correct “reference implementation”



of the ISA. Since a real implementation has much larger state space than a ref-
erence implementation, one has to provide abstraction functions that map the
elements of the real implementation to the elements of the reference implemen-
tation. Most abstraction functions are based on flushing or killing. The flushing
abstraction [15, 27–29] returns an ISA state by completing partially executed
instructions in the pipeline. In contrast, killing squashes partially executed in-
structions and returns the system to the ISA state corresponding to the last
committed instruction. Processors are really nondeterministic (consider inter-
rupts and shared memory) and when reasoning about nondeterministic behavior,
killing has advantages over flushing because there is a unique last instruction,
but there can be several possible futures for uncommitted instructions [29].

Intellectually stimulating as these ideas are, their impact on commercial pro-
cessor development is minimal. The biggest impediment is that none of these
ideas are actually applied to a real implementation, i.e., an RTL description
from which the gates may be synthesized automatically or semi-automatically.
They are applied to an abstraction of the implementation, where the abstraction
is motivated as much by what the tool can handle as what needs to be verified.

Nevertheless correct processor design remains one of the most promising areas
for formal verification. In addition to test codes (micro-benchmarks) and model
checking, mechanical theorem proving would be needed to gain confidence that
a processor with caches, TLBs and branch predictor and cache-coherence engine
works in all cases.

3 High-Level Design Languages are a Prerequisite for
Incorporating Formal Methods into Design

In the previous section we have shown through examples that domain specific
knowledge is essential to formulate a verification plan for a design. Furthermore,
formal verification requires some sort of specification or high-level architectural
information to state properties to be proven. What we argue in this section is that
this sort of information is communicated best as part of the design and hence,
directly through the design language. This isn’t just a vehicle to communicate
high-level information to various tools, it is also a way to communicate to the
designer the results of the checking and to help him understand and fix errors.
For example, type checking is most meaningful when the typing system allows
for rich type structures defined by the user. The ideal situation occurs when
the abilities of the formal analysis engine and the intention of the high-level
language concept match, so that the underlying discipline can be enforced. The
best example of this is again typing, where the intent of the system is to better
manage which operations go with which data, and type checking algorithms are
able to statically enforce this discipline.

This section is organized around a set of high-level concepts which we feel
can improve both design and formal analysis. They do not all neatly fit the ideal
case described above, but nevertheless elucidate important areas where language
and formal methods should fit together to the betterment of the design process.
No existing language embodies all of these concepts, but several incorporate a
subset.



3.1 Static Type Checking

Type systems are one of the most accepted ideas in software engineering and
appear in varying degree of sophistication in almost all languages. Algebraic
types and record constructors, in particular, allow a designer to design a rich
type structure allowing for notions like choice and grouping in user-defined types.
For instance, a Maybe type groups a data value with a valid bit. This guarantees
that the value is accessible only when the bit is true.

The purpose of typing is to avoid operations on improperly structured ob-
jects; and when checked it helps designers avoid a large class of mistakes and
actually speeds up design. The reason that typing and type checking is successful
is because the high-level intent of types is made completely clear by the language.
Therefore the errors returned by a type check seem natural to the designer and
can be addressed quickly. In addition, type information also serves as useful
documentation for the designers.

Type correctness is best enforced statically, at compile time, and has proved
incredibly successful in this role. In fact, static type checking has gotten so
pervasive that most engineers do not even consider it to be a formal method;
formal methods are about correctness, type checking is just common sense. We
have seen that other forms of enforcing a type discipline fail to work as well. For
example, enforcing type correctness dynamically, as in Scheme or Perl, pinpoints
bugs much later in the design process than static type checking. Extra-lingual
attempts in Verilog – a language with weak typing – invariably fail, because the
typing enforced by the compiler does not match the extra-lingual discipline, and
therefore is not checked automatically. Designers cannot be bothered to do hand
checking.

3.2 High-Level Parameterization

Often when an engineer starts to design a functional block, a number of similar
sub-blocks become apparent. For instance, one can imagine variations of a FIFO
with different sizes or different types of data elements. It makes little sense for
designers to make each of these variations separately; rather, one should have a
design which can be supplied the element type and the size as parameters. Using
a modern type system the type of element can be specified polymorphically so
that all the attendant FIFO operations accept and return only correct types.

Parameterization allows us to abstract unnecessary details and factor the
proof obligation. Parameterization by data type shows that the specifics of the
data element are unimportant to verifying the FIFO’s behavior. Secondly, pa-
rameterization of the FIFO size allows us to make proofs across all FIFO sizes,
amortizing verification costs.

In hardware this sort of parameterization is very common and keeping to
a small set of stateful building blocks can dramatically help in reducing com-
plexity. It is also likely to result in designs that are highly reusable. However,
an important requirement in hardware design is that parameterization should
not add extra logic – all the effects of parameterization should disappear when
the block is instantiated. This can be accomplished by a compiler via static
elaboration, a simpler form of partial evaluation.



3.3 Modularity

Perhaps the most important high-level abstraction for a designer is modularity.
The purpose of modularity is to elucidate high-level functionality through the
encapsulation of implementation details. This enhances readability of the code
and improves its reuse amongst designers and between projects. Proper mod-
ularity also permits the designer to have several different implementations of
the same interface. For example, small (i.e., one or two element) FIFOs may be
implemented very differently from larger (i.e., several hundred element) FIFOs,
but may have the same interface. In addition, modularity may serve as a natural
place for formal tools to divide up proof obligations into tractable pieces.

Hardware also presents an opportunity to design a family of modules which
may differ only in their concurrency properties. For example, one can imagine
several different types of FIFOs for different design situations. For a FIFO to
be used in a pipeline, it is necessary that enqueue and dequeue can happen
concurrently, and the effect of dequeue should take place before the effect of
enqueue. On the other hand for a FIFO to be used in a rate matching buffer,
one also needs concurrent enqueue and dequeue but the effect of enqueue to take
place before the effect of dequeue. Formal specification of such properties in a
FIFOs interface would dramatically benefit the verification process.

Additionally, a system with strong modularity may admit modular refine-
ment, where the designer derives various implementations from an original de-
sign serving as a “golden” specification. These derivations come in two types:
design-independent transformations which are provable solely based on the lan-
guage semantics, and design-specific refinements whose correctness depends upon
domain-specific knowledge. Both of these changes are clear places where formal
methods are useful, especially the provably correct transformations as they give
the designer a useful toolbox of easy but powerful design choices he can make.
For example, we have shown that using a few pipelining combinators we can
effectively take a functional description of FFT expressed as a pure combina-
tional circuit and quickly generate various “folded pipeline” versions [30]. (In
a folded pipeline the same “stage logic” is reused across several cycles to im-
plement different pipeline stages). Formally proving that these have the same
input-output behavior would mean that showing the correctness of a combina-
tional design (which is straightforward) would imply the correctness of the folded
design (which is much more challenging).

Many software languages have strong enough modular interfaces that proper
isolation is guaranteed. However, most hardware description languages (e.g., Ver-
ilog, VHDL) have modules which serve only as structural abstractions, and do
not easily allow one to abstract the behavior across module boundaries. Verilog
designers do use modules as abstractions, but because of the complications due
to its concrete timings, transferring these abstractions of interfaces to formal
tools is quite difficult.

In contrast, modules in Bluespec [31], a language in which we have written
all the examples discussed in this paper, require a stronger method-oriented in-
terface which groups related ports into methods. Bluespec semantics is based on
Guarded Atomic Actions (i.e., rules), which is the same semantic model that
underlies Unity [32]. In Bluespec every method has a notion of being “ready to



be applied”, and a compiler enforced microprotocol guarantees that a method
cannot be applied unless it is ready. This allows the designer to decouple the tim-
ings of interactions from different methods, giving them the ability to play with
the intra-cycle ordering. A formal tool can gain information about how a circuit
can be used because the method calling protocol is uniform and implied by the
language semantics, rather than in comments preceding the module definition.

3.4 Unified Language for Design and Specification

“Golden” reference specifications tend to be given in a different language than
the one used in implementation. This is because implementation languages often
require more details than what people writing the reference model wish to deal
with. Ideally, a good high-level language would not only allow one to write good
designs but also, when possible, to write reference specifications as well. This may
not be possible if the specification is so abstract as to not even be executable. If
it is possible then design becomes simply a refinement of the specification. The
designer is saved from the major task of manually translating from the reference
specification language into the implementation language.

It is important to note that refinement is only natural when moving between
the high-level reference and detailed implementation does not involve significant
changes in the concurrency or semantic model. For instance, Verilog has two sep-
arate “sublanguages”: Behavioral Verilog which is generally used for rough-cut
behavioral specifications, and Synthesizable Verilog which is used to the repre-
sent implementable designs. While these two languages have the same syntax,
the simulation semantics of Verilog does not always match the Verilog synthesis
semantics. While there may be a way to refine from the initial high-level speci-
fication to a synthesizable implementation, the semantic difference significantly
hinders such a transformation. SystemC experiences this same problem as well.
Its high-level simulation semantics closely resembles OS-thread concurrency, and
therefore is a mismatch for the underlying hardware model that it needs to de-
scribe. Esterel [22] represents a significant improvement because its semantic
model is consistent with synchronous FSMs. These more closely correspond with
the eventual hardware implementation. Similarly, Bluespec offers a better basis
for formal methods in this regard as its nondeterministic guarded-atomic-action
semantics are consistent from high-level specification to implementation.

A key for languages to be able to operate at both levels is to have a large
selection of high-level constructs which have solid refinable reference implemen-
tations. This can be addressed partially via good standard libraries in a high-level
language where commonly used circuits like arithmetic units, register files, FI-
FOs and memories can be encapsulated and expressed cleanly. This is trickier
than what one might expect because, in most hardware descriptions languages
module interfaces are time sensitive.

3.5 Handling Nondeterminism

Closely related to the previous point is a language’s ability to express and re-
solve nondeterminism. An important aspect in verification is the ability to ex-
press inherent nondeterminism in the correctness specification. A specification



of a speculative processor should permit an unspecified number of speculative
instructions to be executed before the speculation is resolved. The cache coher-
ence protocol described in Section 2.4 has nondeterminism in the memory access
stream, and with the 802.11 specification, there is probabilistic nondeterminism
having to do with the transmission medium.

With the exception of Bluespec, hardware design languages do not permit
one to express nondeterminism. An oft heard remark about nondeterminism
is that it significantly complicates reasoning about systems (See, for example,
Berry’s comment about the need of determinacy in Esterel [33]). This ignores the
fact that nondeterminism can be viewed as an axis of flexibility for implemen-
tation purposes. Once we have learned to deal with nondeterminism, to quote
Dijkstra [34]: “[It] is no longer frightening. On the contrary! We shall learn to
appreciate it, even as a valuable stepping stone in the design of an ultimately
fully deterministic mechanism.”

For example, Bluespec semantics permits nondeterminism in the selection of
rules to be executed in a given cycle. The compiler removes this nondeterminism
to generate the final hardware in a process called scheduling. It has been shown
that the compiler can generate efficient hardware automatically, but the user can
also provide guidance from the source code if necessary. We can think of a Blue-
spec design as a nondeterministic specification and the additional information
the designer passes to the compiler to choose a good scheduler as implementation
details. This flexibility allows designers to explore many different design options
easily.

Nondeterminism also results in a simplification of the verification process.
For example we have shown how a cache coherence protocol [35] can be speci-
fied naturally in Bluespec. The original protocol, after we made sure rules were
selected fairly for execution, served immediately as a working implementation.
Assuming that the original protocol was correct, this implementation was guar-
anteed to be correct. The verification task now only requires us to show that
further refinements to the design preserve this correctness.

3.6 Property Specification

Property specification is a mechanism through which relatively simple assertions
can be made about a design. For example, in C the assert macro can be used to
halt execution when, at a prespecified execution point, the state of the program
is determined to be bad. Assertions on the hardware side are used somewhat
differently, as monitors of the circuit’s dynamic behavior over multiple cycles.
When behavior satisfying the assertion is witnessed, the event is recorded and
reported to the user. Alternatively, a design can be proven to always satisfy the
assertion. For example, a typical assertion is that the state of some register never
has more than one bit set to 1 (i.e., it is 1-hot encoded).

SystemVerilog [36], a proper extension to Verilog, adds a number of lan-
guage features to Verilog, including an assertion language, objects, and a more
sophisticated type system. The assertion language is a combination of regular
expressions and temporal logic. The designer benefits greatly from having Ver-
ilog embedded directly within the language for defining assertions. For example,



assertions are pervasive across module instances so it is possible to define a one-
hot register module. This module can be reused repeatedly in the design and
even across designs.

Specification languages have to be limited in their expressivity to make the
proof obligations for automatic decision procedures tractable. The BAT sys-
tem [5] is interesting in the sense that it is geared towards handling bit-level
implementations and incorporates sophisticated decision procedures to prove
non-trivial assertions about them. In its present form BAT lacks many proper-
ties of high-level design languages, but it may be an appropriate compilation
target for languages like SystemVerilog or Bluespec.

Even though many decision procedures are totally automatic, in practice,
using them requires that we limit the complexity of the assertions as well as the
design unit over which they are considered. Given this limitation, there may be
room for specialized solvers aimed at common classes of local assertions.

3.7 FSM Equivalence and Automatic Retiming

In the EDA industry we have seen wide adoption of equivalence checking tech-
nologies. All of the major EDA vendors supply such tools [8–10], which provide
some guarantee that low-level transformations on netlists result in functionally
equivalent circuitry. These systems allow retiming optimizations to be tried with-
out any worries about the correctness of the system has changes. This work has
been highly successful for two major reasons. First, the algorithms are effective
on real-world designs. Second, the optimizations which are allowed can quickly
eke out crucial system performance improvements.

Intel’s Integrated Design and Verification (IDV) environment built on the
Forte [20] formal verification system is a more cutting-edge example of successful
integration of formal methods into the design process. The input to IDV is
an executable and synthesizable model expressed in a general-purpose reflected
functional language (reFLect). The tool allows the designer to transform the
circuit in a way that maintains a sequential refinement relation at every step.
The transformation process is used throughout – from high-level algorithmic
transformations down to detailed physical placement changes. This allows the
tool to catch implementation bugs as soon as they are made. In order to remove
specification bugs, the Forte tool also has more sophisticated formal analysis
capabilities which require more user intervention. For example, it has been used
to verify the correctness of an x86 instruction-length decoder and formally link an
x86 floating-point unit with the IEEE specification expressed using real numbers.

3.8 Formalized Testing

Property specification is used for more than just assertions about one-hot reg-
isters or constraints on complicated protocols, they are widely used to define
functional coverage goals. Instead of an assertion firing to indicate a breach of
protocol (e.g., a one-hot register has two 1 bits) the satisfaction of a property
now indicates greater coverage of the planned test space (e.g., pipeline flush oc-
curred). Coverage-driven testing is becoming very popular with languages such
as SystemVerilog [36] that integrate coverage goal specification with the design.



Integration of the languages makes the testing goals clearer (similar syntax is
used) and simply more convenient.

Coverage goals given in a language such as SystemVerilog advance verifi-
cation practice by formalizing the testplan and removing ambiguity from the
English descriptions. This saves time in developing directed test cases, reduces
redundant work, and allows tools to automatically manage the testing effort.
The management tools that accompany simulators yield essential information
for steering the testing effort. Without such tools, it is not even clear when
we have exercised a particular behavior. The view into the logic may only be
through waveforms, and going through the generated waveform data from even
a simple case can be daunting. Techniques also exist for generating test-stimulus
through formal methods, most of which rely on having formalized coverage goals
to guide the underlying deduction mechanisms.

4 Issues with Incorporating Formal Methods into Design

We have seen the development of a rich variety of formal tools over the last
two decades: temporal logic model checkers (e.g., SMV [2], SPIN [37]); theorem
provers (e.g., ACL2 [38], PVS [39], Isabelle/HOL [40]); automated decision and
semi-decision procedures (e.g., BAT [5], Z3 [4], UCLID [3], Yices [41], Alloy [42]);
and other specification languages and tools (e.g., B [43], IOA [44], TIOA [45]).
Most tools today can handle much larger problems, have better libraries, and are
much more robust than a decade ago. In spite of these advances these tools have
at best seen marginal penetration in the design community. The community of
users of these tools has not gone far beyond the tool designers, who tend to be
highly inclined mathematically.

The only way to use any of these tools is to learn an entirely new system often
involving its own mathematical concepts which are divorced from the concepts
used in most designs. The barrier to entry is so high that the effort required is
almost never justified by the economic gains. We think that there is an obvious
way to fix this problem, though it requires a change in the mindset of the formal
methods community:

1. Tools must be invokable from the design language in a seamless manner. This
implies that the tools must be able to take unmodified source as input as well
as report results in a manner consistent with the language.

2. If possible, tools should be entirely automatic requiring no user intervention
to facilitate the proof process. Alternatively, if tools require some user guid-
ance, this information must be provided through the design language.

In this section we demonstrate how the lack of these two characteristics make
current methods extremely difficult to integrate into design flows. We do this by
considering the possible verifications of two designs described previously using
current tools. In one case we focus on a model-checking-based platform, and in
the other we consider theorem proving.

4.1 IP Lookup: using model checkers in practice

Consider what the process would be to verify the IP lookup design of Section 2.1
using the SPIN model checker. The design is written in Bluespec, but the SPIN



tool accepts Promela as input. The first thing that needs to be done is to convert
the Bluespec into Promela. While this could possibly be done mechanically,
as it stands today the designer must translate by hand. The same is true for
most design languages and this is highly undesirable. A manual translation can
easily introduce new behaviors into the design, or remove behaviors that existed
before translation. Therefore, the translation itself has to be verified, making
this approach a non-starter.

After translation, the next barrier that we come up against is specifying
the property to be verified. Consider the property that there is a one-to-one
correspondence between inputs and output of the IP lookup design. Currently,
the designer is expected to be able to represent this in LTL. This is a signifi-
cant challenge as such logics are a completely foreign way of thinking for most
designers. Worse, since we are limited by LTL we cannot even represent the pos-
sibly unbounded size of the input-output relation. The designer is left wondering
whether this is a result of him not knowing how to express the property, LTL
being restrictive, or an actual issue in his design.

Assuming that the property actually can be represented in LTL, it is likely
that a direct translation will be completely untenable. That is, given the propo-
sitional nature of LTL, the only view into the state is through unary predicates.
Therefore, if a direct translation of the code is done, then this number will be
gigantic. For example, given a 32-bit register, each of the 232 states would need
to be encoded separately to get all information out of the design. These numbers
quickly become far larger than any model checker can reasonably handle. Alter-
natively, the designer must abstract away certain states and prove that a much
smaller representation preserves the property being checked. For example, with
IP lookup a reasonable abstraction would use certain key assumptions about the
lookup table (e.g., that a lookup chain in the table is of length 1 to 4). Repre-
senting such abstraction naturally in the design language is a challenging open
problem..

However, even if we assume some abstraction is done correctly, what happens
if SPIN evaluates the correctness property and reports a bug? The designer must
now translate this failed path back into something useful to reason about. In this
case, the ideal way to express this would be the relevant indexes in the IP lookup
and, the inputs questions, and the timings of the rules in the system. Extracting
this from the given path is tedious for a designer. Any help in making the data
more accessible would pay significant dividends.

For formal methods to work effectively in an engineering design flow, it is
important to prevent the user from having to jump through hoops. But how
would the designer want to be able to use a formal system? First, the designer
wouldn’t have to manually translate from the design language (in this example
Bluespec). Second, apropos Section 3.4, a correctness specification would also be
given as part of the design in some natural dialect of Bluespec. In this case it
may involve adding virtual state to represent unique request tags which can be
verified to occur in sequential order at output. By informing the system of the
invariant that should be maintained, (i.e., packet identifiers leave in sequential
order) compilation would either prove or disprove this assertion. If wrong, the
system would give an initial state and an understandable sequence of rule firings
(a single semantic step in Bluespec) witnessing the failure. This would allow the



designer to stay focused on his design in the language to which he is used while
incorporating the verification task easily with compilation, a task he must do
frequently in design.

4.2 Cache Coherence: using theorem provers in practice

In his dissertation, Xiaowei Shen described an adaptive cache coherence proto-
col called Cachet [46, 47] and proved it correct. This proof was very long and
complicated and it was decided that it should be proved mechanically using
PVS [16] to guarantee no mistakes were made. The mechanical proof considered
a significant subset of the protocol. Despite already having completed a hand-
worked proof of the complete protocol, it took an engineer skilled both in design
and formal methods six months of effort to complete, a significant expenditure.
Clearly, this amount of effort is much too burdensome for general integration in
the design flow. However, it is still worthwhile to consider how this would apply
for verifying the implementation.

A full proof of our implementation requires effort just to get an implemen-
tation into PVS. One possible approach would be to synthesize the code and
then feed it into PVS as one large Boolean next-state function. Of course, the
user then has to reason at this horribly tedious level of detail. Alternatively, we
could try to axiomatize Verilog or Bluespec semantics directly in PVS, but this
adds a layer of indirection in the proof which may complicate things. Ideally the
user could express booleans which represented the interesting properties to be
verified (e.g., no multiple modified version of an address) directly in the design.

Secondly, even with a good representation of the code in PVS, the proof
becomes much more complicated based on the fact that any implementation
is bound to involve many system details not elucidated by the protocol. For
example, while the abstract proof could assume that all coherence messages are
received, in an implementation with finite buffering and various routing logic,
this too must be verified. This would be quite difficult to formulate, let alone
prove in PVS.

5 Conclusion

Formal methods have come a long way, but for reasons we have outlined in this
paper, a large gap remains between current formal methodologies and engineer-
ing practice. Except in a few instances, formal methods are not tightly integrated
into the design-debug loop. We have argued that for widespread adoption formal
methods must be invoked through high-level design languages and must present
a semantic model that makes sense to the designer. Incorporation of assertions
in SystemVerilog is an example of a good start but its effectiveness is limited.
The weak semantics of Verilog, inability to express the full spectrum of interest-
ing correctness properties, and the capacity of current tools all take away from
usability.

The range of examples in this paper have shown that even for a single ap-
plication often more than one formal technique is needed to show correctness.
It may not be desirable to try to unify too many concepts into one specification



language. For example, should every design language be so powerful that it can
express probabilistic correctness? Or, to put this another way, just because some-
one might develop a system where probabilities are important (e.g., our 802.11
transmitter) should probabilities be in the language? It is a difficult question to
answer as it is not clear where one should draw the line. For example, in Blue-
spec nondeterminism is inherent in the language, but its observability remains
latent in the current set of tools. In this case, probabilities are entirely foreign
to this model and it is not clear how they will affect the system.

Based on our design experience in Bluespec, we think we can express, pro-
grammatically, many assertions that we would like to prove about the design.
This may require the introduction of extra state and rules, but semantically it
requires no new concepts for the user. If these assertions and associated code are
syntactically identifiable in the source then it should be straightforward to elim-
inate them once the design is deemed to be working correctly. Such a method
may provide a continuum between “proof by simulation” and proof by formal
means. The real technical challenge is how to place restrictions on this verifica-
tion code so that the decision or semi-decision procedures have a high chance of
success. We plan to pursue this line of research in the future.
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