
Modular Compilation of Guarded Atomic Actions
Muralidaran Vijayaraghavan

Massachusetts Institute of Technology
vmurali@csail.mit.edu

Nirav Dave
SRI International

ndave@csl.sri.com

Arvind
Massachusetts Institute of Technology

arvind@csail.mit.edu

Abstract—Over the last decade, Bluespec, a hardware de-
scription language of guarded atomic actions has been used to
describe rapidly modifiable, modular, no-compromise hardware
designs and generate circuits from them. While the language itself
supports significant modularity, the compiler compiles a module
with other modules as parameters by in-lining or flattening the
module. This forces the user to either suffer large compile times
or to change the modular structure of the design. In this paper
we propose a new modular compilation scheme which supports
compilation of modules with interface methods as parameters
and preserves Bluespec’s one-rule-at-a-time semantic model. This
compilation process inherently requires the distributed schedul-
ing of rules.

I. INTRODUCTION

It is important for designers to be able to modify their
designs rapidly to better search the micro-architectural space
as performance and power pressures increase in the embedded
systems. Such exploration has proven quite difficult in struc-
tural RTL because of its rigid timing requirements on mod-
ules. Bluespec, where one represents hardware using guarded
atomic actions (GAAs) on state elements has been shown
to enable rapid design exploration without compromising the
quality of generated hardware.

A complex hardware design is hardly ever built as a
monolithic block; instead it is designed as a collection of in-
teracting modules. While Bluespec’s Guarded Atomic Actions
(GAAs) preserve the designers intent about cycle-level micro-
architectural actions, the compilation strategy offers only
limited support for non-tree-like modular hierarchies. This
restriction disallows, for example, passing in communication
channels to modules, and can sometimes destroy the natural
modular structure of the code. For example, a module that
interacts with an off-chip memory via a bus must include the
bus and memory modules as submodules.

In this paper we present KBS2, a kernel for Bluespec
where modules can have interface parameters. We specify
the requirements for a modular interface to guarantee the
language atomicity requirements. We then define an algorithm
to calculate the “most-permissive” modular interface in the
sense that if the module is instantiated with interface param-
eters which has an equal or more restrictive interface it is
guaranteed to work correctly. Finally we define a translation
of KBS2 to hardware, including invariants that a scheduler
must follow. We argue that this scheme generates as efficient
a hardware as the state-of-the-art compilation scheme which
cannot handle parameters [13]. The main contribution of this
paper is the modular compilation of modules which have

interface parameters, i.e., methods defined by other modules,
as parameters.

Bluespec System Verilog (BSV, the implementation of Blue-
spec) has many features that are important for the ease of pro-
gramming but not necessary for understanding its semantics.
Most of these features are eliminated after the static elabo-
ration phase of compilation. However, two features, guards
and EHRs, remain after static elaboration and they affect the
semantics of the language. These features are orthogonal to
the issue of compiling modules with interface parameters and
hence, to simplify the presentation, we discuss these features
in passing and give the detailed compilation procedure only
for the language without guards and EHRs. To further simplify
the presentation, we present the language features in steps a)
KBS0, a language with no modules [8], b) KBS1, a language
with modules without interface parameters [13], and c) KBS2,
a language with modules with interface parameters. All these
languages except for KBS2 have been presented elsewhere [5],
[8], [13], [12]. We revisit them here to make the compilation
part self-contained and to use uniform notation.

Paper Organization: Section II discusses related work
and the novelty of our work. Section III gives an example
to motivate the need for modules with interface parameters.
Section IV presents KBS0, its semantics and its compilation
into hardware. Section V presents the same for KBS1 and dis-
cusses the issues with guards and EHRs. Section VI discusses
the KBS2 language and its compilation procedure. Section VII
gives the conclusion and offers some future directions for
research.

II. RELATED WORK

Early rule-based systems often executed only one rule
at a time and automatically satisfied the one-rule-at-a-time
semantics [4]. The origins of the present work lie in work of
Hoe and Arvind on hardware synthesis from rule-based based
systems [1], [8]. Parallel scheduling of “non-conflicting rules”
in a single clock cycle was essential for good quality hardware
synthesis. The work was later extended by Rosenband and
Arvind to include modules with proper interface properties
to maintain one-rule-at-a-time semantics. However their tech-
niques did not permit interface parameters and assumed that
the methods of separate modules could not conflict with each
other.

Further work on scheduling and modules went in several
different directions. Dave et al. recharacterized the scheduling
problem as the one of rule composition for better understand-
ability [5]. Rosenband introduced the idea of performance

guarantees to reduce the variability in the synthesis results and
introduced EHRs (Emphemeral History Registers) to imple-
ment these guarantees [12]. Recently EHRs have been elevated
to a new primitive which is directly available to the user to
make it much easier to express concurrent rules in Bluespec.
Karczmarek et al. showed how to extend hardware compilation
to include multi-cycle combinational circuits [9].

The work by Dave et al. [6] illustrates several design
patterns which can be exploited in Bluespec to allow modular
refinement without breaking functionality. This paper focuses
solely on modular compilation, and enhances the flexibility for
modular refinement strategy proposed by them.

Another type of work on modular refinement has its origins
in Carloni’s work on Latency-Insensitive circuits [3]. He
showed how a synchronous circuit can be decomposed into
parts which can communicate through channels whose latency
does not affect the functional correctness of the overall circuit.
His technique required putting a shim around each part to
keep track of the clock cycles in the specification. With
proper extensions (see for example, [11], [14]) such Latency-
Insensitive frameworks permit original circuits to be modified
in an incremental modular manner. However the resulting
circuit produces the same cycle-by-cycle behavior as in the
original model. In contrast the work presented in this paper is
about a high-level language where the designs are expressed to
be modularly refineable; separate compilation is a requirement
for such modular refinements.

The problem of synthesizing hardware from synchronous
languages such as Esterel is generally not viewed as a schedul-
ing problem [2], [7]. A program in Esterel, like an FSM,
describes a unique behavior. In this sense, synthesizing Esterel
is the problem of choosing between a set of equivalent FSMs.
Rule scheduling in Bluespec also implements an FSM but it is
from a much larger set of non-equivalent FSMs all of which
satisfy the initial specification.

This work provides a formal framework for reasoning
about scheduling and providing precise concurrency control.
Other formal frameworks for reasoning about scheduling have
been explored. For example, soft scheduling is a framework
proposed by Zhu and Gajski [15] which allows a scheduler
to reason about its own performance and update its choices
dynamically at runtime. This differs from our system in that
each task can take different amounts of time — perhaps
even unpredictable amounts of time. It also requires scheduler
state to track decisions, whereas we only considered stateless
schedulers.

III. A MOTIVATING EXAMPLE

We will use the example of a simple multi-stage pro-
cessor pipeline to motivate the issues of modularity and
modular compilation. The processor contains a Fetch stage, a
Decode/register-read stage and an Execute/memory/writeback
stage as shown in Figure 1. We represent each stage as a
separate module so that it may be refined further for greater
pipelining. Fetch passes instructions to Decode via the f2d
FIFO while Decode passes the decoded instructions to Execute

Fig. 1: A simple processor

via the d2e FIFO. Execute communicates the correct target
PC to Fetch via the redirect FIFO. These modules also
communicate with each other through the register file and the
scoreboard; Decode reads the register file through two read
ports and Execute updates the register file though the write
port. The scoreboard is used to keep track of instructions
in the pipeline to avoid RAW and WAW hazards. Decode
can search the scoreboard to examine if registers which an
instruction reads are being updated by an instruction in the
pipeline. If not, the instruction can be entered into the execute
pipeline and enqueued in the scoreboard. Execute removes an
instruction from the scoreboard after it has been committed.
Fetch communicates with the instruction memory via the
iReq and iRes ports while Execute communicates with the
data memory using the dReq and dRes ports.

Figure 2 shows the processor code organization, along with
the methods called in each module. For our purposes the
internal module details are not important and consequently
rules for implementing the modules are not shown. TypeX x
<- X(ap1, ap2 ...) instantiates a module X of TypeX
with local instance name x, passing parameters ap1, ap2
etc. We follow the naming convention where m g refers to
the method g of module m. Thus, f2d_enq represents the
enqueue method of the FIFO module f2d. In this example,
modules mkProc, mkFetch, mkDecode and mkExecute
define no interface methods; they interact with other modules
only through parameters. Modules redirect, f2d, d2e, rf
and sb have defined methods to allow other modules to access
their internal state.

We would like to compile each of the modules mkProc,
mkFetch, mkDecode, mkExecute, mkRegFile,
mkScoreboard and all the FIFOs separately. This is
essential for abstraction and modular refinement. The
designer should be able to change the implementation of say
the mkExecute module without the internal knowledge of
how the other modules are implemented. It would permit the
testing of a module in various different contexts [5]. Modular
compilation can also drastically reduce the compile time by
avoiding recompilation.

Module mkProc(iReq, iRes, mReq, mRes)
// Instantiation of modules w/o parameters
Fifo redirect <- mkFifo()
Fifo f2d <- mkFifo()
Fifo d2e <- mkFifo()
RegFile rf <- mkRegFile()
Scoreboard sb <- mkScoreboard()

// Instantiation of modules with parameters
Fetch fetch <- mkFetch(iReq, iRes,

redirect_deq, redirect_first, f2d_enq)
Decode decode <- mkDecode(f2d_deq, f2d_first,

rf_read0, rf_read1, d2e_enq,
sb_enq, sb_search0, sb_search1)

Execute execute <- mkExecute(d2e_first,
d2e_deq, sb_deq, rf_write,
redirect_enq, mReq, mRes)

Module mkFetch(iReq, iRes,
redirectDeq, redirectFirst, f2dEnq)

Reg pc <- mkReg(...)
Reg epoch <- mkReg(...)
...
rule fetch1, fetch2 ...
// These rules calls the following methods:
... iReq, iRes, redirectFirst,
redirectDeq, f2dEnq ...

Module mkDecode(f2dDeq, f2dFirst,
iReq, iRes, d2eEnq, rfRead0, rfRead1,
sbEnq, sbSearch0, sbSearch1)
...

rule decode1, decode2 ...
// These rules calls the following methods:
... f2dFirst, f2dDeq, rfRead0, rfRead1,
d2eEnq, sbSearch0, sbSearch1, sbEnq, ...

Module mkExecute(d2eFirst,
sbDeq, rfWrite, d2eDeq,
redirectEnq, mReq, mRes)
...

rule execute1, execute2 ...
// These rules calls the following methods:
... d2eFirst, d2eDeq, redirectEnq,
mReq, mRes, sbDeq, rfWrite ...

Fig. 2: Processor organization - m_g is method g of m

Modular compilation is difficult because it needs to guar-
antee that the atomicity of the rules inside Fetch, Decode and
Execute, is maintained even though the method calls are spread
over many different modules. Since the rules are spread across
multiple modules, modular compilation also needs to preserve
the one-rule-at-a-time semantics of the whole system i.e., any
behavior of the system must be understood as if the rules of
the whole system are executed one at a time in some order.
Sometimes the methods of a module “conflict” with each other
and may not be called simultaneously. For instance, the f2d
FIFO may be such that its enqueue and dequeue methods
update the same register; then no rule should be able to invoke
these methods simultaneously, and two different rules calling
these methods should not be scheduled simultaneously.

// [. . .] represents a list in the meta language
Prog ::= [〈instantiation〉]

[〈rule〉]
instantiation ::= x <- Reg(〈c〉)

// Register instantiation
rule ::= rule 〈r〉 〈a〉 // r is the name identifier

a ::= 〈x〉 w(〈e〉) // register write
‖ if 〈e〉 then 〈a〉 // conditional action
‖ 〈a〉|〈a〉 // parallel action
‖ let 〈t〉 = 〈e〉 in 〈a〉 // let bindings

e ::= 〈x〉 r() // register read
‖ 〈c〉 // a constant
‖ 〈t〉 // a variable
‖ 〈op〉(〈e〉,〈e〉) // primitive functions
‖ let 〈t〉 = 〈e〉 in 〈e〉 // let bindings

op ::= && ‖ plus ‖ . . .

Fig. 3: Grammar of the moduleless language KBS0

Note that current Bluespec does offer some degree of
modular compilation for modules which do not have in-
terface parameters. For instance, in Figure 2, mkFIFO,
mkScoreboard and mkRegFile can be compiled sepa-
rately, but mkFetch, mkDecode and mkExecute cannot.
The next two sections give the necessary background on the
current Bluespec language and compiler.

IV. KBS0: A LANGUAGE WITHOUT MODULES

The first kernel language we consider is KBS0, a language
without user-level modules and methods (see Figure 3). In
KBS0 registers hold the state and rules define how the state
is to be transformed from one cycle to the next. A rule is an
atomic action which is either a register update, a predicated
action, or a parallel composition of multiple actions. An
expression (which is either used to update a register, or in the
predicate of a predicated action) is either the value of some
register, i.e., a register read, a constant, or a primitive operation
on expressions. In addition to these, the language allows let-
bindings of variables in both actions and expressions.

The operational semantics, given in Figure 4 specifies the
effect of an action on the state in terms of a set of register
updates. The sequent 〈S, B〉 ` e⇒ v in Figure 4 represents
the evaluation of an expression to a value in the context of the
current state of the system (S) and the set of bindings created
during the evaluation (B). Similarly, the sequent 〈S, B〉 `
a ⇒ U represents the set of updates to the registers of the
system to be performed by action a. Figure 5 specifies how a
program P transforms the state in one step (denoted by→) by
applying one rule to the state S. A state is legal only if it can
be reached by applying one rule at a time to the initial state
S0, i.e., if it is in →∗, the transitive and reflexive closure of
→. We will call this the one-rule-at-a-time semantic model.

A. Scheduling multiple rules in KBS0

Before giving the details of compiling KBS0 into a hardware
circuit (Section IV-B), we discuss concurrency issues which
are essential to construct a high-performance implementation.
While it is possible to provide a hardware implementation

let-action
〈S,B〉 ` e⇒ v 〈S,B ∪ {t 7→ v}〉 ` a⇒ U

〈S,B〉 ` let t=e in a⇒ U

reg-write
〈S,B〉 ` e⇒ v

〈S,B〉 ` x w(e)⇒ {x 7→ v}

if-false
〈S,B〉 ` e⇒ False

〈S,B〉 ` if e then a⇒ {}

if-true
〈S,B〉 ` e⇒ True 〈S,B〉 ` a⇒ U

〈S,B〉 ` if e then a⇒ U

parallel

〈S,B〉 ` a1 ⇒ U1 〈S,B〉 ` a2 ⇒ U2

U1 ∩ U2
a = {}

〈S,B〉 ` a1|a2 ⇒ U1 ∪ U2

constant
〈S,B〉 ` c⇒ c

variable t 7→ v ∈ B
〈S,B〉 ` t⇒ v

let-expr
〈S,B〉 ` e⇒ v 〈S,B ∪ {t 7→ v}〉 ` e⇒ v′

〈S,B〉 ` let t=e in e⇒ v′

op

〈S,B〉 ` e1 ⇒ v1 〈S,B〉 ` e2 ⇒ v2
op(v1, v2) = v

〈S,B〉 ` op(e1, e2)⇒ v

reg-read
〈S,B〉 ` x r()⇒ S[x]

aU1 ∩ U2 denotes that the condition that two sets of updates are
disjoint w.r.t the registers updated

Fig. 4: Operational Semantics of actions in KBS0

rule-firing
rule r a ∈ P 〈S, {}〉 ` a⇒ U

P ` S → update(S,U)

where update(S,U)[x] = if (x, v) ∈ U then v else S[x]

legal-state
P ` S0 →∗ S

S ∈ LegalState(P, S0)

Fig. 5: Operational Semantics of rules in KBS0

where any sequence of rules can be executed in one cycle,
such an implementation is likely to have a much longer critical
path (slower clock) than the one implied by the slowest rule.
To generate good hardware we restrict ourselves to “parallel”
composition of the rules and disallow the duplication of rule
bodies and the creation of implicit combinational paths be-
tween the circuits generated from different rules. Without loss
of generality the parallel composition of two rules rule r1 a1
and rule r2 a2 can be expressed as rule r12 (a1|a2). Of
course the action a1|a2 may not be legal, i.e., may have double
write errors, and, even if legal, may not transform the state into
a legal state as specified by the two rule system. According
to the semantics in Figures 4 and 5 a legal state has to be
reachable by applying either a1 and then a2 or vice versa.

Suppose rule r1 does not write any register that rule r2
reads. Then parallel execution of r1 and r2 would behave as
if rule r1 was scheduled before r2. Similarly, if rule r2 does
not write any register that rule r1 reads then parallel execution

of r1 and r2 would behave as if rule r2 was scheduled before
r1.

Definition 1. r1 < r2 : Rule r2 does not read or write any
register that rule r1 may write. ut

Definition 2. r1 > r2 : Rule r1 does not read or write any
register that rule r2 may write. ut

Notice that the r1 < r2 relation is statically determined
i.e., irrespective of the predicates of the conditional actions.
Therefore even if there is one state in which r1 writes a register
that r2 reads, then r1 < r2 is not true.

Theorem 1. Given rule r1 a1 and rule r2 a2, let rule r12 be
rule r12 (a1|a2).

r1 < r2 ⇒ ∀ s. a2(a1(s)) = (a1|a2)(s)

where s represents a state and a(s) is the state obtained after
applying the updates of action a to s. ut

Note that the (r1 < r2) relation is not transitive, i.e., (r1 <
r2) ∧ (r2 < r3) does not imply (r1 < r3) as illustrated by
the following program:

x <- Reg(0)
y <- Reg(0)
z <- Reg(0)
rule r_1 z_w(x_r())
rule r_2 x_w(y_r())
rule r_3 y_w(z_r())

r1 < r2 because of register x, r2 < r3 because of register
y, but r1 < r3 is not true. Because of lack of transitivity,
the schedulability of multiple rules has to be defined as
follows [8]:

Theorem 2. Rules r1, . . . , rn can be scheduled concurrently
conforming to the one-rule-at-a-time semantics, if there exists
a permutation (p1, p2, . . . pn) of (1, . . . , n) such that ∀i,∀(j >
i).rpi < rpj ut

The scheduling restriction may provide no valid total order
for all the rules to be scheduled in a clock cycle. To resolve
these concurrency restrictions we leverage the nondeterminism
of the execution model to restrict one or more of the rules
to not execute at all in a clock cycle, and instead choose a
subset of rules such that there is a valid order for all the
rules in the subset to be scheduled. This is represented via
a scheduler circuit which provides an enable signal ren for
each rule r. The scheduler obeys the restriction implied by
the above Theorem 2. The details of scheduler fall outside of
the scope of this paper.

B. Compiling KBS0 into Hardware

An expression in KBS0 is essentially an acyclic network
of primitive operators, i.e., a combinational circuit. Some
of the inputs for the expressions are the output of registers
(for example, the output of register x is labeled as x r res)
and some of the outputs are intended as input to registers
(labeled as x w arg and x w en). We represent the network

x <- Reg(0)
y <- Reg(0)
rule r1

let t = e in
if t then
x_w(y_r()) | y_w(x_r())

if !t then
x_w(y_r() + 1)

rule r2
y_w(y_r() + 1)

Fig. 6: Example to illustrate the translation of KBS0 into hardware circuits

of operators as a set of bindings; a straightforward procedure
for compiling expressions into bindings is given in Figure 8.

For compiling actions, we need to collect all the possible
updates that an action may make to the same register. Consider
the example in Figure 6. Rule r1 writes to register x in two
conditional actions. When t is true, it writes the value of
register y into x, otherwise it writes y+1 into x. The hardware
structure for writing multiple values has to be represented
using muxes. Textually we will represent such muxes as
p1.e1+ p2.e2. In a legal program, at most one predicate among
p1 and p2 can be true. The syntax for describing bindings and
predicated expressions is given in Figure 7.

To build such predicated expressions, the compiler needs to
thread the bindings and pass in the predicate under which an
action is to be performed. The procedure for compiling actions
is given in Figure 9. For example, to compile x w(e) under
predicate P , we first compile expression e to e′, and append
P.e′ to the input argument for register x. We also have to set
the enable for x whenever P is true. The predicate to be passed
down changes whenever we encounter a conditional action. We
do this by creating a new predicate whose expression is the
conjunction of the incoming predicate and the predicate for
the conditional action. To avoid duplicating the logic for the
predicate, we assign it a name and pass down the new name
instead of the “anded predicate expression”.

Since it is also possible for two different rules to write into
the same register, we need a mechanism to allow at most one
of them to perform the update. At the hardware level, this
capability is provided by an input enable signal (r en) for
each rule, and as discussed earlier, it is the responsibility of the
scheduler to set r ens to avoid double write errors. The final
register update uses the same mux as discussed for multiple
action updates – the bindings have to be threaded through all
the rules. Figure 10 gives the syntax directed compilation of
KBS0 rules into bindings.
Static error checking: Instead of generating a circuit to per-
form a dynamic check whenever multiple writes are attempted
to the same register, the compiler accepts a program only if
it can prove that multiple writes cannot happen. This can be
checked by looking at the generated predicated expression cor-
responding to x w arg, for each register x. A rule becomes

B ::= [〈b〉]
b ::= 〈t〉 = 〈ei〉
‖ 〈x〉 w arg = 〈pe〉
‖ 〈x〉 w en = 〈ei〉

ei ::= 〈c〉
‖ 〈t〉
‖ 〈op〉(〈ei〉, 〈ei〉)
‖ 〈x〉 r res

pe ::= ⊥
‖ 〈be〉.〈ei〉 // be is a boolean ei
‖ 〈be〉.〈pe〉
‖ 〈pe〉+ 〈pe〉

Fig. 7: Syntax for bindings

CE : 〈B〉 → 〈e〉 → (〈ei〉, 〈B〉)
CE B [[x r()]] = (x r res, B)
CE B [[c]] = (c, B)
CE B [[t]] = (t, B)
CE B [[let t=e1 in e2]] =

let (e1′, B1) = (CE B [[e1]])
in (CE (B1[t] := e1′) [[e2]])

CE B [[op(e1, e2)]] =
let (e1′, B1) = (CE B [[e1]])

(e2′, B2) = (CE B1 [[e2]])
in (op(e1′, e2′), B2)

Fig. 8: KBS0 expression compilation procedure

CA : 〈B〉 → 〈be〉 → 〈a〉 → 〈B〉
CA B P [[x w(e)]] =

let (e′, B1) = (CE B [[e]])
BT1 = (B1[x w arg] := B1[x w arg]) + P.e′)

in (BT1[x w en] := BT1[x w en]∨P)
CA B P [[if e then a]] =

let (e′, B1) = (CE B [[e]]) where t is fresh
in (CA (B1[t] := P.e′) t [[a]])

CA B P [[a1 | a2]] = (CA (CA B P [[a1]]) P [[a2]])
CA B P [[let t=e in a]] =

let (e′, B1) = (CE B [[e]])
B2 = B1[t use] := ⊥

in (CA (B2[t] := e′) P [[a]])

Fig. 9: KBS0 action compilation procedure

CR : 〈B〉 → 〈rule〉 → 〈B〉
CR B [[rule r a]] = CA B r en [[a]]

Fig. 10: KBS0 rule compilation procedure

Prog ::= Module 〈M〉
[〈instantiation〉]
[〈rule〉]
[〈value0-method〉]
[〈value-method〉]
[〈action-method〉]

instantiation ::= m <- 〈M〉
. . .
value0-method ::= v0-meth 〈h〉 = λ().〈e〉
value-method ::= v-meth 〈h〉 = λx.〈e〉
action-method ::= a-meth 〈h〉 = λx.〈a〉

// h is a method name identifier
a ::= . . . // KBS0 actions
‖ 〈method-name〉(〈e〉) // method call

method-name ::= 〈m〉 〈h〉
e ::= . . . // KBS0 expressions
‖ 〈method-name〉(〈e〉) // method call
‖ 〈method-name〉() // parameterless method call

Fig. 11: Grammar of KBS1

illegal i.e., if x w arg = p1.e1 + p2.e2 + . . . pn.en and
∃i, j 6= i. pi ∧ pj .

V. KBS1: MODULES WITHOUT PARAMETERS

KBS0 adds a basic notion of module hierarchy to KBS0,
starting with the register primitive module (Reg). KBS1
programs are constructed as a set of module definitions which
encapsulate other submodules, rules and defined methods to
manipulate the internal state of the module from outside.
Submodules are instantiations of other modules. Only tree-like
hierarchies in module instantiations are permitted. Methods
come in two varieties: action methods, which encapsulate state
updates, and value methods, which return values. In general
methods can have arguments; we treat value methods without
parameters as a distinct category for compilation purposes
(Figure 11).

For succinctness we will use the word module for both
module instance and definitions and rely on the context to dis-
ambiguate. Where appropriate we will use capital letters (M)
to represent the definition and lowercase (m) for instances.

Figure 12 gives the example of an up-down counter module
MC. MC instantiates a register x and defines two action methods
downcount and upcount. (For simplicity, we ignore the
issues of overflow, underflow, etc. .) MC is instantiated as mc
by another module M which has two rules r1 and r2, both
of which update the counter under various conditions. Notice
that rules r1 and r2 conflict because ultimately both rules try
to update counter x simultaneously. Since x is encapsulated
inside module MC, this conflict cannot be detected by M unless
some information about the conflict between the methods of
MC is available to M. Next, we discuss how this information is
provided and used in the interface definitions.

Module MC
x <- Reg(0)
a-meth downcount = λc.x_w(x_r() - c)
a-meth upcount = λc.x_w(x_r() + c)

Module M
mc <- MC
y <- Reg(0)
z <- Reg(0)
rule r1
if (y > 0) then

mc_downcount(1) | y_w(f(y_r()))
rule r2
if (z > 0) then

mc_upcount(2) | z_w(g(z_r()))

Fig. 12: Example to illustrate conflicts in KBS1

A. Conflict Matrix CM

For each module, as part of its interface, we will define
a conflict matrix which gives the pairwise conflict relations
between its defined methods. For two methods h1, h2 defined
in a module,

CM(h1, h2) ∈ {{}, {<}, {>}, {<,>}}

If {<} ⊆ CM(h1, h2), then h1 does not write any
register (directly or indirectly) that h2 reads or writes, and
both methods can be invoked concurrently with the effect
as if h1 executed before h2. ({>} is defined as its dual.)
If {<, >} ⊆ CM(h1, h2), we say that the methods are
conflict-free, i.e., not only can they execute concurrently, but
produce the same effect in either order of execution. On the
other hand, if CM(h1, h2) = {}, then the two methods
are said to conflict and cannot be invoked concurrently. A
rule containing such conflicting method calls, which are not
invoked in a mutually exclusive manner, is said to be illegal.
If they are invoked in two different rules, then the two rules
cannot be scheduled together.

Methods of a module are like ports when the module is
synthesized into hardware (Section V-C). A method that has
parameters, regardless of whether it’s a value or an action
method, cannot be invoked simultaneously by two different
calls because of port conflict. Action methods even without
parameters affect the same state and therefore always conflict
with themselves. However, parameterless value methods, for
example register reads, can be invoked in multiple places
simultaneously and therefore we treat them specially. Multiple
write errors discussed for KBS0 is a special case of conflicting
port usage.

The CM relationship for the Reg module is given in
Figure 13. Given the conflict matrix for registers, we can
systematically derive the conflict relation between any pair
of methods g, h defined by a module M as follows:

Procedure to calculate CM in KBS1
1) Compute mcalls: mcalls(g) represents the methods called by

the definitions of g in M (obtained statically). Such calls are

r w
r {<,>} {<}
w {>} {}

Fig. 13: CM Reg primitive

necessarily restricted to the methods in the submodules of M
in KBS1.

2) Compute Conflict: For each p ∈ mcalls(g) and each q ∈
mcalls(h), compute the conflicts between p and q as follows:

Conflict(p, q) = CM(p, q) where p, q are from the
same module instance

Conflict(p, q) = {<, >} where p, q are from different
module instances

Since different module instances do not share state, their
respective methods are always conflict-free with each other
in KBS1.

3) Compute CM : For every pair of defined methods g, h, we
compute CM as follows:

CM(g, h) =
⋂

p∈mcalls(g)
q∈mcalls(h)

Conflict(p, q) where g 6= h

CM(g, g) = {<,>} where g is a value0-method
CM(g, g) = {} where g is not a value0-method

The procedure given above is recursive, and essentially com-
putes CM bottoms up in the module invocation hierarchy.

B. Concurrent scheduling of rules

The following property of Sequential composability (SC) is
essential to understand the invariants of a correct scheduler:

Definition 3. Sequential Composibility (SC): Given a set of sets
of method names g1, g2, . . . gn, SC(g1, g2, . . . gn) is true if there
exists a permutation, p1, p2, . . . pn of 1, 2, . . . n such that,

∀i.∀(j > i).∀x ∈ gpi ,∀y ∈ gpj .({<} ⊆ Conflict(x, y)) ut

Consider a system where only the top module has rules.
In such a system, rules r1, . . . , rn can be scheduled concur-
rently without violating the one-rule-at-a-time semantics if
SC(mcalls(r1), . . . ,mcalls(rn)) is true.

When a submodule has rules, then the submodule’s rule
might conflict with its defined methods. If we assume that
the scheduling is done outside in, the inner module can know
which of its methods are being called by an external rule or
method. We use a signal (h en) to denote whether method
h defined by the internal module is currently being called
i.e., enabled, externally. For the internal scheduler to work
properly, it must consider the conflicts between an internal
rule and its defined methods which are currently enabled.

Definition 4. (SC Invariant of KBS1) Suppose r1, . . . , rn are
the rules of M being chosen to be scheduled in the current
state, h1, . . . , hk are the methods of M being called externally,
then M preserves SC Invariant for KBS1 iff

SC(mcalls(r1), . . . , calls(rn),

mcalls(h1), . . . ,mcalls(hk))

is true ut

Expressions:
CE B P [[m h(e)]] =

let (e′, B1) = (CE B P [[e]])
BT1 = (B1[m h arg] := B1[m h arg] + P.e′)
BT2 = (BT1[m h en] := BT1[m h arg]∨P)

in (m h res, BT2)
CE B P [[m h()]] =

(m h res, (B[m h en] := B[m h en]∨P))

Actions:
CA B P [[m h(e)]] =

let (e′, B1) = (CE B P [[e]])
BT1 = B1[m h arg] := B1[m h arg] + P.e′)

in (BT1[m h en] := BT1[m h en]∨P)

Fig. 14: Compilation for KBS1 expressions and actions

.
Theorem 3. If the scheduler of every module in a system
preserves the SC invariant of KBS1 then system will obey the
one-rule-at-a-time semantics. ut.

The above theorem shows how to construct modular sched-
ulers assuming “method enabled” signals generated by the
outer modules are available to the internal schedulers.

C. Compiling KBS1 to Hardware

Intuitively the compilation of KBS1 can be thought of as
almost exactly taking the KBS0 program derived by inlining
modules and adding the appropriate hardware-level module
boundaries. This corresponds to each method h having an
argument port h_arg and value methods having a result
port h_res. Finally, as discussed before, we provide a signal
h_en for each method h to indicate that it is being used.

For compiling KBS1, we simply add cases to handle method
calls to the KBS0 compilation procedure for expressions and
actions (Figure 14) We show only the incremental changes
over KBS0. In the compilation procedure for expressions
and actions, we simply add cases to handle method calls.
The argument of a method call gets bound to a predicated
expression containing the inputs to that method at various
locations in the code. The method enable is bound to the
logical OR of the predicates of each term in the predicated
expression. Uunlike KBS0, in KBS1 the predicate must be
passed to the expression compilation too. To compile the
definition of a method, the argument of a method h is bound
to the name h_arg, and the result of a method (in case of
value methods) is bound to the expression corresponding to
the method.

When modules are compiled separately, we must provide a
linking phase to connect the bindings of the module of instance
m (compiled separately using module M) to the bindings of
M0, the module instantiating M as m (see Figure 16). In our
representation, this can be accomplished simply by prepending
the name of the instantiated module to all state and binding
names from the submodules’ compilation. This is what the
function instantiate does in Figure 16. It also initializes the
predicated expression of the argument of every defined method

Value methods:
CVM : 〈B〉 → 〈value-method〉 → 〈B〉
CVM B [[v-meth h=λx.e]] =

let (e′, B′) = CE (B[x] := h arg) h en [[e]]
in (B′[h res] := e′)

Value0 methods:
CV0M : 〈B〉 → 〈value0-method〉 → 〈B〉
CV0M B [[v0-meth h=λ().e]] =

let (e′, B′) = CE B h en [[e]]
in B′[h res] := e′)

Action methods:
CAM : 〈B〉 → 〈action-method〉 → 〈B〉
CAM B [[a-meth h=λx.a]] =

CA (B[x] := h arg) h en [[a]]

Fig. 15: Compilation for KBS1 Methods

CInst : CompiledModules→ 〈B〉 → 〈instance〉 → 〈B〉
CompiledModules = 〈M〉 → 〈B〉
CInst B [[m1 <- Reg(c)]] =

instantiate(Reg(c),m1)
CInst compileds B [[m1 <- M1(ap1, . . . , apn)]] =

let BM1 = compileds M1
BM2 = instantiate(BM1,m1)
BT0 = B ++BM2

(h1, . . . , hk) = Defined methods in M1
in fold (CDefnSub m1) BT0 [h1, . . . hk]

CDefnSub : 〈m〉 → 〈B〉 → 〈h〉 → 〈B〉
CDefnSub m1 B h = (B[m1 h arg] := ⊥)

Fig. 16: Compilation for KBS1 instances

in the instance as ⊥.
Figure 17 shows the compilation of a module, which simply

collects all the bindings defined internally (from instances,
rules, and methods).
Static error checking: As with KBS0, not all KBS1 pro-
grams are valid. It is illegal if two conflicting methods
h1, h2, CM(h1, h2) = ∅ are dynamically called within a rule.
This can again be checked statically as follows: If h1 arg =
p1.e1 + p2.e2 + . . . pn.en and h2 arg = pn+1.en+1 + . . .+
pn+m.en+m such that CM(h1 arg, h2 arg) = {}, then it is
illegal if ∃i, j 6= i. pi ∧ pj

CM : 〈M〉 → CompiledModules → (CompiledModules, 〈B〉)
CM [[Module M

m1 <- M1
rule r1 a1, . . .
v0-meth v1=λ().e1, . . .
v-meth f1=λx.e2, . . .
a-meth g1=λy.a2, . . .]]
compiledModules =

let B = fold (CInst compiledModules) φ
[[[m1 <- M1]], . . .]

B0 = fold CR B [[[rule r1 a1]], . . .]
B1 = fold CVM B0[[[v-meth f1 = λx.e2]], . . .]
B2 = fold CV0M B1[[[v0-meth v1=λ().e1]], . . .]
B3 = fold CVM B2[[[a-meth g1 = λx.a1]], . . .]

in (λx.if x =M then B3 else compileModules(x), B3)

Fig. 17: The compilation Procedure for KBS1 Modules

D. Further Language Enrichment

There are a few extensions to our kernel languages which
have impact on the compilation scheme. While important for
a practical implementation, these are orthogonal to the modu-
larity question. We discuss them briefly for completeness.

1) Guards: Partially Valid Expressions and Actions: Often
methods for an object may not be available every cycle. For
instance, a FIFO may not have space to allow a new value to be
enqueued or an FFT module may not have finished computing
a result to report via the response operation. In these cases
users of a module need to check explicitly that every method
called is valid when used.

To increase modular reuse, this explicit check has been
codified into a notion of a predicate guard (denoted via the
when clause) which is implicitly checked, guaranteeing that
a method’s “readiness” property is never violated [5]. These
guards propagate across parallel actions, i.e., the following
expressions are equivalent:

(a1 when e1)|(a2 when e2)≡(a1|a2) when (e1∧e2)

An guarded action or expression is valid only when it’s
predicate is true. An action or expression with a failing guard
in a subexpression is itself not valid. Thus the following
expressions are equivalent:

if p then (a when e)≡(if p then a) when (¬p∨e)

In general, guards can be naturally lifted to the top expres-
sions and actions using similar transformations. These lifted
guards can be safely transformed into if conditionals at the
top of rule bodies or auxiliary methods for method bodies. In
practice, this information is used by the scheduler to consider
only those rules whose (top-level) guards are true.

For hardware understandability, it is more natural to reason
about these guards as part of the method itself rather than
an entirely separate method with a new set of ports. This
translates into an additional boolean “ready” output port in
the binding list signifying when the method is valid.

E. Ephemeral History Registers: Combinational passing
within an atomic action

As stated previously, scheduling is constrained from intro-
ducing combinational paths from between rules. However, in
practice, for high performance it is useful to allow controlled
use of combinational paths. For example, a design which
allows a new element to be enqueued into a full pipeline
buffer if in the same cycle someone has taken an element
out performs better than one which does not. To allow users
to express this we introduce new primitives which internally
allow information to be passed between methods calls com-
binationally. Of particular interest is the Ephemeral History
Register (EHR) [12] with which one can model any other
primitive.

In the presence of EHRs, a combinational loop can arise in
the body of a single rule if the order imposed by the conflict
relation between the methods of an EHR instance violates the
corresponding dataflow order. This is resolved by statically

// [. . .] represents a list in the meta language
Prog ::= Module 〈M〉 // M is a module name

([〈fp〉], [〈cf〉])
// fp is a formal method parameter
// cf is a conflict specification between 2 fp’s

. . .
instantiation ::= 〈m〉 <- 〈M〉([〈method-name〉])

// m is an “object” of “type” M
‖ 〈m〉 <- Reg(〈c〉)

// Register-primitive instantiation
method-name ::= 〈fp〉 // Formal parameter call

‖ 〈m〉 〈h〉 // Instantiated module method call
. . .

Fig. 18: Grammar of the kernel language KBS2

checking to ensure that the conflict relation be consistent with
the dataflow ordering.

VI. KBS2: MODULES WITH PARAMETERS

Now we introduce the compilation procedure for KBS2, our
full kernel language with interface parameters in modules (see
Figure 18). Our language does not permit recursive method
calls and consequently prohibits the following types of module
instantiations.

Module M()
m1 <- M1(m2_h2)
m2 <- M1(m1_h1)

We also do not permit passing a method to multiple mod-
ules. For example, the following programs are illegal:

1) Module M(fp)
m1 <- M1(fp)
rule r1 fp(1)

2) Module M(fp)
m1 <- M1(fp)
m2 <- M2(fp)

3) Module M()
m1 <- M1()
m2 <- M2(m1_h)

rule r1 m1_h(1)

This restriction does not fundamentally reduce the express-
ibility of the language, since one simply has to duplicate the
method of an instance (with a new name) and pass the “new”
method in case a duplicate is necessary.

A. Sharing state through interface parameters

Consider the example in Figure 19. Module M1 has two
action methods h1 and h2, both of which write the register
x. Rule r3 in module M2 calls the formal parameter p whose
actual argument is m1_h2. In order to preserve one-rule-at-a-
time semantics, none of the rules r1, r2 or r3 should execute
simultaneously. Even though rules r1 and r2 call methods of
different instances, formal parameters cause a conflict – they
effectively write the same register x of instance m1. Similarly,
rule r3 cannot be scheduled whenever method h3 is called
(this can be detected using the scheme described for KBS1) or
rule r1 is scheduled (again because they write the same state
x). The conflict between rules r1 and r3 cannot be detected
using the technique in KBS1.

B. Computing the conflict matrix

The interface of a module needs to convey more information
than in KBS1. We give a solution to compute the conflict ma-
trix assuming the interface includes the following information:

1) CMDM : The conflict relation between each pair of
defined methods

2) CMFP : The conflict relation between each pair of
formal parameters

3) fpuM (h): The set of formal parameters that a defined
method h of module M uses (either directly or indi-
rectly)

4) p sch: A signal for each formal parameter p to indicate
whether the external scheduling has prohibited the use
of p in the internal rules or submodules. If rule r is
selected to be executed by the scheduler, then all of the
interface parameters which are called by r in the current
state should be schedulable.

The calculation of CMDM relation is the same as before,
except that the Conflict relation between methods defined
in different submodules cannot be obtained because the two
submodules can conflict because of the sharing of state be-
tween them via parameters. For instance, as discussed earlier,
methods m1_h2 and m2_h3 conflict in Figure 19 even though
methods h2 and h3 are defined in different instances.

We also need conflict information about the interface pa-
rameters. This, like the type information, has to be supplied
by the designer. Our compiling procedure will make sure that
the constraints imposed by CMFP are not violated in the
instantiations of the module with actual parameters.

The methods called by g, a defined method of some module
M , can be either formal parameters of M or the methods
defined by the modules instantiated inside M . We either
know or can calculate the formal parameters used by each
defined method of a module using the function fpuM (g). We
explain fpuM next. We define a function subM , which is a
mapping for each instance m ← M(ap1, . . . , apn) where
subm(fpi) = api.

For registers:

fpuReg(Reg r) = fpuReg(Reg w) = {}

Module M ()
m1 <- M1()
m2 <- M2(m1_h2)
rule r1 m1_h1(5)
rule r2 m2_h3(6)

Module M1()
x <- Reg(0)
a-meth h1 = λa.x_w(a)
a-meth h2 = λb.x_w(b+1)

Module M2(p)
rule r3 p(6)
a-meth h3 = λc.p(c+2)

Fig. 19: Illustrating the need for a distributed scheduler

In the following, mi is an instance of module Mi and M
is the top level module instantiating Mi’s.

If mcalls(M g) contains fp, a formal parameter of M ,
then fp must also belong to fpuM (M g). The non-trivial
case is when mcalls(M g) contains m1 h1. Consider the
scenario where h1 defined in module M1 of which m1 is an
instance of, uses a formal parameter of M1 which is supplied
a formal parameter of M during its instantiation. One way to
keep track of such indirect references is by using the function
fpuM1(M1 h1). fpuM1(M1 h1) is by definition a subset
of the formal parameters of M1. By substituting the actual
parameters used in instantiating M1 we can determine all
the methods called by m1 h1 including the formal param-
eters of M . We will refer to this function as apu(m1 h1).
Finally among apu(m1 h1), we may discover some formal
parameters of M and thus we can calculate the indirect use of
the formal parameters of M by m1 h1. Among the methods
in apu(m1 h1) which are not formal parameters of M , say,
mj hj, we recursively obtain apu(mj hj), till we are left
with only formal parameters of M . FPUM below performs
the recursive call. Thus, we obtain the formal parameters of M
which are directly or indirectly used in g. fpuM is calculated
for all the methods defined by a module M when M is
compiled.

Procedure to calculate fpuM , the set of formal parameters
called by a defined method g of a module M :

fpuM (M g) = FPUM (mcalls(g))

FPUM (∅) = ∅
FPUM ({fp} ∪ hs) = {fp} ∪ FPUM (hs)

FPUM ({m g} ∪ hs) = FPUM (apu(m g) ∪ hs)

apu(mi h) = {submi(fp)| fp ∈ fpuMi(mi h)}

For the example in Figure 19, fpuM2(M2 h3) = {p}
according to the above procedure.

Using fpuM (more specifically apu), we can obtain the
Conflict relation between every pair of methods (both in-
terface parameters, and methods defined by instances) called
inside M

Conflict(m1 h1,m1 h2) = CMDM (M1 h1,M1 h2)

Conflict(fp1, fp2) = CMFP (fp1, fp2)

Conflict(m1 h1,m2 h2) =
⋂

p∈apu(m1 h1)
q∈apu(m2 h2)

Conflict(p, q)

where m1 6= m2

Conflict(fp,m2 h2) =
⋂

q∈apu(m2 h2)

Conflict(fp, q)

Conflict(m1 h1, fp) =
⋂

p∈apu(m1 h1)

Conflict(p, fp)

Calculating the actual CMDM relation between every pair
of methods defined by a module in KBS2 remains exactly the

same as calculating CM in KBS1.

CMDM (g, h) =
⋂

p∈mcalls(g)
q∈mcalls(h)

Conflict(p, q) where g 6= h

CMDM (g, g) = {<,>} where g is a value0-method
CMDM (g, g) = {} where g is not a value0-method

Calculating apu for a method has the worst case complexity
of the number of callable methods in a module. Thus, calculat-
ing CMDM for a pair of methods has a worst case complexity
of O(n2) where n is the number of callable methods in a
module.

C. Scheduling multiple rules in KBS2

The module’s scheduler must obey the following theorems:

Definition 5. (SC Invariant for KBS2) Suppose r1, . . . , rn are
the rules of M being chosen to be scheduled in the current
state, h1, . . . , hk are the methods of M being called externally,
and apsi, . . . , apsj are the actual parameters to be passed into
submodules of M and which have been chosen as schedulable,
then M preserves SC Invariant for KBS2 iff

SC(mcalls(r1), . . . , calls(rn),

mcalls(h1), . . . ,mcalls(hk), aps1, . . . , apsj)

is true ut

Theorem 4. If the scheduler of every moodule in a system
preserves the SC Invariant for KBS2 then the system will obey
the one-rule-at-a-time semantics. ut

Scheduling strategies are omitted for brevity.

CInst : CompiledModules→ 〈B〉 → 〈instance〉 → 〈B〉
CompiledModules = 〈M〉 → 〈B〉
CInst compileds B [[m1 <- M1(ap1, . . . , apn)]] =

let BM1 = compileds M1
BM2 = instantiate(BM1,m1)
BT0 = B ++BM2

(fp1, . . . , fpn) = Formal parameters of M1
BT1 = fold (CParamSub [[[ap1]], . . .]

[[[fp1]], . . .] m1) BT0 [1 . . . n]
(h1, . . . , hk) = Defined methods in M1

in fold (CDefnSub m1) BT1 [h1, . . . hk]
CParamSub : [〈method-name〉]→ [〈fp〉]→ 〈m〉 →

〈B〉 → Integer → 〈B〉
CParamSub aps fps m1 B i =

let fp = fps[i]
ap = aps[i]

BT2 = (B[m1 fp sch] := ⊥)
BT3 = (BT2[m1 fp res] := ap res)
BT4 = (BT3[ap arg] :=

BT3[ap arg] +m1 fp en.m1 fp arg)
BT5 = (BT4[ap en] := BT4[ap en] ∨m1 fp en)

in BT5

Fig. 20: Compilation for KBS2 instances

Fig. 21: Ports generated by compiling a module

D. Hardware compilation
The compilation of a KBS2 program into bindings is very

similar to the compilation of a KBS1 program into bindings.
In KBS2, a method call can either be of a method defined
by an instantiated module or a call of the formal parameter.
Both the called methods have the same set of ports as
described previously. In addition, formal parameters, have an
additional fp_sch port which will be set by the scheduler
(of the external module) every clock cycle. Figure 21 gives
the ports of various entities (like rules, methods, etc.) that the
compilation process will generate.

The only major difference in the compilation of KBS2 with
respect to KBS1 is the linking of the formal parameters of the
module of an instance with the actual parameters supplied to
the instance. Figure 20 shows the compilation procedure for
instances. CParamSub performs the required linking.

VII. CONCLUSION AND FUTURE WORK

Modularity is a key requirement for effective hardware
design. Our approach allows non-tree like method calling
structures in a design which permits many otherwise natural
decompositions, e.g., the use of an off-chip memory.

Our approach codifies a resource-oriented view of repre-
sentation and provides caller and callee interfaces and dictates
their safe use. Though we did not have space to discuss it, our
scheme applies naturally to modern scheduling algorithms and
thus can be implemented with no additional hardware over the
current state of the art. Furthermore, our extension does not
affect the compilation of older programs.

In some sense this improvement solves all of the issues
in current Bluespec decomposition of hardware. However, in
the context of multiple clock domains and hardware/software

computational domains [10], may require that we break our
restriction prohibiting no cycles in the parameter passing
structures. The next step is extending this work to allow such
cyclic parameter passing.

ACKNOWLEDGEMENT

This work was done in CSAIL in collaboration with SRI. The research
at CSAIL was supported by Quanta Research agreement dated 4/1/05 and
Angstrom Project under Grant No. HR0011-10-9-0009. The research at SRI
was supported by Defense Advanced Research Projects Agency (DARPA) and
Air Force Research Laboratory (AFRL), under contract FA8750-10-C-0237
and National Science Foundation under Grant No. CCF-1217498. The views,
opinions, and/or findings contained in this report are those of the authors
and should not be interpreted as representing the official views or policies,
either expressed or implied, of the Quanta Research, the Defense Advanced
Research Projects Agency or the Department of Defense.

REFERENCES

[1] Arvind and Xiaowei Shen. Using Term Rewriting Systems to Design
and Verify Processors. IEEE Micro, 19(3):36–46, May 1999.

[2] Gérard Berry, C. A. R. Hoare, and W. A. Hunt. Mechanized reasoning
and hardware design. chapter Esterel on hardware, pages 87–104.
Prentice Hall International (UK) Ltd., Hertfordshire, UK, UK, 1992.

[3] L.P. Carloni, K.L. McMillan, and A.L. Sangiovanni-Vincentelli. Theory
of latency-insensitive design. Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, 20(9):1059–1076, 2001.

[4] K. Mani Chandy. Parallel program design: a foundation. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1988.

[5] Nirav Dave, Arvind, and Michael Pellauer. Scheduling as Rule Com-
position. In Proceedings of Formal Methods and Models for Codesign
(MEMOCODE), Nice, France, 2007.

[6] Nirav Dave, Man Cheuk Ng, Michael Pellauer, and Arvind. A design
flow based on modular refinement. In MEMOCODE, pages 11–20, 2010.

[7] Stephen A. Edwards. High-level synthesis from the synchronous
language esterel. In IWLS, pages 401–406, 2002.

[8] James C. Hoe and Arvind. Operation-Centric Hardware Description
and Synthesis. IEEE TRANSACTIONS on Computer-Aided Design of
Integrated Circuits and Systems, 23(9), September 2004.

[9] Michal Karczmarek and Arvind. Synthesis from multi-cycle atomic
actions as a solution to the timing closure problem. In ICCAD, 2008.

[10] Myron King, Nirav Dave, and Arvind. Automatic generation of hard-
ware/software interfaces. In Proceedings of the seventeenth international
conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS XVII, pages 325–336, New York, NY,
USA, 2012. ACM.

[11] S. Krstic, J. Cortadella, M. Kishinevsky, and J. O’Leary. Synchronous
elastic networks. In Formal Methods in Computer Aided Design, 2006.
FMCAD ’06, pages 19–30, 2006.

[12] Daniel L. Rosenband. The Ephemeral History Register: Flexi-
ble Scheduling for Rule-Based Designs. In Proceedings of MEM-
OCODE’04, San Diego, CA, 2004.

[13] Daniel L. Rosenband and Arvind. Modular Scheduling of Guarded
Atomic Actions. In Proceedings of DAC’04, San Diego, CA, 2004.

[14] M. Vijayaraghavan and Arvind. Bounded dataflow networks and latency-
insensitive circuits. In Formal Methods and Models for Co-Design, 2009.
MEMOCODE ’09. 7th IEEE/ACM International Conference on, pages
171–180, 2009.

[15] Jianwen Zhu and Daniel Gajski. Soft scheduling in high level synthesis.
In DAC, pages 219–224, 1999.

