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Introduction

When creating a microarchitectural simulator, one desires
three things: confidence in correctness, speed of design, and
speed of simulation. The first requirement is necessary for
accurate experimentation. The second impacts the architect’s
ability to perform microarchitectural exploration by rapidly
describing a range of systems. The third affects the number of
simulations that can be profitably run for a particular systems,
and thus the statistical confidence in our evaluation results.

One approach is to divide the simulator into two partitions:
a functional partition and a timing partition. The functional
partition is essentially a pipelined abstract execution engine,
which allows dataflow-valid executions through an idealized
pipeline. The timing partition, on the other hand, is responsi-
ble for modeling microarchitectural details such as operation
timing and branch predictor accuracy. The timing partition is
responsible for directing when instructions should be executed,
but does not need to concern itself how.

ASim is a software simulator which makes use of this
partitioned organization [6]. ASim’s functional partition is an
infinitely-renamed, infinitely-buffered pipeline. The functional
partition does not perform instructions immediately upon fetch
(the ”execute-on-fetch” simulator model) but progresses the
instruction through various pipeline stages (Decode, Execute,
Commit, etc) upon direction from the timing partition. This
multi-staged approach allows the simulator to model proces-
sors which are superscalar, speculative, or out-of-order, solely
by altering the timing partition.

This split organization increases confidence in simulator
correctness, as verification effort is focused on the functional
partition. Similarly it reduces implementation effort, as the
functional partition can be reused across multiple timing-
partition implementations. However this approach incurs a
communication overhead which can degrade simulation per-
formance. Since the timing model and the functional model
move in lockstep, opportunities for parallelism in a software
simulator are limited [2]. One approach as in the FAST
simulator [4] is to decouple the partitions as much as possi-
ble, thus minimizing communication overhead and increasing
opportunities for parallelisation.

In this paper we present HASim (pronounced HAY-sim),

an alternative approach to this problem. In HASim the timing
and functional partitions are tightly coupled, and are jointly
implemented in hardware, rather than software. The intent is
to place the resulting design onto an FPGA, thus allowing
us to improve overall simulator performance. We will use
this project to explore optimizing the sequential lock-step
movement of a partitioned simulator into an optimized parallel
hardware structure.

Currently HASim implements a toy ISA as a proof-of-
concept. In the future we hope to expand the framework to
realistic ISAs and architectures.

Methodology
HASim is implemented in Bluespec SystemVerilog [3]

and follows the partitioned architecture outlined above. The
major difference is that the functional partition and the timing
partition are organized as hardware pipelines (as shown in
Figure 1) rather than software modules. This allows them to
execute in parallel and should allow it to achieve throughput
comparable to that of an actual pipelined processor.

The Timing Partition
The timing partition contains microarchitectural-specific in-

formation, such as the resource limitations of the target design
and the timings of the various operations. Thus we expect
it will be reimplemented many times across different experi-
ments and models. Note that one physical FPGA clock cycle
does not need to correspond to a clock cycle in architecture
being modeled (a target clock cycle). As the timing partition
will likely be pipelined, we expect that different pipeline stages
will contain instructions on a range of target clock cycles.
We will investigate adding safeguards to ensure that causality
is maintained and that information from future target cycles
cannot affect instructions in the “past.”

When the timing partition encounters a new instruction, it
provides a unique token to the functional model to refer to
that instruction. Any time the timing model wishes to execute a
particular stage of an instruction it must provide the associated
token. Later it will get an acknowledgment that the action
occurred along with any associated pertinent information for
timing.



Fig. 1. HASim High-level Organization

The Functional Partition
The functional partition represents the microarchitecture-

independent portion of the simulator. Thus we expect that it
will be implemented once, optimized and verified, and reused
many times with many different timing partitions. Currently, it
is implemented as a 6-stage pipeline: Fetch, Decode, Execute,
Mem, Commit, and WriteMemory. (This organization is for
simplicity — a more complex organization may ultimately
prove to be more efficient.) Each stage in the pipeline contains
a table of instructions currently waiting at that stage. The
functional partition contains no logic for issuing or stalling -

instructions simply do not pass to the next functional pipeline
stage until the timing partition directs it. However, within each
stage instructions are free to execute as far possible without
actually committing their result. This helps the simulator to
hide the latency of expensive operations such as multiplication
or division.

To deal with misspeculation, each functional partition unit
has an interface which allows the timing partition to invalidate
wrongpath instructions. This method simply invalidates all
associated entries in the token tables for each unit.

A possible optimization opportunity is to allow allow differ-



ent units to slip in regard to target cycles with each other. This
would allow speculative execution of the functional partition.
To do this we would have to tagged each interaction between
the timing and functional partitions with the current target
clock cycle [1]. This increased asynchrony allows us to hide
latencies of individual different stages of the functional units.
For instance, one could imagine the functional partition’s Fetch
stage running ahead of the rest of the design to minimize the
physical load latencies (as opposed to the simulated latency
of the target design).

Whereas a software functional partition typically has un-
bounded buffer sizes and register renaming, in hardware
we have no such luxury. Currently, the functional model is
parametrized along various buffer sizes. We leave it to the
designer to ensure that all sizes are sufficiently large. If during
run-time a buffer is found to be too small, preventing forward
progress, an error is recorded.

Instrumentation
Instrumentation is paramount in using any emulation plat-

form like HASim. Additionally, it is desirable to reuse in-
strumentation and tracing facilities across multiple imple-
mentations. Our approach is to record information in the
functional partition, since this partition must already keep track
a great deal of per-instruction information. This gives us a
unified place for all off-FPGA communication and ensures that
such code does not need to change across microarchitectural
implementations.

Because communication off-FPGA communication is so
expensive, we provide a mechanism to prevent the latching
of new trace values. When trace values are needed, values
are stored in a buffer and serially read off the chip. Because
this process will likely be much slower than execution of a
cycle, reducing the rate of target cycle ticks will be necessary.
However, if we carefully pick out when to instrument, very
little slow down will need to happen.

Future Work
In the future we hope to be able to extend our functional par-

tition model whole systems. To do this we will exploit possible
asynchronies to improve performance. We will also explore
how to best implement timing partitions for superscalar and
speculative architectures. Support for multiprocessor systems
could be achieved via duplicating functional partitions, or
perhaps by sharing them. We also hope to use large FPGAs
platforms to run models previously which are difficult to sim-
ulate by current software techniques, such as multi-megabyte
caches.

Additionally, we hope to extend our functional model to
incorporate realistic ISAs such as x86. One possibility is to
combine this project with UNUM [5]. Alternatively, because
the functional model implementation is sufficiently detached
from the timing model, we may choose to incorporate a
number of different ISAs into a single reusable partition via
some universal micro-operation ISA.
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