
Implementing a Fast Cartesian-Polar Matrix
Interpolator

Abhinav Agarwal, Nirav Dave, Kermin Fleming, Asif Khan,
Myron King, Man Cheuk Ng, Muralidaran Vijayaraghavan

Computer Science and Artificial Intelligence Lab
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139
Email: {abhiag, ndave, kfleming, aik, mdk, mcn02, vmurali}@csail.mit.edu

Abstract—The 2009 MEMOCODE Hardware/Software Co-
Design Contest assignment was the implementation of a
cartesian-to-polar matrix interpolator. We discuss our hardware
and software design submissions.

I. INTRODUCTION

Each year, MEMOCODE holds a hardware/software co-
design contest, aimed at quickly generating fast and efficient
implementations for a computationally intensive problem. In
this paper, we present our two submissions to the 2009
MEMOCODE hardware/software co-design contest: a pure
hardware cartesian-to-polar matrix interpolator implemented
on the XUP platform and a pure software version implemented
in C.

Microarchitectural tradeoffs are difficult to gauge even in
a well-understood problem space. To better characterize these
tradeoffs, researchers typically build simulation models early
in the design cycle. Unfortunately in our case, the tight contest
schedule precluded such studies. Worse, we had no prior
experience within the problem domain nor were we able to
find an existing body of research as in years past. As a result,
we relied on simplified mathematical analysis to guide our
microarchitectural decisions. In this paper we will discuss our
rationale and the resulting microarchitecture.

II. PROBLEM DESCRIPTION

The cartesian-to-polar interpolator projects a set of cartesian
points onto a sector of the polar plane. The input consists of
an integer value N ∈ [10, 1000], the size of each dimension
in the matrices, an N × N Cartesian matrix CART, a sector
length R ∈ [10, 100], and a sector angle θ ∈ [π

256 ,
π
4]. Figure 1

shows a diagram of the coordinate plane.
Each entry CART[x][y] corresponds to the point (R +
x

N−1 ,R+ y
N−1). Each entry POL[t][r] corresponds to the point

(R+ r
N−1 ,

t
N−1θ) in polar coordinates or the Cartesian point

(x, y) = ((R+ r
N−1) cos(tθ

N−1), (R+ r
N−1) sin(tθ

N−1)).
The interpolated polar matrix is determined by a simple

average of the four surrounding points in the CART matrix. To
allow for reduced precision implementations, the specification
constrains the input precision and allows boundary errors when

Fig. 1. Coordinate plane from Design Specification[1]

the polar coordinate is within 2−16 of the a cell boundary in
the Cartesian matrix.

A simplified version of the given C reference code for the
PowerPC on XUP can be found in Figure 2. We use this as
the basis for our discussions of algorithmic changes.

dx=((R+1)-(R*(cos(θ))))/(N-1);
dy=((R+1)*(sin(θ)))/(N-1);
for(r=0;r<N;r++) {
for(t=0;t<N;t++) {
x=(R+(double)r/(N-1))*cos(θ*(double)t/(N-1));
y=(R+(double)r/(N-1))*sin(θ*(double)t/(N-1));
li=(int)((x-R*cos(θ))/dx);
lj=(int)(y/dy);
out[t][r]=
(in[lj+1][li]+in[lj][li]+
in[lj+1][li+1]+in[lj][li+1])/4;

}
}

Fig. 2. Initial Reference Code

III. HARDWARE DESIGN

The coordinate conversion problem exhibits abundant paral-
lelism. All point calculations are fully data-parallel, implying
that computations may be both deeply pipelined and paral-
lelized until device resources are exhausted. To understand the
amount of parallelism realizable on the FPGA, we partition
the interpolation process into two separate stages: address
generation and memory. Address generation determines which
matrix elements to average. As we have noted, this stage is
highly parallel and is limited only by the FPGA resources. The

memory stage uses the generated addresses to load the data,
performing a simple average and writing the result back to
memory. Like the first stage, this stage is completely data-
parallel, though it is constrained by the physical memory
bandwidth available on the FPGA board. Figure 3 shows the
top-level block diagram.

Memory
Subsystem

PowerPC

Address
Generation

DMA Engine

System Memory

Fig. 3. Top-Level Diagram

There is no advantage to over-engineering either stage of
the pipeline, since, by Little’s law, unbalancing the pipeline
throughput buys no performance. However, determining the
correct balance of resources allocated to the pipeline stages
is non-trivial. A priori, it is difficult to estimate the resources
required to produce addresses at a certain rate. Instead, We
will analyze the memory system, since it is constrained by
the maximum speed of the off-chip memory. We reused the
PLB-Master DMA Engine [2] built for a previous contest
submission, which transfers an average of one 32-bit word
per cycle when running in burst mode. Each coordinate
computation requires four 32-bit reads and one 32-bit write.
Thus, to process one polar coordinate per cycle, we require
an effective bandwidth five times greater than our physical
memory bandwidth. Even with good cache organization, this
bandwidth will be difficult to sustain. We therefore cap the
address generation performance at a single address request
per cycle and allocate all remaining resources to the memory
system.

A. Address Generation

For performance, we must frame the address generation
problem in such a way so as to exploit cache locality, while
minimizing resource consumption to permit higher perfor-
mance cache designs. To achieve these goals, we process the
polar coordinates in ray-major order. As rays are linear, we
can compute the fixed delta between adjacent points on a ray,
reducing multiplication to addition. This ordering also exhibits
good temporal and spatial locality of memory addresses. Ad-
jacent entries in the polar matrix are close together, sometimes
even aliasing to the same memory location. Figure 4 shows
the new algorithm.

This algorithm leaves only simple additions in the inner
loop. It also moves all division into initialization, allowing a
slow and simple hardware divider to be used. To avoid the

inv_dx= 1 / ((R+1)-(R*cos(θ)));
inv_dy= 1 / ((R+1)*sin(θ));
N1=N-1; theta = 0; dtheta = θ/N1;
rcost_dx = inv_dx * N1 * R * cos(θ);
for(t=0;t<N;t++, theta += dtheta) {
scaledcost = inv_dx * cos(theta);
scaledsint = inv_dy * sin(theta);
x = R*scaledcost-rcost_dx;
y = R*scaledsint ;
for(r=0;r<N;r++) {
x += scaledcost; li=(int) x;
y += scaledsint; lj=(int) y;
out[t][r]=
(in[lj+1][li]+in[lj][li] +
in[lj+1][li+1]+in[lj][li+1])/4;

}
}

Fig. 4. High-level Hardware Algorithm

complexity of floating point computation, we switched to a
fixed-point representation. The successive additions in the new
algorithm require 42 bits of precision for address calculation
in order to stay within the specified accuracy bounds.

1) Implementing Trigonometric Functions: One solution
for implementing trigonometric functions is to execute them in
software and pass the values into hardware. However, because
the PowerPC has no hardware support for these operations,
this would introduce a bottleneck. Using the algorithmic
techniques described in Section IV, we can reduce the number
of trigonometric functions to seven. However, this increases
chain of computation requiring an additional log(Nmax) = 10
bits of precision.

Instead, we used a previously developed [3] hardware IP
library which uses pipeline combinators to implement the CO-
ordinate Rotation DIgital Computer (CORDIC) algorithm [4].
After exploring a variety of pipelining choices, we chose the
fully folded pipeline which generates one sine-cosine pair
every 42 cycles.

B. Memory Subsystem

The memory subsystem is comprised of a direct-mapped
cache module and a fast PLB interface. We will first motivate
the construction of our cache with some observations on
ray-major coordinate calculation. We will then describe the
physical implementation of the cache.

Dependency management is a major challenge in achieving
high degrees of parallelism in a cache and generally carries a
fairly heavy implementation burden. However, for the memory
access pattern used in coordinate conversion, a few simple
observations greatly reduce the complexity of tracking hazards
within the cache.

First, the state read (the cartesian matrix) and the state writ-
ten (the polar matrix) are disjoint. This means we can forward
store values directly to the memory and implement a read-only
cache system. For bandwidth efficiency we accumulate store
commands in a conventional store buffer, coalescing writes
into memory bursts.

(a) (b)

Fig. 5. Cache Behavior at Varying Ray Angles: Figure (a) shows an
example of a cache with 4-word burst size. Shaded blocks are needed for ray
computation, checked blocks are resident in the cache but will never be used
again. Figure (b) shows the π

4
case, in which all blocks in the cache are fully

utilized. The dark box in Figure (b) is a column.

Second, coordinate interpolations touch two adjacent rows
in the cartesian matrix. This means we can partition odd and
even rows into separate caches, doubling cache bandwidth
without substantially increasing design complexity.

Third, address generation traverses the polar coordinates
in ray-major order, with monotonically increasing ray angles
to a maximum of π

4 . This monotonicity implies that if we
access a point in the cartesian matrix, we can guarantee that
no elements below that point in the matrix column will be
accessed in the future. Thus, assuming it is sufficiently large,
the cache will incur only cold misses, implying that no evicted
block will need to be re-fetched. This observation simplifies
the cache, since evicted blocks can be replaced as soon as the
new fill begins streaming in, without checking for write-after-
read (WAR) hazards.

This third observation merits some explanation, since an
insufficiently sized cache may still have WAR hazards. We
organize our cache logically as a set of small independent
caches which share tag-lookup and data store circuitry for
efficiency. Each small cache contains data from a particular
column of the cartesian array. The row size of each cache
and of each column is equal to the size of a memory burst.
Thus, conflicts may occur within the column but not between
columns. We achieve column independence by padding the
cartesian array in memory and providing sufficient cache area
for the number of columns in the largest permitted input. With
this cache organization and the maximum specified ray angle
of π

4 , we observe that if the column caches have capacity
equal to burst size plus one rows, we can avoid all capacity
and conflict misses and thus all WAR hazards. Figure 5 gives
a graphical demonstration of this claim. As the ray sweeps up,
only a set of trailing rows in each column will be used. Only
in the case of a ray angle of π

4 will each row in each column
cache contain live data. We can generate caches supporting
burst sizes up to 32 words on the XUP board.

1) The Cache Implementation: Based on these observa-
tions, we developed a simple four stage pipeline, shown in
Figure 6. Logically, the pipeline can be divided into two parts:
tag match and data access.

Tag matching starts with tag bank lookup, followed by a

= =

Tag
Control

Tag Lookup

Tag Check

Data Request

Data Resp

Data Output

Address Input

E
xt

er
na

l M
em

or
y

Fig. 6. Cache Pipeline

tag match in the next stage. Tag hits are sent immediately to
the data access backend. Tag misses require an extra cycle
to emit a fill request and to update the tag bank. Since, by
construction, there are no hazards within the cache, we can
completely decouple the tag match from the data access to
improve performance. We give the tag match engine ample
buffering to allow many concurrent outstanding fill requests.

The data backend consists of two stages: data address and
data read, based on the read stages of the underlying BRAM
memories. Data is organized into two BRAM banks, allowing
unaligned requests to be satisfied in a single cycle.

The odd and even caches are connected to the DMA
engine via a round-robin arbiter. This organization gives us a
maximum effective memory bandwidth of 128 bits per cycle.

C. Testing

Due to the large input space specified in the problem
description, verification by simulation of even a few large
scenarios was difficult. Since a full system operating on the
FPGA was implemented relatively quickly, we instead chose
to verify our implementation exclusively on the XUP board,
comparing the output against the reference software supplied
by the contest organizers. Unfortunately, for large tests, we
discovered that the reference software was prohibitively slow,
requiring hours to complete a single interpolation.

To ameliorate this situation, we applied a series of trans-
formations, inspired by our hardware design, to the reference
software. These optimizations, in turn, required us to verify
the modified software against the reference solution. However,
since only software needed to be verified, a much faster
general purpose machine could be used.

IV. SOFTWARE IMPLEMENTATION

During the verification of our accelerated software algo-
rithm, it became clear that the software, on a fast multicore,

outperformed the hardware implementation. We attribute this
difference to the superior memory systems of modern general
purpose processors.

A. Improving the Algorithm

As in hardware, using fixed point values for computation
resulted in a substantial speedup. To further improve perfor-
mance, we need to reduce the number of trigonometric func-
tions. This is accomplished by leveraging the sum-to-product
formulas for cosine and sine to derive a fast computation for
generating the sine-cosine pair for one ray from the sine-cosine
pair of the previous ray.

cos(θ + ∆θ) = cos(θ) cos(∆θ)− sin(θ) sin(∆θ)
sin(θ + ∆θ) = sin(θ) cos(∆θ) + sin(θ) cos(∆θ)

Since we scale cosine and sine by dx and dy we need to
rescale sin(∆θ) by dy

dx to obtain the correct results. Our final
single-threaded version can be found in Figure 7.

N1=N-1; RN=R*N1;
dx=((R+1)-(R*cos(theta)))/N1;
dy=((R+1)*sin(theta))/N1;
xoffset=R*cos(theta)/dx;
sin_dt_dy_dx=sin(theta/N1)*dy/dx;
sin_dt_dx_dy=sin(theta/N1)*dx/dy;
cos_dt=cos(theta/N1);
scaledcos_t=(1.0/(R+1 - (R*cos(theta));
scaledsin_t=0.0;
for(t=0;t<N;t++) {
x = RN*scaledcos_t - xoffset;
y = RN*scaledsin_t;
for(r=0;r<N;r++) {

li = fixed2Int(x);
lj = fixed2Int(y);
out[t][r]=
(in[lj+1][li]+in[lj][li] +
in[lj+1][li+1]+in[lj][li+1])/4;

x +=scaledcos_t;
y +=scaledsin_t;

}
temp = scaledcos_t*cos_dt

scaledsin_t*sin_dt_dy_dx;
scaledsin_t = scaledsin_t*cos_dt +

scaledcos_t*sin_dt_dx_dy;
scaledcos_t = temp;

}

Fig. 7. Single-threaded Final Code

B. Multithreading

Having optimized the address generation loop, we found
we were still unable to saturate the memory bandwidth. To
increase utilization we exploit the inherent ray-parallelism by
splitting the task across multiple threads. Because the cost of
context switching is quite costly compared to the total task
runtime, we limited the number of threads to four, the total
number of cores in our system.

While multithreading gives us a great speedup, smaller test
cases are too short to compensate for the thread initiation costs.
To counter this we empirically determined how many threads
were necessary for each input size. We found that for sizes

Module LUTs Flip Flops BRAMs
Address Gen. 5276 2762 3
PLB Master 523 462 0
Cache 1976 2658 70
Single Cache 870 647 35

CartPol Total 9411 6247 73
System Total 11590 8127 97

Fig. 8. Synthesis Results for Cartesian-to-Polar interpolator. The total number
of slices is 10132

N ≥ 190 a four-thread system was the right choice while a
single-threaded worked better for the smaller cases.

V. RESULTS

Submissions were scored in two ways. The absolute score
was calculated as a direct speedup over the reference software
running on the PowerPC on the Xilinx XUP board. The
normalized score was determined by dividing the absolute
score by a speedup factor1 normalized to the XUP board. This
factor was based on the speedup of a micro-benchmark and a
count of parallel cores.

Our hardware implementation had a factor of 3381 speedup
over the reference implementation, seven times faster than
the next fastest design submission using the same board. Our
hardware implementation is memory bound, achieving 1.33
Gb/s for most test vectors.

An FPGA with better memory bandwidth would improve
the system. In the case of the XUPV5 board, it is conceivable
to improve the design over the normalization factor. This is
because the XUPV5, in addition to increased LUT count and
memory bandwidth, has a much improved memory controller
which takes advantage of open pages, allowing us to decrease
the burst setup time for particular access patterns. We designed
a cache which exploited these features, but we were unable to
run the design on the XUPV5 by the contest deadline.

Our multithreaded software implementation came in third
in the absolute speed category with an absolute speedup of
24093 over the reference, a factor of two slower than the
winning entry. We believe using a system with more cores
would improve our performance.

REFERENCES

[1] MEMOCode Design Contest, “Cartesian-to-Polar Interpolation,”
http://www.ece.cmu.edu/ jhoe/distribution/
mc09contest/contest09.pdf.

[2] Nirav Dave, Kermin Fleming, Myron King, Michael Pellauer, Murali-
daran Vijayaraghavan, “Hardware Accelleration of Matrix Multiplication
on a Xilinx FPGA,” in Proceedings of Formal Methods and Models for
Codesign (MEMOCODE), Nice, France, 2007.

[3] M. C. Ng, M. Vijayaraghavan, G. Raghavan, N. Dave, J. Hicks, and
Arvind, “From WiFI to WiMAX: Techniques for IP Reuse Across
Different OFDM Protocols,” in Proceedings of Formal Methods and
Models for Codesign (MEMOCODE), Nice, France, 2007.

[4] J. E. Volder, “The CORDIC Trigonometric Computing Technique,” IRE
Transactions on Electronic Computers, vol. 8, no. 3, pp. 330–334,
September 1959.

1the minimum factor was 1

